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BACKGROUND: Endometriosis is recognized as a steroid-dependent disorder; however, the precise roles of nuclear receptors (NRs) in
steroid responsiveness and other signaling pathways are not well understood.

OBJECTIVE AND RATIONALE: Over the past several years, a number of paradigm-shifting breakthroughs have occurred in the area
of NRs in endometriosis. We review and clarify new information regarding the mechanisms responsible for: (i) excessive estrogen biosyn-
thesis, (ii) estrogen-dependent inflammation, (iii) defective differentiation due to progesterone resistance and (iv) enhanced survival due to
deficient retinoid production and action in endometriosis. We emphasize the roles of the relevant NRs critical for these pathological pro-
cesses in endometriosis.

SEARCH METHODS: We conducted a comprehensive search using PubMed for human, animal and cellular studies published until 2018
in the following areas: endometriosis; the steroid and orphan NRs, estrogen receptors alpha (ESR1) and beta (ESR2), progesterone recep-
tor (PGR), steroidogenic factor-1 (NR5A1) and chicken ovalbumin upstream promoter-transcription factor II (NR2F2); and retinoids.

OUTCOMES: Four distinct abnormalities in the intracavitary endometrium and extra-uterine endometriotic tissue underlie endometriosis
progression: dysregulated differentiation of endometrial mesenchymal cells, abnormal epigenetic marks, inflammation activated by excess
estrogen and the development of progesterone resistance. Endometriotic stromal cells compose the bulk of the lesions and demonstrate
widespread epigenetic abnormalities. Endometriotic stromal cells also display a wide range of abnormal NR expression. The orphan NRs
NR5A1 and NR2F2 compete to regulate steroid-synthesizing genes in endometriotic stromal cells; NR5A1 dominance gives rise to
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excessive estrogen formation. Endometriotic stromal cells show an abnormally low ESR1:ESR2 ratio due to excessive levels of ESR2, which
mediates an estrogen-driven inflammatory process and prostaglandin formation. These cells are also deficient in PGR, leading to progester-
one resistance and defective retinoid synthesis. The pattern of NR expression, involving low ESR1 and PGR and high ESR2, is reminiscent
of uterine leiomyoma stem cells. This led us to speculate that endometriotic stromal cells may display stem cell characteristics found in
other uterine tissues. The biologic consequences of these abnormalities in endometriotic tissue include intense inflammation, defective dif-
ferentiation and enhanced survival.

WIDER IMPLICATIONS: Steroid- and other NR-related abnormalities exert genome-wide biologic effects via interaction with defective
epigenetic programming and enhance inflammation in endometriotic stromal cells. New synthetic ligands, targeting PGR, retinoic acid
receptors and ESR2, may offer novel treatment options.
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Introduction
The traditional definition of endometriosis, i.e. the presence of endo-
metrial tissue outside of the endometrial cavity, narrowly focuses on
the anatomical disease, yet lesions may not always be visualized with
laparoscopy, and the extent and severity of the pelvic disease may
not correlate with its often debilitating symptoms, including chronic
pelvic pain and infertility (Stovall et al., 1997; Milingos et al., 2003). In
view of recent clinical and molecular advances in our understanding
of pelvic endometriosis, it is more appropriately defined as an
estrogen-dependent and inflammatory disorder associated with

reconditioning of the peripheral and central nervous systems for pain
perception and infertility (Giudice and Kao, 2004; Bulun, 2009).

Repeated episodes of ovulatory menses represent the single most
important risk factor for developing endometriosis (Vercellini et al.,
2014). Even macroscopically invisible implants may lead to persistent
pain yet respond to suppression of ovulation (Khan et al., 2014). The
disruption of menses usually provides relief from endometriosis
symptoms (Fang et al., 2002; Vercellini et al., 2011). Inhibition of local
estrogen production via aromatase inhibitors may further improve
symptom relief (Takayama et al., 1998; Soysal et al., 2004). This
emphasizes the paramount importance of estrogen to the pathogen-
esis of endometriosis: estrogen promotes endometriotic cell survival,
inflammation and lesion progression (Bulun et al., 2010; Monsivais
et al., 2016).

In addition to estrogen dependence, another striking feature of
endometriosis is the availability of the full set of steroidogenic
enzymes enabling de-novo synthesis of estradiol (Attar et al., 2009;
Bulun, 2009). It was also proposed that estrone sulfate may act as a
reservoir for local estradiol formation in endometriotic tissue (Smuc
et al., 2007). Current treatment regimens focus on total interruption
of estrogen signaling and ovulation suppression via hormonal agents
(Johnson and Hummelshoj, 2013). An ideal therapy for endometriosis
would be a high-precision approach that targets local production or
action of estrogen or other steroids. Steroid hormones act primarily
via binding to their nuclear receptors (NRs). Understanding the dis-
tinct roles of NRs in the pathogenic processes of endometriosis may
reveal opportunities for development of novel therapeutic
approaches. This review focuses on key NRs that play crucial roles in
local estrogen synthesis, steroid hormone action and steroid hor-
mone availability in the pathogenesis of endometriosis.

NRs comprise a superfamily of conserved transcription factors,
mostly regulated by small lipophilic ligands and cellular signaling path-
ways (Germain et al., 2006). There are 48 members of the NR
superfamily in humans (Yin et al., 2013). These receptors function as
monomers and homo/heterodimers that directly regulate transcrip-
tion of hormone-inducible genes (Germain et al., 2006) (Fig. 1).
Estrogen receptors alpha and beta (ESR1 and ESR2) and progester-
one receptor (PGR) are the key steroid receptors involved in the
pathophysiology of endometriosis (Attia et al., 2000; Monsivais et al.,
2014). In endometrial stromal cells, progesterone regulates retinoic
acid production and action (Pavone et al., 2010). Retinoids also act
via a number of NRs and are involved in normal endometrial function
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Figure 1 Examples of nuclear receptor action in endome-
triotic and normal uterine cells. (A) NR5A1 is an orphan
nuclear receptor that directly binds to DNA as a monomer. It
assembles a transcriptional complex capable of initiating the expres-
sion of steroidogenic genes in endometriotic stromal cells (Yang
et al., 2002; Bulun et al., 2005). (B) In leiomyoma smooth muscle
cells, a homodimer of PGRs liganded with progesterone (P) bind to
a specific progesterone response element (PRE) and assemble a spe-
cific complex including a co-activator to start transcription of proges-
terone target genes such as BCL2 (Bulun, 2013). BCL2, B-cell
lymphoma-2; C/EBPα, CCAAT/enhancer binding protein-α; CREB-
1, cAMP response element binding protein 1; CBP, CREB-binding
protein; PGR, progesterone receptor; NR5A1, steroidogenic factor-
1; TFs, transcription factors.
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and endometriosis (Pavone et al., 2011). The NRs without known
ligands, i.e. orphan NRs, steroidogenic factor-1 (NR5A1) and chicken
ovalbumin upstream promoter-transcription factor II (NR2F2) also play
critical roles in regulating local estrogen concentrations in endometri-
osis (Zeitoun et al., 1999; Attar et al., 2009; Bernardi et al., 2018).

Methods
A comprehensive search of the PubMed database was conducted to
identify peer-reviewed literature published in English until June 2018, per-
tinent to the roles of NRs in endometriosis pathogenesis and progression.
The search included the keywords either alone or in combination with
‘endometriosis’: estrogen receptor alpha, estrogen receptor beta, retinoic
acid receptor (RAR), PGR, steroidogenic factor-1, chicken ovalbumin
upstream promoter-transcription factor II, endometrial stem cells. Both
animal and human studies were reviewed for this article.

NR5A1 and NR2F2
NR5A1, also known as SF-1, is an orphan NR because it does not
have a well-defined natural ligand (Luo et al., 1994). NR5A1 plays a
critical role in regulating steroidogenic pathways in the adrenal gland,
testis and ovary (Luo et al., 1994; Hanley et al., 2000). While NR5A1
expression is barely detectable in the eutopic endometrium, its
mRNA level is ~12 000-fold higher in endometriosis (Xue et al.,
2007b). In the endometriotic stromal cells, NR5A1 is essential for
supporting high levels of proteins and enzymes that drive the serial
conversion of cholesterol to estradiol (Attar et al., 2009; Bernardi
et al., 2018). NR5A1 binds the promoters and stimulates the expres-
sion of steroidogenic acute response protein (StAR), side chain cleav-
age enzyme (CYP11A1), 3β-hydroxysteroid dehydrogenase type 2
(HSD3B2), 17β-hydroxylase/17,20-lyase (CYP17A1) and aromatase
(CYP19A1) (Attar et al., 2009; Bernardi et al., 2018).

NR5A1 serves as a key downstream mediator of prostaglandin E2
(PGE2) action (Sirianni et al., 2009). Estradiol- and cytokine-induced
stimulation of cyclooxygenase-2 (COX-2) leads to overproduction of
PGE2, which in turn binds to its receptor on endometriotic stromal
cells and elevates intracellular levels of cAMP (Noble et al., 1997;
Tamura et al., 2002, 2004; Sun et al., 2003; Wu et al., 2005).
Downstream of the PGE2-cAMP pathway, NR5A1 binds to the pro-
moters of multiple steroidogenic genes such as StAR and aromatase,
which leads to formation of large quantities of estradiol (Bulun et al.,
2005; Attar et al., 2009).

PGE2-induced expression of aromatase is opposed by various tran-
scriptional repressors in the healthy endometrium, such as NR2F2
(also known as COUP-TFII) (Zeitoun et al., 1999). NR2F2 is another
orphan NR that regulates a subset of genes involved in cell adhesion,
angiogenesis and inflammation; these genes are also important for
endometriosis progression (Li et al., 2013). Silencing Nr2f2 in cell
lineages of mouse uterus results in decidualisation failure (Kurihara
et al., 2007), whereas the depletion of NR2F2 in the human endomet-
rial stromal cells selectively upregulates genes involved in inflamma-
tion and cell adhesion (Li et al., 2013). In contrast to high levels of
NR5A1, NR2F2 mRNA and protein levels are significantly lower in
ectopic endometriotic lesions compared with normal eutopic

endometrium (Li et al., 2013; Lin et al., 2014). This downregulation
may be due to the inflammatory cytokines and interleukins in periton-
eal fluid in women with endometriosis, as IL-1, TNF-α and TGF-β1
have been shown to reduce NR2F2 transcript and protein levels (Lin
et al., 2014). In the normal endometrium, the promoter regions of
the aromatase and StAR genes are occupied by NR2F2 and not by
NR5A1. Promoter-bound NR2F2 inhibits expression of steroidogenic
genes, while endometriotic stromal cells override this inhibition via
NR5A1 binding to chromatin with higher affinity (Zeitoun et al.,
1999).

Thus, when NR5A1 is absent, NR2F2 carries out its inhibitory
action on the steroidogenic pathway at various steps simultaneously
to create a fail-safe system for the maintenance of normal endomet-
rial stromal cell function in healthy endometrium (Bulun, 2009).
When substantial levels of NR5A1 are present, however, NR5A1
binds to steroidogenic gene promoters with higher affinity, thus suc-
cessfully competing with NR2F2 in endometriotic cells to activate the
steroidogenic cascade, resulting in an estrogen-producing cell pheno-
type similar to that of ovarian granulosa cells.

Regulation of NR5A1 expression and activity
in endometriotic cells
The remarkably higher expression of NR5A1 in the endometriotic
stromal cells compared with normal endometrium is maintained via
various epigenetic mechanisms such as DNA methylation, histone
modification and post-transcriptional regulation (Bulun, 2009).
Genome-wide methylation studies show that functionally important
genes in endometriosis are differentially expressed in accordance
with their aberrant methylation status (Dyson et al., 2014; Yotova
et al., 2017). Hypomethylation of a critical CpG island at the pro-
moter region of NR5A1 is accompanied by remarkably high NR5A1
mRNA expression in stromal cells collected from ovarian endome-
triomas (Xue et al., 2007b; Yamagata et al., 2014). In contrast, hyper-
methylation of two specific intragenic regions of the NR5A1 gene in
endometriotic stroma compared to normal endometrium also
increase NR5A1 expression: one CpG island spans from exon II to
intron III and another is located in intron I (Xue et al., 2011, 2014).
Correlation between the location of CpG islands and NR5A1 expres-
sion demonstrates that methylation of different genomic regions gen-
erates opposite effects on transcriptional activity; expression of
NR5A1 increases with hypermethylation of intragenic CpG islands
and hypomethylation of CpG islands around the promoter site
(Dyson et al., 2014). Additionally, treating normal endometrial stro-
mal cells with the demethylating agent 5-aza-2′-deoxycytidine induces
a 55-fold increase in NR5A1 mRNA expression, reinforcing the crucial
role of methylation status in determining NR5A1 expression (Xue
et al., 2007b). In addition to the differential methylation status,
enrichment of acetylated histones 3 and 4 in the NR5A1 promoter in
endometriotic tissues shows that differential acetylation of histones
may also contribute to NR5A1 overexpression (Monteiro et al.,
2014). These epigenetic aberrations alter chromatin availability,
allowing various transcription factors such as upstream stimulatory
factor-2 to interact with the promoter region of NR5A1 in endome-
triotic stromal cells (Xue et al., 2007b; Utsunomiya et al., 2008).
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Post-transcriptional modifications may also have a role in regulating
NR5A1 levels. Micro RNAs (miR) interact with mRNAs to accelerate
their degradation or interfere with their translation (Bartel, 2009).
Several types of miR have altered gene expression in the eutopic
endometrium of women with endometriosis compared to disease-
free women (Pan and Chegini, 2008; Ohlsson Teague et al., 2009;
Filigheddu et al., 2010). miR23a and miR23b levels are lower in endo-
metriosis and in the eutopic endometrium of women with endometri-
osis, and they inversely correlate with NR5A1 levels, yet NR5A1 is
not a direct target of miR23a and miR23b (Shen et al., 2013). As an
example of a post-translational regulatory mechanism, direct phos-
phorylation of NR5A1, via selective stimulation of the membrane-
bound estrogen receptor GPR30, increases NR5A1 transcriptional
activity, leading to induction of aromatase expression in endometrio-
tic stromal cells (Lin et al., 2009).

Estrogen receptor beta
The biologically active estrogen estradiol acts via nuclear estrogen
receptors to regulate growth of the endometrial tissue (Huhtinen et al.,
2012). The nuclear estrogen receptor subtypes are ESR1 and ESR2,
which are encoded by different genes but have 96% similarity in their
DNA binding domains (Mosselman et al., 1996). While ESR1 and ESR2
are both present in the endometrium, ESR1 expression dominates, and
estrogen-dependent proliferation is mediated mainly through ESR1
(Matsuzaki et al., 2001; Shang, 2006). Upon ligand binding, the estra-
diol/ESR1 complex acts as a transcription factor and binds to the pro-
moters of estrogen-target genes such as the PGR to induce their
expression (Weihua et al., 2000; Carroll et al., 2005; Lin et al., 2007).

Several groups have reported significantly lower levels of ESR1
both in endometriomas and cultured endometriotic stromal cells
obtained from cyst walls of ovarian disease (Brandenberger et al.,
1999; Fujimoto et al., 1999; Smuc et al., 2007). ESR1 mRNA expres-
sion is ~7-fold lower in stromal cells from ovarian endometriomas
compared to normal endometrial stromal cells (Xue et al., 2007a). In
various cancer types, methylation of CpG islands in the promoter
region of the ESR1 gene is associated with gene silencing (Issa et al.,
1994; Ottaviano et al., 1994). Reduced expression of ESR1 is corre-
lated with hypermethylation of the ESR1 gene near its 3′ promoter in
endometriotic stromal cells (Dyson et al., 2014). Additionally, ESR2
directly downregulates ESR1 in stromal cells derived from ovarian
endometriosis (Trukhacheva et al., 2009). ESR2 binds to alternatively
used promoter regions of the ESR1 in the presence of estradiol and
suppresses its expression (Grandien, 1996; Donaghue et al., 1999;
Trukhacheva et al., 2009).

In endometriotic tissue, there is a switch from ESR1 to ESR2 domi-
nancy. RNA expression of ESR2 is 40- to 140-fold higher in stromal
cells obtained from ovarian endometriomas compared to healthy
eutopic endometrial stromal cells (Smuc et al., 2007; Xue et al.,
2007a; Yang et al., 2015). ESR2 expression is also higher in the euto-
pic endometrium of women with endometriosis compared to
disease-free women; suggesting that high levels of ESR2 in the endo-
metrium increase the risk of developing endometriosis (Han et al.,
2012; Monsivais et al., 2014). The abnormally high ESR2:ESR1 mRNA
ratio in endometriotic stromal cells reaches an ~800-fold difference
compared with normal endometrial stromal cells (Xue et al., 2007a).

The ESR2:ESR1 protein ratio is also higher in endometriotic versus
endometrial stromal cells (Xue et al., 2007a).

Cause of high ESR2 expression in
endometriotic cells
Studies investigating the association between ESR2 polymorphisms and
endometriosis risk have reported inconsistent results; a meta-analysis
comparing eight studies concluded that the previously suggested poly-
morphisms were associated with bias rather a real risk for endometri-
osis (Guo et al., 2014). Hypomethylation of a CpG island in the
promoter of the ESR2 gene was seen in endometriotic stromal cells,
whereas the same sequence was hypermethylated and therefore
silenced in normal endometrial stromal cells (Xue et al., 2007a).
Treatment of endometrial stromal cells with the demethylating agent,
5-aza-2-deoxycytidine, significantly increased ESR2 mRNA levels, sug-
gesting that differential methylation is a major mechanism driving ESR2
upregulation in endometriosis (Xue et al., 2007a). DNA methyltrans-
ferase (DNMT) 1 and DNMT3B mRNA and protein are differentially
expressed in endometriotic cells or lesions in comparison to normal
endometrium from disease-free women (van Kaam et al., 2011; Dyson
et al., 2015; Hsiao et al., 2015). Differential binding activity of
DNMT3B to NR5A1 and ESR1 promoters in endometriotic versus nor-
mal endometrial stromal cells suggests that this enzyme might play a
role in abnormal gene expression in endometriosis (Dyson et al.,
2015). The relationship between DNMT expression levels and ESR2
promoter hypomethylation in endometriosis remains to be discovered.

Biological consequences of ESR2
overexpression in endometriosis
Aberrantly high ESR2 levels regulate several pathological processes in
endometriotic tissue including proliferation, inhibition of apoptosis,
inflammation and pain transmission (Monsivais et al., 2014; Han et al.,
2015). Genome-wide chromatin immunoprecipitation approaches
identified a total of 70 genes that had an ESR2 binding site and that
also were differentially expressed in normal endometrium versus
endometriosis (Monsivais et al., 2014; Han et al., 2015). In particular,
estradiol induces ESR2 enrichment at the promoter region of the
Ras-like and estrogen-regulated growth inhibitor (RERG) gene. PGE2,
via protein kinase A, phosphorylates RERG and enhances its nuclear
translocation, inducing the proliferation of primary endometriotic cells
(Monsivais et al., 2014). Another estradiol-regulated ESR2 target
gene, serum and glucocorticoid-regulated kinase (SGK1), is also
induced by PGE2 and contributes to survival of endometriotic cells
via inhibition of apoptosis (Monsivais et al., 2016). The key role of
ESR2 in proliferation and survival of endometriotic cells is further sup-
ported by studies in a mouse model of endometriosis expressing high
levels of ESR2 in endometriosis lesions. The inhibition of ESR2 activity
by an ESR2-selective estrogen antagonist suppresses lesion growth in
these animals, whereas gain of ESR2 function stimulates the progres-
sion of endometriosis (Han et al., 2015). Mechanistically, this work
also reveals that ESR2 interacts with components of the cytoplasmic
inflammasome to increase IL-1β, thus contributing to cellular adhe-
sion and proliferation (Han et al., 2015).

Endothelial cells in the human endometrium express ESR2 but not
ESR1 (Critchley et al., 2001; Tamura et al., 2004). In addition, estradiol
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via ESR2 rapidly induces COX-2 expression in uterine endothelial cells
(Critchley et al., 2001; Tamura et al., 2004). Thus, it is tempting to
speculate that ESR2 may have a major role in regulating COX-2 levels
in endometriosis. ESR2 signaling integrates inflammatory and pain path-
ways; macrophage infiltration of endometriosis increases in response
to estradiol (Greaves et al., 2015). ESR2-immunoreactive macrophages
contribute to inflammation by mediating nerve-growth in a mouse
model (Greaves et al., 2015). Treatment of sensory neurons with dia-
rylpropionitrile (DPN), an ESR2-selective estrogen agonist, results in
upregulation of the capsaicin receptor, TRPV1, which may contribute
to inflammation-associated pain perception in endometriosis (Caterina
et al., 2000; Greaves et al., 2014).

A recently developed ESR2 ligand with anti-inflammatory properties,
chloroindazole, prevents lesion establishment via suppression of inflam-
mation, and inhibits angiogenesis and neurogenesis in a mouse model
without disturbing fertility (Zhao et al., 2015). Moreover, the SRC-1
inhibitor bufalin, which leads to ESR2 protein degradation, induces
apoptosis in endometriotic epithelial cells and inhibits proliferation of
stromal cells (Cho et al., 2018). Agents that inhibit ESR2-mediated
inflammation may be promising novel treatment options for endomet-
riosis without interfering with fertility. Future preclinical studies are
required to determine the efficacy and safety of these agents.

Progesterone receptor
In the endometrium, progesterone exerts its effects through intracel-
lular PGRs PGR-A and PGR-B, both of which are encoded by a single
gene (Kastner et al., 1990). PGR-A is a 94 kDa protein, whereas
PGR-B is 114 kDa protein with 164 additional amino acids at its N-
terminal (Lessey et al., 1983; Alexander et al., 1989). In mice, select-
ive ablation of PGR-A results in uterine and ovarian abnormalities
and female infertility, while ablation of PGR-B halts breast develop-
ment only (Mulac-Jericevic et al., 2000, 2003). While PGR-A is suffi-
cient for endometrial and ovarian function in mice, in humans, the
roles of PGR-A and PGR-B seem to be more complex (Mote et al.,
1999). Transcriptional activities of different PGR isoforms depend on
the cell type as well as the promoter; e.g. in the endometrium, only
PGR-A exerts repressor actions on ESR1 (Vegeto et al., 1993).
Through PGR-A, progesterone acts like a brake on estradiol action in
endometrial epithelium. It inhibits estrogen-induced growth and pro-
liferation and can even reverse hyperplasia (Yang et al., 2011; Kim
et al., 2013). This inhibitory action is mediated through stromal cells
in a paracrine fashion, as PGR knockout endometrial tissue recombi-
nants show that stromal PGR is essential for progesterone to antag-
onise estrogen-induced epithelial proliferation (Kurita et al., 2000). In
response to progesterone, endometrial stromal cells also take up ret-
inol and produce retinoic acid, which induces the enzyme 17β-hydro-
xysteroid dehydrogenase type 2 (HSD17B2) in endometrial epithelial
cells, possibly in a paracrine fashion (Cheng et al., 2008). Thus, in
endometrial epithelial cells, progesterone not only antagonises the
action of estrogen but also induces HSD17B2, the enzyme that con-
verts estradiol to the less potent estrone (Yang et al., 2001).

Progesterone resistance in endometriosis
The gene expression profile of endometriotic cells during the window
of implantation reveals that progesterone-responsive genes such as

that for glycodelin are significantly downregulated in women with
endometriosis compared to endometrial cells from disease-free
women (Kao et al., 2003). Further comparisons at various points dur-
ing the menstrual cycle show dysregulated gene expression in the
early secretory phase, with increased survival and mitotic activity
(Burney et al., 2007). This attenuation of progesterone responsive-
ness can be explained by decreased PGR levels in endometriotic cells.
Despite the ability of these cells to produce large amounts of proges-
terone through locally expressed steroidogenic enzymes, very low
levels of PGR-A are present, while PGR-B is undetectable in endome-
triotic tissues obtained from peritoneal lesions (Attia et al., 2000). In
eutopic endometrial tissue, both PGR isoforms increase throughout
the proliferative phase and peak before ovulation under the influence
of increasing estrogen levels; in endometriosis, PGR levels remain
very low to undetectable, possibly due to an abnormally low ESR1:
ESR2 ratio in endometriotic stromal cells (Bulun et al., 2012).

Defective epigenetic programming may also contribute to proges-
terone resistance (Xue et al., 2007b). Endometrial mesenchymal
stem cells (eMSC) isolated from the eutopic endometrium of women
with endometriosis do not properly decidualise in vitro in response to
hormone treatment; this suggests that progesterone resistance in
endometriotic tissue may be inherited from defectively programmed
stem cells (Barragan et al., 2016). A decreased progesterone
response in mature stromal cells impedes HSD17B2 induction in epi-
thelial cells, thus contributing to high levels of local estradiol by hin-
dering its conversion into the biologically less active steroid estrone
(Bulun et al., 2006).

Mechanisms affecting PGR expression in
endometriotic tissue
Associations of PGR gene polymorphisms with endometriosis have
been reported but results are inconsistent (Wieser et al., 2002;
Lattuada et al., 2004; De Carvalho et al., 2007; van Kaam et al.,
2007). A meta-analysis comparing 12 studies concluded that the link
between a PGR variant and endometriosis risk was only observed in
European subjects (Pabalan et al., 2014). Therefore, polymorphisms
directly affecting PGR function do not likely explain the development
of progesterone resistance in endometriotic tissue. The PGR-B pro-
moter is hypermethylated in ectopic endometrial epithelium, which
may suppress its expression in endometriosis (Wu et al., 2006). In
fact, treatment of an immortalized endometriotic epithelial cell line
with the pro-inflammatory cytokine TNF induces hypermethylation of
the PGR-B promoter (Wu et al., 2008). Gene expression profiling in a
baboon endometriosis model shows that as the disease progresses, a
progesterone-resistant phenotype appears not only in the ectopic
lesions but also in the eutopic endometrium (Afshar et al., 2013).
These observations collectively suggest that inflammation may regu-
late PGR expression via epigenetic reprogramming.

Additionally, miR-196a, miR-29c and miR-194-3p have been shown
to be associated with progesterone resistance. miR-194-3p hinders
decidualization in endometrial stromal cells via direct regulation of
PGR expression (Pei et al., 2018). miR196a downregulates PGR
expression via the ERK/MEK pathway and inhibits decidualisation
(Zhou et al., 2016). miR-29c, which is also overexpressed in eutopic
endometrium of women with endometriosis and in baboon models,
downregulates PGR by decreasing FK506-binding protein 4 (FKBP4)
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levels (Yang et al., 2012; Joshi et al., 2017). Surgical excision of endo-
metriosis lesions may help overcome the development of progester-
one resistance by alleviating the inflammatory milieu (Joshi et al.,
2017).

ESR2 binds to alternatively used promoters in the ESR1 gene and
suppresses its expression in endometrial stromal cells (Trukhacheva
et al., 2009). ESR1 suppression by high levels of ESR2 in endometri-
osis may thus hinder E2/ESR1-mediated induction of PGR in this tis-
sue (Trukhacheva et al., 2009). It is possible that ESR2 may also
directly bind to PGR promoters to suppress its transcription.

Retinoids

Retinoic acid signaling and function in the
endometrium
Retinoic acid is traditionally known to have anti-inflammatory effects
(Schug et al., 2007). Transcriptional activation through RARs may trig-
ger differentiation, cell-cycle arrest and apoptosis (Altucci et al.,
2001; Kitareewan et al., 2002; Donato and Noy, 2005). Alternatively,
retinoic acid can activate transcription to promote cell survival
through an orphan NR, peroxisome proliferator-activated receptor
beta/delta (PPAR-β/δ) (Shaw et al., 2003). Shuttling of retinoic acid
to the NRs is regulated by the intracellular lipid binding proteins, cel-
lular retinoic acid-binding protein 2 (CRABP2) and fatty acid-binding
protein 5 (FABP5), which transfer retinoic acid to RAR or PPAR-β/δ,
respectively (Tan et al., 2002; Schug et al., 2007). Thus, the ratio of
CRABP2 and FABP5 in a particular cell regulates retinoic acid signal-
ing to exert either pro-apoptotic or pro-survival effects (Schug et al.,
2007; Çakıroğlu et al., 2017).

Retinoic acid production and metabolism are crucial for endomet-
rial decidualisation and the crosstalk between stroma and the glandu-
lar epithelium. Progesterone via PGR induces retinoic acid production
in endometrial stromal cells, which then acts on epithelial cells to
induce HSD17B2 expression (Casey et al., 1994; Cheng et al., 2008).
In endometriotic tissue, defective retinol uptake and retinoic acid
metabolism resulting from progesterone resistance compromises the
crosstalk between the stroma and epithelium (Çakıroğlu et al., 2017).

Retinoic acid deficiency
Retinol uptake and retinoic acid action are impaired in endometriotic
stromal cells collected from ovarian endometriomas (Pavone et al.,
2010). The cell surface receptor stimulated by retinoic acid 6
(STRA6), which is the main receptor for retinol uptake by endomet-
rial stromal cells, is downregulated in endometriotic stromal cells
compared to normal endometrial stromal cells (Pavone et al., 2011).
Impaired intracellular conversion of retinol to its active form, all-trans
retinoic acid, and deficiency of retinol binding protein 1 (RBP1) also
contribute to decreased availability of retinoic acid (Pavone et al.,
2011; Pierzchalski et al., 2014). Moreover, endometriotic stromal
cells express the oxidizing enzyme CYP26B1 at higher levels, which
causes a more rapid clearance of retinoids (Pavone et al., 2017).
Decreased availability of retinoic acid gives rise to deficiency of
HSD17B2 in the epithelial compartment. HSD17B2 deficiency impairs
the conversion of potent estradiol to its less active form estrone,

further contributing to the hyperestrogenic environment in endomet-
riosis (Pavone et al., 2011).

Anti-apoptotic effects of altered retinoid
metabolism
Retinoic acid deficiency can enhance cell survival pathways in endo-
metriosis via at least two different ways. First, decreased retinoic acid
levels lead to increases in inflammatory cytokines such as IL-6 (Wang
et al., 2007). In an immunocompetent mouse model, retinoic acid
was shown to inhibit the development of peritoneal endometriotic
implants while reducing IL-6 and monocyte chemoattractant protein
1 levels and increasing macrophage differentiation (Wieser et al.,
2012). Second, retinoic acid deficiency can lead to cell growth and
protect against apoptosis due to a switch in cell signaling pathways
from CRABP2/RAR to FABP5/PPAR-β/δ (Schug et al., 2007).
CRABP2 expression is induced by progesterone, and progesterone
resistance in endometriosis severely decreases the CRABP2:FABP5
ratio (Pavone et al., 2010). FABP5 dominancy promotes the shuttling
of retinoic acid to PPAR-β/δ, which promotes cell survival and
impairs apoptosis (Pavone et al., 2010). Recently, it was shown that
expression of the retinoic acid-regulated autophagy marker Beclin1 is
reduced in endometriotic tissue compared to endometrium, and
attenuation in autophagy may contribute to enhanced endometriotic
stromal cell proliferation (Lu et al., 2018). Collectively, decreased
availability of retinoic acid and a switch in its intracellular signaling
may favor anti-apoptotic pathways and cell survival in endometriosis.

Endometrial stem cells
The endometrium undergoes cyclical regeneration in response to the
steroid hormones estradiol and progesterone (Jabbour et al., 2006).
The extraordinarily high regenerative capacity of this dynamic tissue
led to the search for stem cell-like endometrial cell populations, char-
acterized by the capacity for colony formation, self-renewal and dif-
ferentiation. Rare stromal and epithelial cells (1.25 and 0.22%,
respectively) with high proliferative capacity were identified, providing
the first evidence of endometrial stem cells (Chan et al., 2004;
Schwab et al., 2005). Following these reports, several putative endo-
metrial stem cell populations were identified including side population
cells, eMSCs and bone marrow-derived mesenchymal stem cells
(BMDSCs) (Gargett et al., 2016).

The side population phenotype is a universal marker for adult stem
cell activity in various tissues (Challen and Little, 2006). Side popula-
tion cells express ATP-binding cassette transporter (ABCG2/Brcp1)
on the cell surface and have the ability to efflux the DNA binding dye
Hoechst 33 342 (Zhou et al., 2001). These perivascular cells com-
prise ~2% of the human endometrium distributed in the functionalis
and the basalis layers and display an endothelial-cell phenotype with
migration and angiogenesis abilities (Masuda et al., 2010). When
injected into subcutaneous tissue or the kidney capsule of NOD-
SCID mouse, side population cells regenerate human endometrial
stroma, glandular epithelium and endothelium (Cervello et al., 2010,
2011; Miyazaki et al., 2012). While the side population may harbor
endometrial stem cells, this population is heterogeneous and isolation
techniques are impractical for further applications due to isolation-
associated toxicities (Cousins et al., 2018).
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eMSCs are self-renewing, multipotent, clonogenic stem cells that
can give rise to mesodermal lineages in vitro. eMSCs were first iso-
lated from the endometrium as CD146(+)PDGFRB(+) dual positive
cells and later by a novel single cell surface marker, sushi domain
containing-2 (SUSD2) (Gargett and Masuda, 2010). Similar to the
side population, eMSCs are located in the perivascular region and
they are present in both functionalis and basalis layers (Schwab and
Gargett, 2007; Masuda et al., 2012). Comparison of post-menopausal
and premenopausal endometrial tissues revealed eMSCs with similar
self-renewal capacity and expression of SUSD2 (Ulrich et al., 2014).

In addition to endogenous stem cells of the endometrium,
BMDSCs may also contribute to endometrial regeneration.
Endometrial biopsy of HLA-mismatched bone marrow donor recipi-
ents demonstrated donor-derived cells in the stroma and the epithe-
lium (Taylor, 2004; Ikoma et al., 2009). BMDSCs were also shown to
serve as progenitor cells for endometriotic lesions (Du and Taylor,
2007). Later studies suggested that BMDSCs may differentiate into
stroma or epithelium but do not contribute to the endometrial pro-
genitor population (Cervello et al., 2012). Recently, a study of a chi-
meric irradiated mouse model transplanted with immunofluorescent
labeled marrow showed that bone marrow-derived cells that infiltrate
into the epithelial and vascular compartments may be F4/80(+)
macrophages (Ong et al., 2018). As macrophages secrete vimentin
and are weakly positive for leukocyte marker CD45, they could easily
be mistaken for endometrial cells (Mor-Vaknin et al., 2003; Ong
et al., 2018). Thus, recent evidence suggests that BMDSCs may not
contribute to endometrial regeneration via trans-differentiation.
Regardless, BMDSCs seem to enhance endometrial regeneration.
Endometrial injury increases the engraftment of these cells to the tis-
sue independent of sex steroid hormones (Du et al., 2012). Cell ther-
apy with autologous peripheral blood CD133+ BMDSCs significantly
improves endometrial thickness and the duration and intensity of
menstruation and decreases adhesion scores in patients with refrac-
tory Asherman syndrome (Santamaria et al., 2016). Thus, it is con-
ceivable that BMDSCs may improve endometrial regeneration via
secreting paracrine factors to stimulate endogenous endometrial
stem cells.

Stem cells in endometriosis
Based on clinical and molecular evidence, retrograde menstruation is
the most plausible theory explaining the development of endometri-
osis, with some of the endometrial tissue effluxed to the peritoneum
during menstruation (Sampson, 1927; Bulun, 2009). Yet, it is not
known why endometriosis occurs only in 10% of women while retro-
grade menstruation through the fallopian tubes occurs in ~90% of
women (Halme et al., 1984). Therefore, predisposing factors are
likely involved, either in the shed endometrial cells that enable sur-
vival in the peritoneal cavity or in the immune response that leads to
impaired clearance of the migrated cells.

Similar to endometrium, endometriotic lesions also harbor multi-
potent, colony-forming MSCs (Chan et al., 2011). Remarkably, MSCs
and epithelial progenitor cells isolated from ovarian endometriomas
do not show increased clonogenicity or self-renewal compared to
endometrial stem cells, which might have explained the increased sur-
vival capacity in endometriosis (Chan et al., 2011; Li et al., 2014).
However, because in-vitro culture lacks the paracrine factors unique

to the stem cell niche, it is unable to recapitulate normal physiology.
It was shown that cytokines such as colony-stimulating factor-1
secreted from macrophages increase the proliferation and invasion
activity of endometriotic stem cells (Chan et al., 2017). Other
molecular qualities of endometriotic stem cells, such as aberrant NR
expression, could also give rise to a resilient phenotype.

NRs in endometrial stem cells
Endometrial side population cells are ESR2-positive, but they do not
express ESR1 or PGR (Cervello et al., 2011). Similarly, SUSD2(+)
eMSCs are also ESR1-negative (Ulrich et al., 2014). Based on their
perivascular location, it is tempting to speculate that these MSCs
represent the first cell type that comes into contact with steroids and
growth factors transported by blood. These stem cells may respond
to circulating estradiol primarily via ESR2, the predominant estrogen
receptor type. In post-menopausal women, estradiol treatment
increases the total number of SUSD2(+) eMSCs and the endometrial
thickness proportionally (Ulrich et al., 2014). This proliferation in
response to estradiol could be due to ESR2-mediated growth or
paracrine signaling between ESR1/PGR-positive mature stromal cells
and neighboring stem cells.

The proposed stem cell signaling theory for leiomyomas can be
taken as a model for the endometrium. For the stimulation of clonal
expansion and growth of leiomyoma, sex steroids and steroid hor-
mone receptors are necessary; yet, leiomyoma stem cells express
barely detectable levels of ESR1 or PGR (Mas et al., 2012; Ono et al.,
2012). The suggested mechanism for hormone action on leiomyoma
stem cells proposes that differentiated stromal cells respond to circu-
lating steroid hormones by secreting paracrine factors, which in turn
stimulate stem cell proliferation and tumor expansion (Bulun, 2013).
Supporting this model, it was recently shown that a PGR-positive
group of cells in uterine leiomyomas secrete receptor activator of
nuclear factor kappa-Β ligand (RANKL) following progestin treat-
ment, which induces proliferation of leiomyoma stem cells through its
receptor RANK (Ikhena et al., 2018). Endometrial or endometriosis
stem cells, which are also deficient in steroid receptors, may also be
stimulated via unique paracrine signaling originating from the sur-
rounding steroid receptor-positive cells.

Epigenetically programmed populations with stem cell characteris-
tics may be present in eutopic endometrial tissue of women predis-
posed to develop endometriosis. These cells may inappropriately
express high levels of pro-inflammatory (e.g. ESR2) or steroidogenic
(e.g. NR5A1) factors that increase their capacity to survive outside of
the uterine cavity. Upon arrival in the peritoneal cavity via retrograde
menstruation, these cells would be more likely to form endometriotic
lesions (Fig. 2). Thus, a combination of defective epigenetic program-
ming combined with larger numbers of cells with stem cell character-
istics could constitute a significant risk factor for developing the
symptoms of pelvic endometriosis.

Novel therapeutic approaches
targeting steroid receptors
Current available medical treatment options for endometriosis include
combined oral contraceptives, gonadotropin-releasing hormone agonists
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and antagonists, oral or injectable progestins and aromatase inhibitors
(Dunselman et al., 2014). Almost all available agents result in only tem-
porary symptom relief (Bedaiwy et al., 2017). Since the basis of therapy
is ovulation interruption and estrogen suppression, non-steroidal anti-
inflammatory drugs are the only treatment option for women who wish
to maintain fertility. In addition, there is no evidence to show that preg-
nancy outcomes improve following ovulation suppression therapy for
endometriosis (Hughes et al., 2007). Thus, novel therapeutic approaches
with better sustainable outcomes and higher tolerability are needed.

Since estradiol is known to promote proliferation of the endomet-
rium, several studies have tested selective estrogen receptor modula-
tors (SERMs) to drive endometriotic lesion regression. Raloxifene and
bazedoxifene both result in lesion regression and inhibition of prolif-
eration in murine models (Yao et al., 2005; Kulak et al., 2011; Naqvi
et al., 2014). Nonetheless, a prospective randomized clinical trial of
post-excision raloxifene for biopsy-proven endometriosis showed
that those who received raloxifene following surgical lesion excision
experienced pain sooner than the placebo arm and raloxifene did not
inhibit lesion growth (Stratton et al., 2008). This discrepancy may
have several possible explanations. First, while ESR2 mediates
estradiol-dependent anti-apoptosis and proliferation in human lesions,
its expression is variable in murine models of endometriosis with
ESR1 dominancy in most models (Kulak et al., 2011; Naqvi et al.,
2014). Second, raloxifene decreases proliferative markers in the epi-
thelium of lesions in rodent models but not in the stroma, yet the
stromal component is the major contributor to endometriotic lesions
(Altintas et al., 2010). Finally, estradiol agonism or antagonism may
have direct effects on nociceptors or pain perception. ESR2 ligands
acting as estrogen antagonists in endometriotic tissue show promising
results in murine models and should also be considered as potential
therapeutics (Zhao et al., 2015).

Selective PGR modulators (SPRMs) are synthetic steroids that
exert agonistic and antagonistic properties upon binding to PGR in a
tissue-specific manner (Madauss et al., 2007). SPRMs induce amenor-
rhea without causing a hypoestrogenic state or associated bone loss
(Chabbert-Buffet et al., 2005). These agents also reduce abnormal

uterine bleeding that is observed with progestin treatment (Donnez
et al., 2015). SPRMs that primarily act as progesterone antagonists
are ulipristal acetate (UPA), asoprisnil and mifepristone. UPA
decreases lesion size, attenuates cell proliferation, and induces apop-
tosis in murine endometriosis models (Huniadi et al., 2013; Liang
et al., 2018). Mifepristone also reduces lesion size in animal models
and patients (Kettel et al., 1996; Mei et al., 2010). In parallel with
these findings, a systematic review of 10 randomized controlled trials
assessing the efficacy of SRPMs for relief of endometriosis-associated
pain concluded that mifepristone relieves dysmenorrhea and dyspar-
eunia, with insufficient evidence of efficacy and safety of other SPRMs
(Fu et al., 2017). SPRMs may be a promising new type of medication
for clinical use, but their long-term efficacy remains to be proven
(Whitaker et al., 2014).

Discussion
A woman with first degree relatives with endometriosis is seven
times more likely to develop endometriosis compared to those who
have unaffected relatives (Simpson et al., 1980). Despite some evi-
dence that endometriosis may be an inheritable disease, no germ-line
or causative somatic mutations have been reported to date
(Montgomery et al., 2008; Rahmioglu et al., 2012). While nucleotide
variants or mutations were noted sporadically in the epithelial com-
ponent of ovarian endometriomas or deep-infiltrating endometriosis,
stromal cells consistently lack any somatic mutations (Anglesio et al.,
2017). Epigenetic aberrations in endometriotic stromal cells seem to
be the main contributors to the pathogenesis and progression of

Figure 2 Role of endometrial stem cells in endometriosis
pathogenesis. Normal mature endometrial cells that are shed in the
peritoneal cavity through retrograde menstruation fail to attach and
are absorbed. Epigenetically defective endometrial cells with stem cell
characteristics display enhanced cell survival and lead to lesion forma-
tion. These endometriotic cells have hypomethylated CpG islands at
promoters that regulate genes encoding critical nuclear receptors such
as ESR2 and NR5A1. These nuclear receptors alter estrogen produc-
tion and action and also the response to progesterone.
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Figure 3 Molecular characteristics of steroid hormone
receptors in endometriotic tissue. In endometriotic tissue, high
levels of local estradiol are maintained by the upregulation of various
nuclear receptors such as NR5A1 and ESR2, which are connected
via feedback loops involving inflammatory factors. The abnormally
low ESR1:ESR2 ratio in endometriotic stromal cells is associated with
low levels of PGR, which leads to progesterone resistance and fur-
ther contributes to a hyperestrogenic environment via an abnormal
retinoic acid signaling pathway. COX-2, cyclooxygenase-2; ESR1,
estrogen receptor alpha, ESR2, estrogen receptor beta; HSD17B2,
17β-hydroxysteroid dehydrogenase type 2; PGE2, prostaglandin E2;
PPARβ/δ, peroxisome proliferator-activated receptors beta/gamma;
PGR, progesterone receptor; RAR, retinoic acid receptor; RERG,
RAS-like estrogen-regulated growth inhibitor; NR5A1, steroidogenic
factor 1; StAR, steroidogenic acute regulatory protein; TNF, tumor
necrosis factor.
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endometriosis (Dyson et al., 2014; Kokcu, 2016; Koukoura et al.,
2016). Among these epigenetic abnormalities, differential methylation
of the ESR2 promoter seems to have a crucial impact. The shift from
ESR1 to ESR2 dominancy changes the estradiol responses and blunts
estradiol induction of PGR in stromal cells, leading to reduced
expression of PGR isoforms. The decreased ESR1:ESR2 ratio likely
reshapes eMSC chromatin organization, giving rise to an acquired
heritable progesterone resistance. Repeated exposure of the periton-
eum to epigenetically defective eMSCs via menstruation precipitates
formation of endometriotic lesions. Following lesion formation, estro-
gen via ESR2 and pro-inflammatory factors increase inflammation and
survival of endometriotic cells within the lesion.

The ability of endometriotic stromal cells to express the full set of
steroidogenic enzymes as well as sulfatase pathway enzymes results in
remarkable amounts of local estradiol production (Rizner, 2016).
Inflammation and increased PGE2 induce steroidogenic enzymes, includ-
ing aromatase and StAR, via translocation of NR5A1 to their promoter
regions, which competes with NR2F2. Activation of this cascade com-
municates back with ESR2 through increased local estradiol, further
reinforcing inflammation by increasing COX-2 levels, and creating a
vicious cycle (Fig. 3). It is important to note that not only the interaction
between hormone receptors and sex steroids, but also the change in
hormone levels during the menstrual cycle, are the key factors of this
phenotype. SPRMs seem to be effective in alleviating endometriosis-
associated pain without creating a hypoestrogenic state, suggesting that
repeated menstruation and ovulation may be more critical to reinforce
this inflammatory environment than continuous estrogen exposure. It is
possible that de-escalating the inflammatory environment will lead to
epigenetic reprogramming of stem cells and help overcome progester-
one resistance in the long term. New synthetic ligands targeting ESR2,
PGR and RAR are promising future treatments for endometriosis.
Expanding our understanding of the NR signaling mechanisms in relation
to hormonal fluctuations could guide development of other novel non-
hormonal therapeutic agents without disturbing fertility.
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