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Many higher level avian clades are restricted to Earth’s lower lati-
tudes, leading to historical biogeographic reconstructions favoring a
Gondwanan origin of crown birds and numerous deep subclades.
However, several such “tropical-restricted” clades (TRCs) are repre-
sented by stem-lineage fossils well outside the ranges of their clos-
est living relatives, often on northern continents. To assess the
drivers of these geographic disjunctions, we combined ecological
niche modeling, paleoclimate models, and the early Cenozoic fossil
record to examine the influence of climatic change on avian geo-
graphic distributions over the last ∼56 million years. By modeling
the distribution of suitable habitable area through time, we illus-
trate that most Paleogene fossil-bearing localities would have been
suitable for occupancy by extant TRC representatives when their
stem-lineage fossils were deposited. Potentially suitable habitat
for these TRCs is inferred to have become progressively restricted
toward the tropics throughout the Cenozoic, culminating in rela-
tively narrow circumtropical distributions in the present day. Our
results are consistent with coarse-scale niche conservatism at the
clade level and support a scenario whereby climate change over
geological timescales has largely dictated the geographic distribu-
tions of many major avian clades. The distinctive modern bias to-
ward high avian diversity at tropical latitudes for most hierarchical
taxonomic levels may therefore represent a relatively recent phe-
nomenon, overprinting a complex biogeographic history of dra-
matic geographic range shifts driven by Earth’s changing climate,
variable persistence, and intercontinental dispersal. Earth’s current
climatic trajectory portends a return to a megathermal state, which
may dramatically influence the geographic distributions of many
range-restricted extant clades.
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Extant avian biodiversity is represented by nearly 11,000 living
species, which inhabit virtually every conceivable subaerial

environment from the poles to the equator (1). However, despite
the ubiquity of birds and their penchant for dispersal, extant
birdlife is unequally distributed across the Earth. In particular,
avian diversity—in terms of both species numbers and higher
taxonomic groups—is skewed toward tropical environments on
the southern continents (i.e., those that formerly composed the
Mesozoic supercontinent of Gondwana).
This pattern led earlier avian historical biogeographic investi-

gations to conclude that vicariance driven by Gondwanan
breakup, which was largely completed by the end of the Mesozoic,
played a predominant role in triggering deep phylogenetic and
geographic divergences within crown birds (e.g., ref. 2). However,
recent phylogenetic divergence time studies suggest that most
deep divergences within crown birds took place after the Creta-
ceous–Paleogene (K–Pg) mass extinction (3–7), roughly 66.02
million years ago (8). Although Australia, Antarctica, and South
America maintained connectivity into the Paleogene (9, 10),
Mesozoic Gondwanan vicariance appears to have played no role
in either the diversification or geographic expansion of the avian
crown group. Nonetheless, analytical reconstructions of higher

order avian historical biogeography invariably recover strong evi-
dence for an origin of most modern diversity on southern land-
masses (2, 6, 11).
The crown bird fossil record has unique potential to reveal

where different groups of birds were formerly distributed in deep
time. Fossil evidence, for example, has long indicated that total-
group representatives of clades restricted to relatively narrow
geographic regions today were formerly found in different parts of
the world (12–23). In particular, the Paleogene record of fossil
birds has yielded abundant evidence that many extant clades re-
stricted to southern landmasses had fossil stem-group represen-
tatives in the Northern Hemisphere (e.g., refs. 11–13, 15, 19, 21,
and 24–38). Collectively, such biogeographic disjunctions between
early stem-group representatives and extant taxa cloud our ability
to infer ancestral ranges for the deepest crown bird subclades. The
general sparseness and Northern Hemisphere bias of the avian
fossil record, however, has limited attempts to incorporate bird
fossils into large-scale hypotheses of avian biogeographic evolu-
tion. Even studies that have integrated phylogenetically con-
strained avian fossils into analytical reconstructions of ancestral
biogeography (6) have been criticized for effectively “swamping
out” information from the fossil record by virtue of the limited
amount of fossil data compared with extant data in such analyses
(39). Thus, ancestral biogeographic reconstructions may have
limited potential to reveal whether modern geographic distribu-
tions of avian higher clades are truly reflective of their areas of
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origin or, instead, obscure a history of profound biogeographic
shifts throughout their evolutionary history.
The avian fossil record reveals information on where early rep-

resentatives of various lineages were found and, just as importantly,
when in Earth history these birds lived. Paleontological evidence for
major fluctuations in avian historical biogeographic patterns
therefore raises questions about the extent to which historical fac-
tors, such as Cenozoic climatic change, may have been responsible
for driving historical shifts in avian geographic range, as has been
demonstrated for ectothermic clades, such as turtles (40), and dis-
missed as a factor influencing the demise of nonavian dinosaurs in
the Late Cretaceous (41). Here, we integrate both past and present
avian distributional data and climate characterizations to model
how habitable regions for 10 neornithine higher level clades (Fig. 1)
have changed throughout the Cenozoic. We test whether we can
predict the presence of high-latitude Paleogene fossil occurrences of
these 10 clades, which are currently restricted to tropical and sub-
tropical latitudes, assuming climatic niche conservatism and given
estimates of paleoclimate. On the basis of our analyses, we suggest
that climatic changes have played a major role in forcing range
contractions for all of these major “tropical” clades toward their
present-day geographic distributions. Our results have important
implications for the study of avian historical biogeography in deep
time and that of other vagile, climatically sensitive clades.

Results
We modeled suitable habitat for 10 neornithine higher level
clades using Maxent (42). The number of environmentally
unique occurrences used in model calibration ranged from 103
(Leptosomidae) to 9,545 (Trogonidae) (SI Appendix, Table S1).
Model verification exercises suggest that Maxent models of clade
tolerances were statistically significant (P value < 0.05) (SI Ap-
pendix, Table S1). The discriminatory capacity of the model was
evaluated using area under the curve scores; all scores were high
and ranged from 0.73 (Trogonidae) to 0.97 (Leptosomidae and
Steatornithidae; SI Appendix, Table S1).
Suitable conditions were modeled for each clade in the pre-

sent; these models were then transferred (projected) onto esti-
mates of past climate for four Paleogene time periods with avian

fossil records: Ypresian (∼56 to 47.8 Ma), Priabonian (∼38 to
33.9 Ma), Rupelian (∼33.9 to 28.1 Ma), and Chattian (∼28.1 to
23.03 Ma) (SI Appendix, Figs. S1–S20). We then evaluated
whether these paleo-projections correctly predicted pene-
contemporaneous fossil occurrences for each total clade (Fig. 2
and SI Appendix, Figs. S21–S30). Of 19 Paleogene clade/locality
occurrences investigated, only 4 were not predicted as highly
suitable by our ecological models (Fig. 2 and SI Appendix, Figs.
S21–S30 and Table S2). Virtually all Ypresian-aged fossil local-
ities were predicted as suitable, but more recent (Priabonian to
Chattian) fossil occurrences were predicted with less fidelity (SI
Appendix, Table S2). Even so, all younger fossil occurrences
aside from one (Todidae) were predicted as suitable under at
least one paleo-plate and threshold model, and, when suitable
habitat was not predicted by our ecological models, it was usually
(∼60%) found within only 150 km of a clade-specific Paleogene
fossil locality—potentially within levels of paleo-plate re-
construction uncertainty (SI Appendix, Table S2).
Our ability to predict fossil occurrences was not dependent on

the geographic extent of estimated suitable habitat for a given
time slice and clade. That is, predicted suitable habitat ranged
from only 3.75% [Todidae, maximizing the sum of sensitivity and
specificity (MaxSSS) threshold] to 23.61% [Podargidae, least
training presence (LTP) threshold] of terrestrial areas globally in
fossil-bearing time periods (SI Appendix, Table S2). We did not
predict suitable conditions for any of these clades at fossil lo-
calities in the present day, with the exception of two of the five
Coliidae localities (Messel and Walton-on-the-Naze). The rela-
tively broad climatic tolerances of Coliidae may help explain their
comparatively late persistence into the Miocene of Europe (22),
suggesting that they may have been less susceptible to climate-
driven range contraction than the other clades examined (43).
Ecological models were significantly better at predicting fossil

occurrences than random expectations based on binomial tests
(P < 0.05), regardless of threshold or paleo-plate model choice,
except for Leptosomidae (significant at α = 0.096 for LTP
threshold, and α = 0.078 for MaxSSS threshold) and Todidae, for
which models failed to predict fossil occurrences. Estimates of
suitable habitat were more restricted when using the MaxSSS
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Fig. 1. Present-day occurrences for the 10 neornithine clades studied. Geographic ranges are circumtropical and predominantly restricted to vestiges of
Gondwana (Africa, South America, and Australasia).
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threshold (versus LTP threshold), resulting in fewer predicted oc-
currences for this threshold method (SI Appendix, Table S2). The
restricted geographic distributions predicted for Leptosomidae and
Todidae in the Paleogene are likely a result of their especially
narrow present-day distributions, which may complicate ecolog-
ical modeling (44): Leptosomidae are found only in Madagascar,
Mayotte, and the neighboring Comoro Islands while Todidae are
endemic to the Greater Antilles and small adjacent islands (45).
Novel environmental combinations can be encountered when

projecting ecological models to different regions and/or time
periods (46). In these instances, it is difficult to determine, using
correlative approaches, whether these unique climatic conditions
would be suitable for occupancy by species and higher clades.
Although areas predicted as suitable in our paleo-projections
were unaffected by novel climate combinations, novel climates
were estimated at low latitudes (from approximately ±23° lati-
tude) from the Ypresian to the Chattian. These novel combi-
nations derived primarily from warmer minimum and maximum
monthly temperatures estimated for the Paleogene than exist
today. Therefore, whether tropical latitudes would have been
suitable for these clades in deep time, especially given estimates

of extreme Eocene warmth, remains an open question (47).
Discoveries of Paleogene fossil birds from low latitudes will be of
major importance for clarifying the composition of tropical avian
communities in deep time (12).
Most suitable area in the Ypresian was inferred at fairly high

latitudes (∼40° to 50°), with the bulk of suitable habitat shifting
equatorward in a stepwise manner toward the present (Fig. 3).
This pattern is evident across all examined clades, with the
sharpest contractions of habitable distributions coinciding with
the Eocene–Oligocene transition (48, 49), and the next sharpest
occurring in the Neogene (Fig. 3 and SI Appendix, Fig. S31). As a
result, the latitudinal centroid of estimated suitable habitat for
each clade moved equatorward through time (Fig. 3 and SI
Appendix, Fig. S31).

Discussion
Models of suitable conditions for neornithine clades calibrated
using modern-day distributional and climate data were able to
accurately predict the distributions of these clades’ fossil stem-
group representatives through the Paleogene, a critical interval
in avian evolutionary history, during which many of the deepest
neornithine phylogenetic divergences are inferred to have taken
place (4–6). This predictive ability was not predicated on broad
estimates of the paleo-distributions for studied clades, but rather
on narrow bands of suitable habitat estimated at latitudes higher
than those occupied by these clades today. Indeed, across our 10
focal clades, we recovered an average difference of ∼20° latitude
between centroids of suitable habitat predicted for the Eocene
(Ypresian) and those predicted for the present day (Fig. 3 and SI
Appendix, Fig. S31).
The importance of our results is twofold. First, our methods

assumed that niche models conditioned on the modern geo-
graphic distributions of avian clades accurately encompassed the
climatic tolerances of their early stem-group representatives.
Although an important source of uncertainty, evidence sup-
porting conservation of clade tolerances over evolutionary
timescales has been reported in a variety of clades (50–59). It is
striking that we were able to use present-day models of clade
tolerances to accurately predict paleo-distributions for these
clades’ stem-group relatives under conditions estimated to have
occurred up to ∼56 million years ago, especially in light of the
varied ecological habits and geographic distributions of the
clades studied (Fig. 2). As such, our results provide first-order
support for conservatism of the coarse-scale manifestations of
species temperature and precipitation tolerances over geological
timescales.
Second, we corroborate climate as a major long-term driver of

crown neornithine biogeographic patterns (43, 60). Niche models
calibrated on extant clade-level data and projected onto Ypresian
to Chattian paleoclimatic reconstructions predicted shifts
through time in the centroid of estimated habitable areas of
more than 20° latitude for all examined clades. These analyses
suggest that Cenozoic climatic change may have been pre-
dominantly responsible for driving dramatic shifts in the geo-
graphic distributions of these avian clades.
Both Cenozoic paleobiogeography (11, 12, 14, 19, 39, 61) and

the timing of the extant neornithine radiation (4–7) cast doubt
on Mesozoic Gondwanan vicariance as the mechanism un-
derlying the extreme modern asymmetry of endemic higher or-
der neornithine diversity in the Southern and Northern
Hemispheres, raising questions about the origin of pervasive
trans-Antarctic avian distributional patterns (2, 62).
A detailed stratigraphic analysis of the European fossil bird

record suggests that the assembly of modern avian biogeographic
distributions biased toward equatorial latitudes may be the
product of two independent waves of geographic range contrac-
tion by avian clades throughout the Cenozoic (43). That study
noted that a comparatively recent Miocene wave of European

Coliidae Present-day occurrences

Ypresian (~56 Ma)—MaxSSS Threshold

Ypresian (~56 Ma)—LTP Threshold

Messel

Getech plate rotation

EarthByte plate rotation

Walton-on-

the-Naze

Bridger

Willwood

Messel

Walton-on-

the-Naze

Bridger

Willwood

Fig. 2. Present-day occurrences (Top) for Coliidae as derived from GBIF.
Using these occurrences, models of abiotic tolerances for this clade were
projected onto estimates of past climate conditions at the Ypresian, an in-
terval when numerous fossil representatives of this group were deposited.
Note the accurate correspondence between fossil localities (shown on map)
and model predictions. Maps are shown for both the least training presence
(LTP; green) (Middle) and MaxSSS (blue) (Bottom) threshold methods; pink
and white occurrences represent Getech and EarthByte paleo-plate rota-
tional models, respectively (see Methods for details). For other clades, see SI
Appendix, Figs. S21–S30.
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extinctions seems to have overwhelmingly affected representatives
of clades that are now found in the modern Afrotropical zoo-
geographic zone [e.g., mousebirds (Coliiformes)] or which cur-
rently exhibit pantropical distributions [e.g., parrots (Psittaciformes)
and trogons (Trogoniformes)]. In contrast, earlier Paleogene ex-
tinctions seem to have eliminated taxa whose crown-group repre-
sentatives are now found in the neotropics, Madagascar, and
Australasia (43). Mayr (12, 43) argued that extirpation of “tropical”
European taxa during the Paleogene cannot be attributed reliably to
climatic cooling during this period (contra ref. 63) since many
“tropical” taxa persisted into the cooler Oligocene and even into the
early Neogene. However, the extirpation of “tropical” neornithine
taxa in the Paleogene of North America (e.g., ref. 11) may be more
reliably attributed to ecosystem changes related to cooling
throughout the Eocene (43). Our inferred patterns of long-term
contraction of habitable distributions throughout the Neogene
(Fig. 3) are consistent with further Miocene climatic cooling driving
extirpations and equatorward range contractions (43).
“Paratropical” forests indicative of well-watered, warmer, and

more equable climates, such as those persisting at lower latitudes
today (64–66), were widespread across North America during
the Eocene and coincided with the presence of stem taxa whose
crown group representatives are now restricted to lower lati-
tudes. The distribution of these megathermal climates (sensu ref.
67) and associated forests in North America declined sub-
stantially toward the end of the Eocene, which had a profound
effect on the diversity and composition of North American
mammalian and squamate communities (68–72). If many taxa
comprising the Paleogene North American avifauna were
adapted to megathermal conditions, the extirpation of these taxa
from North America may reflect the elimination of these warmer
habitats at higher latitudes, resulting in a sharpening of the lat-
itudinal biodiversity gradient (56, 73). Under a model of phylo-
genetic niche conservatism, habitat tracking may result in broad-
scale range constriction, across multiple clades, in response to
climate change (71). Indeed, investigations of early Eocene
squamate faunas from North America suggest that taxa once
common at midlatitudes may have contributed substantially to
populating lower latitude biotas in the present day (71). The
neornithine fossil record from North America during this interval

appears to corroborate this pattern, emphasizing the critical rel-
evance of paleontological data to our understanding of the his-
torical biogeography of extant clades (e.g., refs. 60 and 74).
Estimating the areas of origin of major extant bird clades has

emerged as an especially controversial topic in contemporary
bird systematics (e.g., refs. 39 and 75), despite ever-improving
historical biogeographic models (e.g., refs. 76 and 77) and large-
scale avian molecular phylogenies (4–6, 78, 79). We suggest that
a primary focus on inferring deep-time areas of origin for major
bird clades, which may not be unambiguously discernible given
our present knowledge of the avian fossil record (11, 71), over-
looks a more achievable goal: discerning the mechanisms that
have driven avian range evolution throughout the Cenozoic. This
would result in a clearer picture of how and when major avian
subclades are likely to have acquired their present-day distribu-
tions. We provide quantitative evidence that protracted envi-
ronmental change throughout the Cenozoic has forced the long-
term, equatorward contraction of avian geographic distributions.
Delineating between competing biogeographic models whereby
major extant clades presently restricted to the tropics originated
at low latitudes, or simply became restricted to these areas over
the course of the Cenozoic, will rely on renewed focus on
Cenozoic fossil avifaunas from Gondwanan continents (12, 75,
80, 81). However, such work has already recovered evidence of
extant lineages with restricted distributions, such as total-clade
Opisthocomiformes (represented today only by the Amazonian
endemic Opisthocomus hoazin) occurring on additional Gond-
wanan and Laurasian continents throughout the Neogene
(82, 83).
Although the early Cenozoic avian fossil record is rich (e.g., ref.

12), important temporal and geographical gaps remain. Consider-
ing our evidence for apparent avian niche conservatism and habitat
tracking over geological timescales, we suggest that the application
of ecological modeling tools may provide a first approximation of
regions likely to have been inhabited by various bird groups
through time, which may aid in guiding paleontological exploration.
Predicting the influence of human-induced climatic change on

short- and long-term organismal distributions is an urgent goal in
contemporary biology, and projections of major geographic
range shifts in the face of Earth’s current climatic trajectory are
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becoming ever more common (e.g., refs. 84–86). As arguably the
most vagile of the major groups of living vertebrates, birds may
be more likely than others to undergo dramatic saltational shifts in
their geographic distributions, evidenced by historical transoceanic
colonization of new continents by extant bird species within his-
torical memory (e.g., refs. 87 and 88). Marginalized across geo-
graphic timescales, the frequency of such stochastic dispersal
events may explain the apparent habitat-tracking success of birds
through the Cenozoic, provided that newly colonized areas are
suitable for long-term occupancy by the pioneering species.
While explicit predictions are beyond the scope of the present

work, our conclusions would seem to suggest that climatic
changes over the coming decades and centuries may induce
major distributional changes across the avian tree of life, as has
been suggested recently for corals in the marine realm (86). The
extremely rapid pace of anthropogenic climate change, however,
may instead make it more likely that major groups with restricted
distributions are driven to extinction in situ. Unraveling the
relative likelihood of these outcomes will be an important goal of
future work in avian biogeography and macroecology.

Methods
Full details of our methods are presented in SI Appendix, including details of
clade selection and model caveats. Supporting data, including environ-
mental layers used to calibrate present-day ecological niche models and
median ecological niche models generated from Maxent, are archived open
access at Zenodo (89).

Ecological Model Inputs. Distributional data for each extant species within our
focal clades were drawn from the Global Biodiversity Information Facility
(www.gbif.org) (Fig. 1 and SI Appendix, Figs. S21–S30). To characterize
present-day climatic landscapes for ecological modeling, we used four en-
vironmental variables at 5′ spatial resolution from the WorldClim bioclimatic
dataset (90): maximum temperature of warmest month, minimum temper-
ature of coldest month, precipitation of the wettest month, and pre-
cipitation of the driest month. Estimates of past climates were simulated for
four time periods: Ypresian (∼56 to 47.8 Ma), Priabonian (∼37.8 to 33.9 Ma),
Rupelian (∼33.9 to 28.1 Ma), and Chattian (∼28.1 to 23.03 Ma). Data were
derived from Paleogene simulations produced by two general circulation
models (GCMs): FAMOUS (91) and HadCM3L (92, 93).

Ecological Modeling. Clade tolerances were quantified using Maxent v.3.3.3k,
a maximum entropy algorithm that estimates suitable environmental com-
binations for species under a null expectation that suitability is proportional
to availability (42). We used present-day environmental conditions to con-
strain clade tolerances, and resulting models were then projected onto Eo-
cene and Oligocene climatic conditions to estimate the geographic regions
that would have been suitable for these clades from the Ypresian through
the Chattian. Resulting ecological models produced estimates of suitable
abiotic conditions for clades based on present-day climatic characterizations,
without consideration of dispersal or biotic constraints.

Postmodeling Analyses. We assessed the ability of paleo-projections of suit-
able habitat to correctly predict fossil occurrence localities. The correspon-
dence between fossil sites and paleo-projections was analyzed as follows:
Fossil sites were transformed (paleo-rotated) so that they reflected their
geographical position during the period in which they were deposited. Two
paleo-platemodels were used for transformations: Getech (93) and EarthByte
via the PaleoGIS extension for ArcGIS (94). Localities were accorded a buffer
of 25 km using the “gBuffer” function in the “rgeos” package for R (95).
Localities were buffered to account for uncertainty in both paleo-plate ro-
tations and georeferencing and to reflect the minimum likely area the fossil
would have occupied when extant. These buffered localities were then
intersected with the suitable area predicted for the time period corre-
sponding to the age of the fossil site, using a custom script written in R.

We assessed the probability of randomly predicting fossil occurrences for
each clade in each time slice using binomial tests (96). Analyses were per-
formed for each clade characterized by more than one occurrence in a given
time slice, using the following parameters: n = the number of successfully
predicted occurrences, K = the total number of occurrences, and P = the
probability of successfully predicting an occurrence, defined by the per-
centage of predicted suitable terrestrial area globally.

Temporal shifts in the centroid of suitable habitat predicted for each clade
were calculated using the “gCentroid” function in the “rgeos” package for R
(95). The binary suitability maps were converted to polygons, and these
polygons were used to find the “center of mass” (also known as “true
centroid”) of the areas presenting suitable conditions for each time slice;
Northern and Southern Hemispheres were calculated separately (Fig. 3 and
SI Appendix, Fig. S31).
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