Skip to main content
. 2019 May 10;8(7):3532–3543. doi: 10.1002/cam4.2233

Table 2.

3D DenseNet architectures for EGFR mutation classification

Layer Tensor size Building blocks
Input 48 × 48 × 48 × 1  
Convolution 48 × 48 × 48 × 32 3 × 3 × 3 conv
Pooling 24 × 24 × 24 × 32 2 × 2 × 2 average pool
Dense Block (1) 24 × 24 × 24 × 80
bn-leakyrelu-1×1×1convbn-leakyrelu-3×3×3conv×3
Compression and Pooling (1) 12 × 12 × 12 × 40
bn-leakyrelu-1×1×1conv2×2×2averagepool
Dense Block (2) 12 × 12 × 12 × 136
bn-leakyrelu-1×1×1convbn-leakyrelu-3×3×3conv×6
Compression and Pooling (2) 6 × 6 × 6 × 68
bn-leakyrelu-1×1×1conv2×2×2averagepool
Dense Block (3) 6 × 6 × 6 × 132
bn-leakyrelu-1×1×1convbn-leakyrelu-3×3×3conv×4
Compression and Pooling (3) 3 × 3 × 3 × 66
bn-leakyrelu-1×1×1conv2×2×2averagepool
Dense Block (4) 3 × 3 × 3 × 114
bn-leakyrelu-1×1×1convbn-leakyrelu-3×3×3conv×3
Global Pooling (DLR) 114 3 × 3 × 3 average pool
Output 1 sigmoid