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Abstract

Major insights into the relationship between life history features and fitness have come from 

Lotka’s proof that population growth rate is determined by the level (expected amount) of 

reproduction and the average timing of reproduction of an individual. But this classical result is 

limited to age-structured populations. Here we generalize this result to populations structured by 

stage and age by providing a new unique measure of reproductive timing (Tc) that, along with net 

reproductive rate (R0), has a direct mathematical relationship to, and approximates, growth rate (r). 
We use simple examples to show how reproductive timing Tc and level R0 are shaped by stage-

dynamics (individual trait changes), selection on the trait, and parent-offspring phenotypic 

correlation. We also show how population structure can affect dispersion in reproduction among 

ages and stages. These macroscopic features of the life history determine population growth rate r, 
and reveal a complex interplay of trait dynamics, timing and level of reproduction. Our results 

contribute to a new framework of population and evolutionary dynamics in stage-and-age 

structured populations.
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Introduction

How do individual life histories (vital rates) determine fitness? As Fisher (1930) famously 

discussed, when survivorship and fertility vary with age, fitness is the stable population 

growth rate r that solves Lotka’s equation. For age-structured populations, Lotka’s equation 
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is now easily solved on a computer, but that does not provide an understanding of the 

relationship between fitness and the structure of a life history. In fact, much broad 

understanding of life history patterns relies on a simpler equation, r ≃ (logR0/Tc), derived by 

Dublin & Lotka (1925). Here R0, the expected lifetime reproduction of an individual, 

measures the level of reproduction in a life history, whereas Tc, the average age at which an 

individual reproduces, measures the timing of reproduction in the life history. These cohort 

parameters are computed directly from age-specific vital rates (see Table 1) and predict 

fitness r. Over many decades demographers and biologists have gained qualitative insight 

into the relationship between the age-pattern of survival and reproduction, on the one hand, 

and the macroscopic parameters R0 and Tc, on the other. The level R0 describes reproductive 

investment and the timing Tc describes the speed of a life history as well as its response to 

temporal variation. The relationship between these macroscopic parameters and fitness now 

underlies discussions of life history trade-offs, strategies, and environmental response 

(Southwood, 1988; May, 1976), comparative analyses of life histories and their evolution 

(Stearns, 1992; Tuljapurkar et al., 2009a; Jones et al., 2008), phylogenetic studies of life 

history change (Bielby et al., 2007; Cooper & Purvis, 2010; Evans et al., 2012), and human 

demography (Dublin & Lotka, 1925; Coale, 1972; Keyfitz, 1977; Keyfitz & Caswell, 2005).

However life history analysis based on age ignores other traits that can influence survival 

and reproduction (Horvitz & Tuljapurkar, 2008; Caswell, 2001). Well-known examples are 

size in plants (Hoffmann, 1999), development stages in insects or birds (Hu & Tessier, 1995; 

Steiner et al., 2010), body mass in mammals (Coulson et al., 2010), and body-mass index in 

humans (Preston et al., 2012). We use “stage” to refer to all such traits (quantitative or 

qualitative, e.g., behavioural, physiological, developmental, morphological, (epi-)genetical, 

or geographical) as discussed by Caswell (2001). We assume, in general, that offspring can 

be produced in many stages, e.g., many different sizes, or different kinds as in seeds versus 

vegetative ramets, or in different locations. In recent decades stage-and-age structured 

models, in both matrix and integral population (IPM) forms (Cochran & Ellner, 1992; 

Caswell, 2001; Ellner & Rees, 2007; Steiner et al., 2010, 2012; Tuljapurkar et al., 2012) 

have provided a rich and useful description of population dynamics and life history 

evolution. For such models, matrix methods (Caswell, 2012) have been developed to 

compute r and its sensitivity to model parameters; and also for the sensitivity analysis of life 

span (Steiner et al., 2012).

We seek to generalize the Dublin-Lotka connection between level, timing and r. No such 

generalization has been obtained previously, to our knowledge. Indeed, it is not obvious that 

such a link must exist for stage- or stage-age-structured models. Why? The classical result 

relies on a central property of age-structured demography: that population growth rate solves 

the scalar Lotka equation (Table 1), so that r depends on the numbers fa la (at age a, fertility 

is fa and survivorship is la). Dublin-Lotka exploited this link to derive their expression for r, 
and the derivation identifies both R0 and Tc. But for a stage-and-age structured model, 

survival and reproduction can vary with stage and age. In such cases, population growth is 

necessarily described by a matrix-vector equation that simultaneously determines growth 

rate (r) and the stable stage distribution (a vector u1) of newborns. That equation cannot be 
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analyzed in the same way as Lotka’s much simpler scalar equation, so there has been no 

progress in generalizing the Dublin-Lotka result.

For a general stage-and-age structured life history, can we find an equation for r that does 

not involve the stage distribution of newborns? If so, does that equation lead to an 

approximation that predicts r from the vital rates? Does that approximation identify 

canonical measures of the level (which we call R0) and the timing (which we call Tc) of 

reproduction?

We show here that the answer to all three questions is yes. We prove that r ≃ (logR0/Tc), 

where R0 (old symbol but new definition) turns out to be the known average level of cohort 

reproduction (Cochran & Ellner, 1992; Caswell, 2001; Lebreton, 1996; Rogers, 1975) – this 

is satisfying but not a priori obvious. We also identify the quantity Tc (again, old symbol but 

new definition) that measures the speed of a life history, and turns out to be the average age 

of reproduction for a stationary cohort. These canonical macroscopic parameters are the only 

ones that approximate r as (log R0/Tc). Our results go further. For age-structure, Dublin & 

Lotka (1925) found a better approximation to r that includes the age-dispersion of 

reproduction. Here we establish an analogous result that incorporates the stage and age 

dispersion of reproduction. Thus we identify for the first time, for stage-age structured 

populations, unique measures of timing that yield a direct mathematical relationship to, and 

approximation of, growth rate r. Note that our results immediately apply to stage-only 

populations.

Our results link life history components (stage-dependent growth and development, survival, 

reproduction, and parent-offspring transmission) and the speed of a life history, the level of 

reproduction, or both. This linkage will make possible a deeper understanding of the 

biological processes underlying the trade-offs and constraints that pervade the discussion of 

life histories. Developing a broad intuition about these processes in diverse life histories will 

require further work, but our analysis is a necessary first step.

Below we start by introducing stage-age structured models and an important concept, the 

stable cohort. We highlight why stage-structured stable cohorts differ from age-only cohorts. 

Next we present our main result that goes from vital rates to r, and discuss our measures of 

timing and level of reproduction. We show how our results illuminate the alternative possible 

measures of generation time discussed by Caswell (2001). We illustrate our results using 

three examples:

I. We show how our timing measures provide new information for stage-only 

models, using a stage-only model for Killer whales taken from Caswell (2001) 

based on Brault & Caswell (1993), see Fig. 1a.

II. We show how fitness varies with selection, growth and parent-offspring 

correlation, using a simple model with two age-classes and four size classes, see 

Fig. 1b.

III. We show how population structure can significantly affect dispersion, using a 

population model with migration between two spatial patches in which there are 
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different age-dependent vital rates (Fig. 1c). This example also shows that our 

analysis can be used to understand growth rates in spatially distributed 

populations with dispersal.

Our description of vital rates and population growth follows mainly Coulson et al. (2010) 

but builds on earlier work (Le Bras, 1971; Rogers, 1975; Lebreton, 1996; Childs et al., 2004; 

Ellner & Rees, 2006). The text and tables present the results; mathematical details are in the 

Appendix.

Stage-Age Structure

Individual Vital Rates

We work with discrete time and age, and so with matrices. However our results apply to 

integral operators for continuous stages under the conditions given by Ellner & Rees (2006). 

At time t a census enumerates newborns (ages 0–1) in age class 1, and individuals in all 

higher age classes a = 2, 3, …, (see Appendix for terminal age). We use “age” and “age-

class” interchangeably: a newborn arrives at age a = 1, moves to age 2 after one time 

interval, and so on. For convenience Table 1 summarizes known results for age-only models, 

where only age specific survival and fertility rates are known.

For stage-age structured populations we assume that an individual (we follow only females) 

of a given age a is in one of many discrete stages z (readers who use integral models should 

note that our discrete intervals can simply be considered bins on a continuous stage space). 

A population census at time t yields numbers na(z, t) for all ages a and stages z. For 

example, the number of newborns in stage z at time t is n1(z, t). Stages are indicated by the 

symbols y, z.

Stage-age structured vital rates comprise information about one or multiple traits and their 

influence on survival, reproduction, trait change (dynamic across life), and the transmission 

of the trait from parent to offspring which can be due to processes including genetic 

inheritance, epigenetics, and maternal effects. All of these influences can change with age, 

and are captured by four relationships (summarized in Table 2) that can be estimated directly 

from data, as explained by Coulson et al. (2010). In what follows, the reader may find it 

helpful to think about an example in which stage is just size (see, e.g. Fig. 1b).

The preceding vital rates are used to assemble two matrices for each age (see Table 2).

I. Fertility Fa at age a is the number of stage-y offspring of age 1 produced by a 

stage-z parent of age a. This matrix (see Table 2) is determined by (i) the total 

number of offspring Ma(z) produced by a stage-z individual at age a, and (ii) the 

stage distribution of offspring: for a stage-z individual at age a, Da(y, z) is the 

fraction of this individual’s offspring that is born into newborn stage y (clearly 

∑y Da(y, z) = 1).

II. Survivorship La is a matrix of cumulative survival probabilities from birth (at age 

1) to age a. The matrix element La(y, z) is the probability that an individual born 

in stage z is alive in stage y at age a. An individual moves from stage-z at age a 
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to stage-y at age (a+1) if (i) it survives with probability Sa(z), and (ii) changes 

stage from z to y with probability Ga(y, z) (so that ∑yGa(y, z) = 1). The combined 

probabilities Pa(y, z) = Ga(y, z) Sa(z) of surviving and moving from stage-z at 

age a to stage-y at age (a + 1) are elements of a survival matrix Pa. In the 

convention used here, individuals are born into age class 1, which means that L1 

is just the identity matrix (see Table 2). Then L2 = P1 L1 and so on, as shown in 

Table 2.

Note that in an age-only model stages do not matter. Instead of matrices, at each age a 
fertility is a number fa and survivorship is also a number la.

Finding r: The First Step

Any initial population structure –be they age-only, stage-only or stage-age structured–

converges to a stable population whose growth rate is r (for stage structured populations see 

also Table 3, Appendix, and (Lebreton, 1996; Rogers, 1975)). Stage structured populations 

have stable proportions of newborns in each stage, represented in a vector u1. For any r 
define (Table 3) a renewal matrix,

A(r) =
a

e−raFaLa . (1)

Then the stable growth rate and population structure are together determined by solving

A(r)u1 = u1 . (2)

This equation, unfortunately, contains two unknowns: r and the vector u1.

We can find r numerically by tracking the population at every age (not just newborns) in 

terms of a large (higher dimensional) matrix whose dominant eigenvalue is er, as discussed 

and explored by Caswell (2012). But if we want an analytical connection between r and the 

matrices of fertility and stage-transition, we are led to a characteristic equation that is 

intractable.

Notice that (2) shows that the renewal matrix (for the stable growth rate) has dominant 

eigenvalue equal to 1. Equivalently, the logarithm of the dominant eigenvalue of A(r) is 0 

and we use this fact to find an equation that determines r but does not contain u1 

(Appendix). When r is small, we can expand the latter equation (Appendix) to find the 

approximation we seek.

Stable Generations and Stable Cohorts

If age is all that matters, individuals born together are considered identical and make a birth 

cohort whose lifetime reproduction is readily described as in Table 1 just by age specific 

survival and reproduction. But when stage also matters, individuals in the same birth cohort 

can differ in their birth stage (e.g., by size, by kind as with plant seeds or vegetative ramets, 
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or by location). Because birth stage affects subsequent survival, growth, and reproduction, 

two cohorts with different stage compositions but equal total number will produce different 

numbers of offspring. What happens to such differences as we look forward in time?

Newborns in the first offspring generation go on to produce offspring over their lives; the 

latter is the second offspring generation, grand-offspring of our original cohort. The number 

of individuals in successive offspring generations is determined by (see Appendix for more 

detail) the generation matrix

A0 =
a ≥ 1

FaLa . (3)

This matrix A0 has three important properties (see Appendix for details) that are 

summarized in Table 4:

I. A dominant eigenvalue R0. The total number of individuals in successive 

offspring generations will – eventually – change at the geometric growth rate R0. 

Thus if R0 > 1 any initial cohort will produce descendant generations that 

increase in the long-run, and vice-versa.

II. A corresponding right eigenvector c that describes the stage-structure of 

offspring generations in the long-run – this unique stage-structure defines a 

stable cohort. We set the sum of the components of c to 1, so the number c(z) is 

the fraction of the stable cohort born into stage z.

III. A corresponding left eigenvector d that describes the generational reproductive 

value. If we add one newborn of stage z to our initial cohort then in the long-run 

the size of each offspring generation will increase by an amount proportional to 

d(z). We set the total reproductive value of a stable cohort to 1.

In a stage-age structured life history, a stable cohort of newborns has the unique stage-

structure c. Such a cohort – and only such a cohort – produces offspring generations that 

grow at exactly the rate R0.

For an age-only model, A0 reduces to the number ∑a f ala = R0, and the vectors c, d are each 

replaced by the single number unity.

Reproduction by a Stable Cohort

A stable cohort’s stage-structure is c, and at age a the stable cohort produces a fraction ϕa of 

its total reproduction if we weight it by the stage-specific reproductive value d:

ϕa =
(dTFaLac)

R0
. (4)

Here the superscript T indicates a transpose. The net reproductive rate R0 is the dominant 

eigenvalue of the generation matrix, and clearly (see above, or Appendix) the fractions ϕa 
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sum to 1. This equation generalizes the simple product of survivorship and fertility for an 

age-only life history (given in Table 1).

Using the age-distribution of reproduction ϕa we can obtain an average age of reproduction

Tc =
a

aϕa .

The quantity

μ2 =
a

a2ϕa,

is the mean-square age of reproduction, and the age dispersion Va = (μ2 − Tc
2) describes how 

much reproduction occurs earlier or later than the mean age Tc. We now relate the stable 

cohort’s reproduction to the population’s long-run growth rate. These measures depend on 

the stable cohort’s stage-distribution c and stage-dependent reproductive value d as 

determined by the age-stage variation in fertility and survivorship.

For an age-only model, ϕa = (fa la)/R0, and Tc, µ2, and Va depend only on the pattern of age 

variation.

From Vital Rates to r: Final Result

For general stage-age models, we find that the stable population growth rate is given by the 

series,

r =
logR0

Tc
+

[Va + 2Vs](logR0)2

2Tc
3 + O

(logR0)3

Tc
3 . (5)

This precise mathematical relationship identifies measures that can be computed directly 

from the stage-age structured life history and predict r. The two explicit terms in (5) predict r 
well so long as R0 is close to 1. This equation is a direct generalization of the corresponding 

result in age-only structured demography, and can be extended to higher order in log R0 if 

desired (e.g. third right hand term in (5)).

The above equation relates r to macroscopic parameters that we now discuss (see also Table 

4). The first two parameters describe the amount and average timing of a stable cohort’s 

reproduction:

I. Level of Reproduction. This is measured by the quantity R0 which is computed 

as the dominant eigenvalue of the generational matrix A0. We have shown that 

this parameter is the rate of increase of offspring generations produced by a 

stable cohort. It is satisfying but not a priori obvious that this measure is identical 

to the known net reproductive rate described by Caswell (2001).
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II. Timing of Reproduction. This is measured by the new quantity Tc that we have 

identified as cohort generation time, i.e., the average age of reproduction by a 

stable cohort (see (4) above and Table 4). This summary parameter measures life 

history speed, but is calculated differently than the generation time for purely 

age-structured populations.

These two parameters yield the simple approximation r = (log R0/Tc). As we show by 

example below, with our defintions of level and timing this approximation performs quite 

well.

The second term on the right of (5) describes how two kinds of reproductive dispersion 

influence r.

III. Age-Dispersion. Individuals of age a produce (a weighted) total of ϕa offspring, 

and this will often vary with age. The variance Va = (μ2 − Tc
2) measures the age-

dispersion of this total reproduction around the mean age of reproduction Tc. 

Larger age-dispersion of reproduction increases r, because early (relative to Tc) 

reproduction increases growth rate more than later reproduction reduces it.

IV. Stage-Dispersion. Suppose now that reproductive individuals produce the same 

stage-distribution of offspring at every age (note: the total number of offspring 

can still vary with parental age and stage). Then the stable cohort’s stage-

distribution c will simply be the common offspring stage-distribution. In 

mathematical terms, every column of the generation matrix A0 must be 

proportional to the vector c. In this case, there can only be age-dispersion of 

reproduction. But what if parents of different ages produce distinct distributions 

of offspring (e.g. young individual produce smaller off-spring than old 

individuals)? Then the stage-distribution of the total number of offspring changes 

with age, producing a new kind of reproductive dispersion that can only happen 

in stage-age-structured populations.

How important is this stage-dispersion? Clearly, the stable cohort stage-distribution c is an 

average over the different age-specific stage-distributions. So the magnitude of this new 

reproductive stage-dispersion depends on a suitable measure of distance between the 

offspring stage-distributions at different ages and the stable stage-distribution c. In 

mathematical terms, this distance depends on how rapidly the offspring of a cohort with a 

non-stable stage-distribution will approach the stable stage-distribution c. Equivalently, how 

rapidly do powers of the generation matrix converge? We find that this rate of convergence 

determines the magnitude Vs of reproductive stage-dispersion (see Appendix). The value of 

Vs can be positive, negative, or zero (see Cohen (1979) for a similar distance measures).

In many mammalian populations, life cycle reproduction is dominated by parents in a range 

of prime ages and the stage-distribution of offspring varies only modestly with age. So in 

such cases we expect (and find in examples) that Vs is close to zero and Va is much larger. 

However, the age-pattern of reproduction can vary greatly between stages that are different 

environments or spatial locations. As an example, we consider later a population living in 
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two spatial patches linked by weak dispersal, where the age-pattern of reproduction is 

different in the two patches. In such cases Vs can be large relative to Va.

Examples

Example I: A Stage-only Model

Consider the 4-stage model (no age variation) for Killer whales described in Caswell (2001) 

and based on Brault & Caswell (1993). The stages are yearlings, juveniles, mature females 

and post-reproductive females (Fig. 1a). There is only one stage of newborns so the single 

fertility matrix F has nonzero elements only in the first row, and there is a single survival 

(stage stransition) matrix P for every age. As Caswell explains, R0 = 2.013 is the (1,1) 

element of the matrix FN where N = (I − P)−1.

There is only one kind of newborn so c = d = (1, 0, 0, 0)T where T indicates a transpose. 

Age is usually ignored in stage-only models but of course each individual has a 

chronological age, and La = P(a−1) for ages a ≥ 1. Equation (4) then shows that at age a a 

stable cohort of these Killer whales will produce a fraction ϕa of its total reproduction, 

where

ϕa =
[(1, 1) element of matrix FLa]

R0
,

and the result is plotted in Fig. 2. The Appendix, Table 3 and 4, present general formulas 

which yield new information: the stable cohort generation time is Tc = 32.2 and reproduction 

is highly dispersed by age (as obvious from Fig. 2) with dispersion (μ2 − Tc
2) = 22.86. Given 

that there is only one stage of newborns, Vs = 0. The first term of equation (5) predicts a 

growth rate of 0.022 and the first two terms predict a growth rate of 0.026. A numerical 

calculation shows that r = 0.025 so the approximations perform well.

Example II: Stages and Ages

The value of our formulas lies in showing how phenotypic variation affects the level and 

speed of life histories. How are these macroscopic properties affected by (i) selection on a 

phenotypic trait acting via survival or reproduction, (ii) the amount, timing, persistence and 

variability of ontogenetic change in the phenotype, (iii) age differences, e.g., as commonly 

found in mammals, young and senescent individuals produce smaller and/or fewer offspring 

than do prime-aged individuals (Coulson & Tuljapurkar, 2008), (iv) the phenotypic 

correlation between parents and offspring, e.g., when parents larger than average tend to 

produce offspring who are also larger than average (Coulson et al., 2010)? We illustrate with 

a simple example (Fig. 1b).

We consider a simple life cycle in which individuals are born as small young (stage 1, size 

z1) or large young (stage 2, size z2 > z1), have low reproduction in their first year of life (a = 

1), and if they survive grow to be small adults (stage 3, size z3 > z2) or large adults (stage 4, 

size z4 > z3) with higher reproduction (Fig. 1b, and Appendix). All individuals die at the end 

of the second year. An individual’s size and age affect survival, growth and reproduction:

Steiner et al. Page 9

Am Nat. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



I. Total reproduction at each age a increases with size, at a rate x (so, e.g., the 

fertility (ma) of small young individuals is proportional to m1 e−x). We constrain 

the arithmetic average of the fertilities of small and large individuals to be m1 = 

0.5 at age 1 and m2 = 1.1 at age 2. For weak selection we set x = 0.075 and for 

strong selection, x = 0.15. The difference between total offspring numbers 

produced by small versus larger individuals increases with x.

II. Survival from the first year to the second year depends on size and survival rate 

increases exponentially with size at rate w. For weak selection w = 0.075 and for 

strong selection w = 0.15. We constrain the arithmetic average of the survival 

rates of small and large young to be s1 = 0.55 (first year survival).

III. Growth from age 1 to 2 depends on a probability g (see Appendix for more 

details) that relative size is maintained, i.e., that small (resp. large) young 

become small (resp. large) two year olds. We consider three cases. If there is no 

correlation between size and growth, g = 0.5 meaning that small or large young 

are equally likely to become small or large at age 2. If growth is positively 

correlated with size, we set g = 0.75, so that most small (resp. large) young 

become small (resp. large) adults. If there is over-compensatory growth, with 

small individuals growing much faster than large ones, there is a negative 

correlation between growth and size; here we set g = 0.25, so that most small 

(resp. large) young become large (resp. small) adults. In each case there is 

dispersion in growth.

IV. Finally, the size-distribution of offspring (small or large) depends on the sizes 

and ages of their parents. We assume that individuals are not fully mature at age 

1, so that m1 < m2, and furthermore small young parents make only small 

offspring, while large young parents make mostly (we use 80%) small offspring. 

At age 2, however, the fraction of offspring who inherit the relative size of their 

parent is allowed to vary, as described by a parameter d. When d = 0.5 there is no 

correlation between parent and offspring (half of the offspring are small and the 

other half are large, independent of the size of the two year old parent). If d = 1 

there is perfect transmission of relative size. Note that small newborns may 

become large adults, so even if d = 1 we do not need to have perfect genetic 

heritability of birth size.

With this information we can formulate the matrices P1, F1 and F2 that describe the model 

(see Appendix for details).

We focus on level R0 and timing Tc because our approximation (5) accurately predicts r. For 

reference consider the neutral case: no selection, no growth correlation (g = 0.5 above) and 

no parent-offspring correlation at age 2 (so d = 0.5 above). In this case, R0 = 1.105, Tc = 

1.5475 and r = 0.0649. Fig. 3a shows how R0 (on the vertical axis) changes with the parent-

offspring correlation (on the horizontal), with dashed lines for weak selection, the solid lines 

for strong selection. Starred values obtain when there is negative correlation between growth 

and size; circles are values for the case of positive correlation between growth and size. 

Values for the case when there is no correlation between growth and size are intermediate 
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between the preceding cases, and are not shown (for the neutral case there is also no 

correlation between growth and size). Fig. 3b shows corresponding values of Tc. The results 

were (to us) initially surprising, but led to a biological understanding.

I. Selection, weak or strong, reduces R0 but increases Tc relative to the neutral case 

(neutral case not shown in Fig. 3). This feature, and many other aspects of Fig. 3, 

is partly driven by our reasonable assumption that young individuals make fewer 

and mostly small offspring. When there is no selection, small young and large 

young survive at the same rate to contribute to reproduction at age 2. With 

survival selection, fewer small young survive to age 2. Selection on fertility 

means that larger individuals have higher fertility but the resulting increase is not 

enough to offset the loss of smaller young. In a stable cohort, the proportion of 

small young is thus lower than in the neutral case. When survival changes rapidly 

with size (survival selection), fewer small young survive to age 2, so the decline 

in reproductive output at age 2 is smaller than at age 1. The result is that R0 

declines, and the reduction in survival-weighted reproduction is greater at age 1 

than age 2, so the balance between ages shifts towards the later age and increases 

Tc. Under selection we get slower life histories with lower reproduction.

II. For a given level of parent-offspring correlation (along the x-axis) and weak 

selection (dashed lines), the value of R0 (Fig. 3a) is higher when there is negative 

correlation (stars) rather than positive correlation (circles) between growth and 

size. A negative correlation means over-compensatory growth that makes 

relatively small young likely to end up as relatively large two year old 

individuals. Since fertility increases with age and also with size, a negative 

growth correlation results in a higher R0. For strong selection, the cost of early 

survival is too high to be overcome by a negative size correlation, that is, too 

many small young die before they would grow large and make substantial 

contributions to the overall R0 (solid lines, Fig. 3a).

III. For a given parent-offspring correlation and growth correlation, R0 is higher 

when there is weak (dashed lines) rather than strong (solid lines) selection on 

survival and reproduction. Reproduction is skewed to smaller individuals at age 

1, and we lose more of them as survival selection becomes stronger. As noted 

above, overall fertility drops even though we have relatively more large 

individuals.

Our estimate of fitness based on the level and timing of reproduction (5) is an 

approximation. For Example II this approximation does fairly well as we show in 

comparison to the exact estimate, r0, that is based on solving the complicated renewal 

equation (Table 3; see also Appendix Fig. B1).

This diversity of outcomes shows how biological intuition is shaped and educated by 

analyzing the speed Tc and the level of reproduction (R0) across a range of life histories. Just 

computing r in these cases would not provide the same kind of understanding.
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Example III: Dispersion and Stages

Stages can be phenotypic classes within a single location, or simply distinct locations. 

Consider a population that reproduces in two different spatial locations (think valley bottom 

and mountain top) with early maturation and reproduction in one patch and late maturation 

and reproduction in the other (Fig. 1c). The two locations are linked by a small amount (0.1) 

of natal dispersal. Now an individual’s stage is its location and the two stages will have 

different age-patterns of reproduction. This is the kind of setting in which the dispersion 

term Vs in (5) should be important.

We apply our results to a 2-patch population linked by weak dispersal with age-dependent 

reproduction as above (details in the Appendix). Stage equals location here. Fig. 4 shows the 

age-distribution of reproduction in the 2-patch system: the early age peak is for the 

conditions in patch 1 and the late age peak for the conditions in patch 2. The relative weights 

are determined using the generation matrix and (4).

For just patch 1 in isolation, the net reproductive rate is 1.65, the cohort generation time is 

4.87, and growth rate is 0.104; for patch 2 in isolation these numbers are 1.67, 7.62, and 

0.068. For the 2-patch population with dispersal, we find that R0 = 1.66, Tc = 6.35, and r = 

0.089, which are all reasonable intermediate values. Turning to (5) we see that the first term 

in the approximation is (log R0/Tc) = 0.080 so we consider the second term. Here we find 

that the age-dispersion is Va = 2.89 while the stage-dispersion is Vs = 7.53. Putting these in, 

the two terms in (5) yield an approximation to growth rate of 0.091; without the dispersion 

Vs we get an approximate value of only 0.082.

So the new term Vs in the general approximation (5) matters when the offspring distribution 

among stages varies significantly by age. In our example, early reproduction is dominated by 

patch 1 (=stage 1) individuals whose offspring are likely to stay in patch 1. In contrast, late 

reproduction is dominated by patch 2 (=stage 2) individuals whose offspring are likely to 

stay in patch 2.

A reasonable question is: how can we understand level and timing in complex life histories 

when the matrices involve a large number of parameters. This is precisely where IPM 

methods are very useful, as pointed out by Ellner & Rees (2007) and illustrated in Coulson 

et al. (2010). For each age transition, we can work with parametric models in which, e.g., 

two parameters describe size specific survival and two describe size specific reproduction, 

four describe growth mean and variance, and four describe the parent-offspring phenotypic 

transmission. While that is certainly a lot of parameters, the total number is not huge. We 

have, in any case, little choice if we want useful and powerful biological theory, and our 

main result (5) applies equally to such more complex models as we show in the Appendix 

for an empirical model of Soay Sheep. The sheep example also illustrates that Vs can be 

negative, because similar (staged) offspring are produced at different ages.

Discussion

In this paper we extend to stage-and-age structure the classical result (Dublin & Lotka, 

1925) that population growth rate r can be approximated by a canonical relationship between 
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net reproductive rate R0, and generation time Tc. In many situations, r is evolutionary fitness, 

and the classical result links life histories to population genetics and evolutionary change 

(Fisher, 1930, 1927; Charlesworth, 1994; Stearns, 1992; Caswell, 2001). Over almost a 

century, Lotka’s result has helped biologists understand – in a broad and general way – how 

life histories determine population growth and evolutionary change (Dublin & Lotka, 1925; 

Coale, 1972; Keyfitz, 1977; Southwood, 1988; May, 1976; Caswell, 2001). But these 

insights only describe how the age-pattern of survival and fertility, not the effect of variation 

in underlying phenotypic traits such as size, shapes fitness (Caswell, 2001; Tuljapurkar et 

al., 2012). The general results we give here shows how phenotypic traits determine key life 

history parameters including the generalizations of R0 and Tc, and then links these 

parameters to growth rate r. These linkages can enrich the biological analysis of life histories 

in several ways, as we now discuss.

The results provide a route to understanding the consequences of variation in the rate of 

phenotypic change during ontogeny. E.g., when size is key (as in many plants, fishes, 

reptiles, or mammals), we can use our methods to examine how growth pattern (e.g. fast vs. 

slow, determinate vs. indeterminate) determines the timing and level of reproduction and 

hence fitness. Because stage-age structured models include variability in the rate of 

phenotypic change, we can also analyze how the plasticity (or predictability) of size change 

affects population dynamics. In addition, our results provide a route towards integrating 

work on the physiology and energetics of growth and development and their trade-offs into a 

life history perspective (Roff, 1992; Stearns, 1992).

Of course the effects of trait change depend on the nature of selection via survival and 

reproduction. In our model the latter are captured (see Table 2) by the functional relationship 

between survival and phenotype (stage), and the total recruitment and stage. For example, in 

size-dependent life histories, survival and recruitment may increase with size (directional 

selection), may be highest at intermediate sizes (stabilizing selection), or may vary with age 

(fluctuating selection favoring large size at some ages, small size at other ages). Phenotypic 

selection, as well as rates of phenotypic change and development, are often influenced by 

the abiotic environment, e.g., temperature is a major factor for many species in seasonal 

climates, and also by the biotic environment, e.g., presence of predators (Blanckenhorn, 

2000; Blanckenhorn & Heyland, 2005; Endler, 1986). We can use our results to examine and 

compare the fitness consequences of such factors, and our examples show that the stage 

dynamics (be they phenotypic or spatial) can lead to surprising results.

The measures Tc and R0 are essential in extending Dublin and Lotka’s classical result to 

stage(-age) structured populations. Earlier work has proposed several measures of timing, 

but has debated their merits and meanings. Caswell (2001) pointed out that we can define 

three different measures of generation time – he defines them for age-structure and points 

out that it is not clear how they generalize to situations when there are many types (stages) 

of newborns. Our measure Tc is the appropriate generalization of the mean age of parents 

produced by a stable cohort (what Caswell calls µ1). If we suppose that we have computed 

both r and R0: then we can compute a (tautologically defined) generation time T = log(R0)/r 
and could use our main result (5) to show how r changes the difference between Caswell’s T 
and Tc. Caswell considers the average age of parents in the stable population: we cannot 
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determine this without further analysis but it is clear that this average must depend explicitly 

on r. Other measures for stage-only models, are discussed by Cochran & Ellner (1992), and 

Hernandez-Suarez (2011). For stage-and-age models Lebreton (1996, 2005) discusses two 

measures of mean timing. None of these generation time measures relates R0 to r as we have 

done. de Camino-Beck & Lewis (2008) propose measures of the timing and variance of 

reproduction using a graphical algorithm but do not show how their measures might predict 

r.

We show that fitness is affected by two kinds of reproductive dispersion. Age-dispersion 

describes how (weighted) total reproduction changes with age, and our contribution is to 

show how stage-dependence (e.g., the pattern of ontogenetic change or the mode of 

reproduction) affects age-dispersion. Age-dispersion in reproduction can vary substantially 

among taxa and populations because senescence and the pattern of stage change are highly 

variable (Stearns, 1992; Tuljapurkar et al., 2009b). For instance, consider a plant species in 

which large, old trees produce large amounts of seeds, reproductive dispersion will be 

particularly large when small, young trees also produce small vegatative ramets (Hoffmann, 

1999). In such a system there exists a balance between fast turnover of a few recruits 

originating from small trees (fast life histories) and slow turnover of many recruits 

originating from old trees (slow life histories)– the results of this paper can be used to 

evaluate the contributions of both kinds of recruits to population growth.

We provide a new measure that describes stage-dispersion that matters (as illustrated above) 

when the stage-distribution of offspring varies significantly with age. This can easily occur 

in a spatially distributed population in which stage equals location, and there is 

environmental variation driving differences in reproduction among patches. A rather 

different example is a parasite that can infect different species of host (or different ages of 

one host species), and where parasite reproduction differs among the different possible 

hosts.

What about density-dependence? If vital rates are controlled by population density, our 

results are directly relevant to any equilibrium population that results. At a density-regulated 

equilibrium, the population’s growth rate is zero, which means that the net reproductive rate 

R0 must be 1, but Tc can vary. Our definitions of R0 and Tc still apply of course, which 

means that we can examine how specific kinds of density-dependence (e.g., predation, 

cannibalism, resource competition) constrain different components (growth, survival, 

recruitment, parent-offsping correlation, or dispersal among locations of a meta population) 

of a life history at equilibrium. We can examine variation in Tc which still measures the 

speed of a life history and its response to environmental signals.

We can usefully apply our results to models in epidemiology, conservation biology, and 

population management. In epidemiology a measure like R0 is frequently used, based on 

multistage transmission matrixes, to predict if an infectious disease will spread (R0 > 1) or 

not (R0 < 1), and to analyze control measures (Diekmann & Heesterbeek, 2000). For such 

models, our Tc describes how fast a disease will spread, or how rapidly a control measure 

can be be effective. In conservation biology (e.g. tortoises) (Doak et al., 1994), Tc may 
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inform us how fast invasive species will spread, or how rapidly conservation measures will 

show an effect.

The results we present show how the complex interplay of stage dynamics (trait, location), 

timing and level of reproduction determine fitness, and contribute to the powerful framework 

of stage-age structured models that are being applied in evolutionary and ecological 

population biology. In many populations, demographic dynamics, life histories and 

quantitative variation can only be accurately predicted by these more generally structured 

models. In particular, we hope that our results will aid the development of a broad 

understanding of the consequences of life history variation in development, morphology, 

physiology, migration, behavior, plasticity and many other stages along the life course.
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Terminology, Matrices, Proofs, and Examples for article “Generation Time, 

Net Reproductive Rate, and Growth in Stage-age Structured Populations”

Appendix A:

Appendix A: A: Appendix A

A.1 Form of Matrices

Stage-age-specific fertility matrices Fa have the form below – note that we enumerate all k 
stages, and newborns will usually be produced only in a subset of these, here labelled stages 

1 through k0,

newborn stages start here

⋮
newborn stages end here

Fa(1, 1) Fa(1, 2) ⋯ Fa(1, k)

⋮
Fa(k0, 1) Fa(k0, 2) ⋯ Fa(k0, k)

0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮

Stage-age-specific rates of transitioning between stages: the matrices Pa have the form

Pa(1, 1) Pa(1, 2) ⋯ Pa(1, k)

⋮
Pa(k, 1) Pa(k, 2) ⋯ Pa(k, k)

=

Ga(1, 1)Sa(1) Ga(1, 2)Sa(2) ⋯ Ga(1, k)Sa(k)

⋮
Ga(k, 1)Sa(1) Ga(k, 2)Sa(2) ⋯ Ga(k, k)Sa(k)

Form of cohort size distribution,
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h(0) =

h(1)
⋮

h(k0)
0
⋮

newborn stages start here

⋮
newborn stages end here

. (A-1)

A.2 Terminal Age

One common assumption is that individuals will die after reaching a maximum (terminal) 

age am, in which case we set Lam + 1 = 0.

An alternate assumption is that after reaching some high age am, the stage-transition 

matrices remain fixed at a terminal value Pam
. In that case, we set

Lam
= Pam

Lam − 1, Lam + m = Pam
m Lam

, m ≥ 0.

A.3 Population Dynamics

The population vector at time t is

N(t) =

n1(t)

n2(t)

⋮
nam

(t)

, where na(t) = na(z, t) =

na(1, t)

na(2, t)

⋮
na(k, t)

.

Then

N(t + 1) =

F1 F2 ⋯

P1 0 ⋯

0 P2 ⋯

⋮ ⋮ ⋮

N(t) .

The renewal equation in the text follows from the above for a stable population that has 

exponential growth rate r and a stable distribution u1 of age 1 newborns (Lebreton, 1996).

A.4 The Renewal Matrix

Much as in the main text, let h(0) be a stage-vector of newborns at time t – this is our initial 

cohort. Add together the size-distributions of this cohort’s offspring produced at each age a 
= 1, 2,… and so on, to see that the cohort will in total produce a first offspring generation 

whose stage-composition is
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h(1) = A0h(0), where A0 =
a

FaLa . (A-2)

Matrix A0 is assumed to be demographically strongly ergodic (Caswell, 2001), and so will 

have a dominant eigenvalue R0 > 0 and corresponding right and left, respectively, 

eigenvectors c = {c(z)} and, respectively, d = {d(z)},

A0c = R0c, dTA0 = R0dT; (A-3)

here superscript T indicates a transposed (row) vector. We normalize the eigenvectors so that 

c is a vector of proportions with 1 = zc(z) and

dTc =
z

d(z)c(z) = 1 . (A-4)

Consider the 2nd offspring generation, grand-children of the initial cohort (h0). This 2nd 

offspring generation will have stage-composition

h(2) = A0h(1) = A0
2h(2) .

So the τ th offspring generation has stage-composition

h(τ) = A0
τh(0) . (A-5)

As we move farther into the future, τ gets larger. The properties of A0 ensure that

A0
τ R0

τc dT, as τ increases . (A-6)

This means that as τ increases the stage-composition of offspring generations changes as

h(τ)

R0
τ (dTh(0)) c . (A-7)

We conclude that the offspring generations in the far future: (a) increase in number at 

geometric rate R0; (b) have stage-structure c; and (c) have ultimate size proportional to the 

total reproductive value of the initial cohort.
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A.5 The Main Result Derived

For any matrix norm (indicated by ⋅ ) we have

lim
τ

(1/τ)log Aτ(r) = 0, (A-8)

lim
τ

(1/τ)log(dTAτ(r)c) = 0. (A-9)

The limits here and later on are all as τ → ∞. The first equation above implies that the 

second must be true and either one determines r.

For small r expand

A(r) =
a

e−raFaLa,

=
a

FaLa − r
a

aFaLa + 1
2r2

a
a2FaLa + O(r3), (A-10)

= A0 − rB1 + 1
2r2B2 + O(r3) . (A-11)

In that last line above, matrix A0 is the same as in text (3), and matrices B1, B2 are defined 

by the corresponding terms in (A-10). Using (A-11),

A0
τ(r) = A0

τ − rS1 + 1
2r2S2 + r2S3 + O(r3) . (A-12)

Here

S1 =
i = 1

τ
A0

τ − iB1A0
i − 1, (A-13)
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S2 =
i = 1

τ
A0

τ − iB2A0
i − 1, (A-14)

S3 =
i = 1

τ − 1

j = 1

τ − 1
A0

τ − i − jB1A0
j − 1B1A0

i − 1 . (A-15)

Now observe that

dTA0
τc

R0
τ = 1, (A-16)

dTS1c
R0

τ =
i = 1

τ
dT B1

R0
c = x1, (A-17)

dTS2c
R0

τ =
i = 1

τ
dT B2

R0
c = x2, (A-18)

dTS3c
R0

τ =
i = 1

τ − 1

j = 1

τ − i
dT B1

R0

A0
R0

j − 1B1
R0

c = x3 . (A-19)

Next, use these and expand to order r2

(1/τ)log(dTA0
τ(r)c) = logR0 − r

x1
τ + 1

2r2 x2

τ +

+ r2 x3

τ − 1
2r2 x1

2

τ + O(r3) .
(A-20)

Define

ϕa =
dTFaLac

R0
, noting that

a
ϕa = 1 . (A-21)
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Using (A-10) and (A-17) and taking the limit of large τ,

lim
τ

x1
τ = dT B1

R0
c =

a
aϕa = Tc . (A-22)

Also, from (A-10) and (A-18), in the limit of large τ,

lim
τ

x2
τ = dT B2

R0
c =

a
a2ϕa = μ2 . (A-23)

We deal with the last 2 terms in (A-20) in three steps. Step 1: use (A-17) to rewrite the 

quantity x1
2 thus:

x1
2 =

i = 1

τ
dT B1

R0
c

2
+ 2

i > j
dT B1

R0
c dT B1

R0
c ,

=
i = 1

τ
dT B1

R0
c

2
+ 2

i > j
dT B1

R0
Z

B1
R0

c ,

= τTc
2 + 2

i > j
dT B1

R0
Z

B1
R0

c .

(A-24)

Here

Z = c dT, (A-25)

is a projection matrix, meaning that Z2 = Z.

Step 2: recall from above (A-6) that, for large τ, A0
τ will approach the limiting matrix R0

τZ. 

Define the matrix

H = I −
A0
R0

− Z
−1

, (A-26)

which describes the cumulative sum of stage-structure transients, powers of the difference 

between (A0/R0) and the limit Z (see Cohen (1979) for a similar object in a very different 

context).

Step 3: compute the difference [x3 − (1/2)x1
2]. Each term in x3 (see (A-19)),
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dT B1
R0

A0
R0

j − 1B1
R0

c,

is matched by a term from −(1/2)x1
2 that we can write (see last line of (A-24)) as

−dT B1
R0

Z
B1
R0

c .

Combining these we find (use (A-26) in the last two lines below) that

lim
τ

1
τ [x3 − (1/2)x1

2] = dT B1
R0

I −
A0
R0

− Z
−1B1

R0
c

− dT B1
R0

c
2

− 1
2Tc

2

= dT B1
R0

H
B1
R0

c − dT B1
R0

c
2

− 1
2Tc

2

= dT B1
R0

H
B1
R0

c − Tc
2 − 1

2Tc
2

= Vs − 1
2Tc

2 .

(A-27)

Assemble the above terms, recall that Va = μ2 − Tc
2, and take the limit in equation (A-20) to 

arrive at

logR0
Tc

= r −
(Va + 2Vs)

Tc

r2

2 + O(r3) . (A-28)

Now use reversion of series (section 3.6.25 in Abramowitz & Stegun (1964)) to get

r =
logR0

Tc
+

(Va + 2Vs)
2Tc

logR0
Tc

2
+ O

logR0
Tc

3
, (A-29)

Table 1 summarizes this result.

A.6 Example II: Ages and Stages

In our Example II there are four stages (ns = 4) and 2 ages a = 1, 2. Individuals are born at 

age 1 into stage 1 (small young) or 2 (large young). If they survive to age 2, they move into 

stage 3 (small old) or 4 (large old). The sizes for stages 1 to 4 are z1 < z2, z3 < z4.
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Fertility—Recall from the main text that fertility – total number of offspring – at age a for 

stage z is ma(z).

At age 1, average fertility is m1 but fertility depends on size; the size-dependence is given by 

the parameter x1 and

m1(1) = m1e
−x1/K1, m1(2) = m1e

+x1/K1, K1 = (e
−x1 + e

+x1)/2,

x1 is the strength of phenotypic selection on fertility at age 1. We arrange the fertilities at 

age 1 into a diagonal matrix according to the sizes (indexed with (1) small young, or (2) 

large young in the according columns for small (colum 1) or large (column 2))

M1 =

m1(1) 0 0 0

0 m1(2) 0 0

0 0 0 0
0 0 0 0

At age 2, average fertility is m2 but the size-dependence of fertility is given by the parameter 

x2 and

m2(3) = m2e
−x2/K2, m2(4) = m2e

+x2/K2, K2 = (e
−x2 + e

+x2)/2 .

x2 is the strength of phenotypic selection on fertility at age 2. We arrange the fertilities at 

age 2 into a diagonal matrix

M2 =

0 0 0 0
0 0 0 0
0 0 m2(3) 0

0 0 0 m2(4)

Parent-Offspring Correlation of Phenotype—The size-distribution of offspring 

depends on the sizes and ages of their parents, and Da(y, z) is the fraction of offspring of a 

parent of age a and size z that are born into stage y. At age 1, small parents make only small 

offspring, large parents make mostly small offspring,

D1 =

1 0.8 0 0
0 0.2 0 0
0 0 0 0
0 0 0 0

At age 2, the distribution of offspring size is described by a parent-offspring correlation 

parameter bh such that the fraction of offspring who inherit the relative size of their parent is 

d = 0.5 (1 + bh). The parent-offspring correlation matrix summarize this as
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D2 =

0 0 0 0
0 0 0 0
d (1 − d) 0 0

(1 − d) d 0 0

Of course the fertility matrix F1 = D1 M1.

Survival—The mean survival rate from age 1 to age 2 is s but survival may depend on size, 

with a strength of selection on survival given by parameter w so that

s(1) = s e
−w1/H, s(2) = s e

+w1/H, H = (e
−w1 + e

+w1)/2

so average survival for age 1 individuals is s1. We summarize these in a survival matrix for 

age 1,

S1 =

s(1) 0 0 0
0 s(2) 0 0
0 0 0 0
0 0 0 0

Growth—We define a phenotypic correlation bg between size at age 2 and size at birth (age 

1). The probability that relative size is maintained (i.e., small young become small old) is g 
= 0.5 (1 + bg). We summarize this in growth matrix for age 1

G1 =

0 0 0 0
0 0 0 0
g (1 − g) 0 0

(1 − g) g 0 0

Putting it together—The overall transition matrix from age 1 to age 2, including survival 

and growth, is P1 = G1 S1.

The fertility matrix at age a is Fa and includes fertility as well as parent-offspring 

transmission, so we have F1 = D1 M1 and F2 = D2 M2.

A.7 Example III: Dispersion and Stages

For this example we consider a population that reproduces in two different spatial locations 

(think valley bottom and mountain top). Individuals start reproducing at age 4 (Fig. 1c), and 

individuals at the valley bottom (patch 1) have high reproduction at ages 4–6 and low 

reproduction at ages 7–9, whereas individuals at mountain tops show the reverse pattern 

(low reproduction age 3–6, and high reproduction age 7–9). Most individuals recruit to their 

own patch (90%) and do not disperse at older ages; only a few newborn individuals (10 %) 

disperse to the other patch. Survival is higher at the mountain tops compared to the valley 

bottom, and onset of senescence in survival is earlier in the valley.
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Age-specific total fertility for patch 1 are: 0, 0, 0, 1.5, 1.5, 1.5, 0.075, 0.075, 0.075;

Age-specific total fertility for patch 2 are: 0, 0, 0, 0.075, 0.075, 0.075, 1.5, 1.5, 1.5;

Age-specific survival for patch 1: 0.7, 0.8, 0.8, 0.8, 0.8, 0.4, 0.4, 0.4, 0.4;

Age-specific survival for patch 2: 0.8, 0.9, 0.9, 0.9, 0.9, 0.8, 0.8, 0.8, 0.4;

A.8 Example for a complex empirical population: IPM of Soay sheep

Here, we briefly show that our approximation is also accurate for a more complex empirical 

based stage-age model for the Soay sheep Ovis aries that uses body mass as a stage variable 

(Coulson et al., 2010). Newborns (lambs) differ in birth mass. Stage transitions (body mass 

change), survival, fertility, and reproductive allocation are age-dependent with four age 

categories: lambs (age class 1); yearlings (age class 2); prime aged adults (age classes 3–7); 

and senescent individuals (age classes ≥ 8). For simplicity we ignore twinning. The model 

was constructed as an IPM (Integral Projection Model, Ellner & Rees (2007)) with 

continuous values of body mass and a time unit of 1 year. The stage-age patterns of survival, 

body mass transitions, total offspring number, and reproductive allocation are shown in 

Coulson et al. (2010). For the illustation here we use a discrete version with k = 100 size 

classes; the vital rates are contained in 100 × 100 matrices Pa, a ≥ 1 and Fa, a ≥ 2. Features 

to note: survival and total offspring number are increasing functions of body mass at all 

ages; mass tends to increase through prime ages but to decrease in senescent individuals; 

reproductive allocation reflects heritability of parental birth mass with yearlings and 

senescent mothers producing, on average, smaller offspring than prime-aged mothers at a 

given size. For that, this empircial example is biological similar to the simple Example II of 

the main text and detailed above, exept that for this complex emprical example there are 

many more size classes, and age-classes (for more details see Coulson et al. (2010)).

The exact growth rate of a stable population of sheep found by solving the exact renewal 

equation (Table 3) is r = 0.0143. Using our main result (5)and estimating population growth 

rate based on the simplest approximation only using the amount R0 and mean timing Tc 

reveals

r1 =
log R0

Tc
= 0.0141, for the sheep .

This is, as in the simple Example II, close to the exact value.

The better approximation using the dispersion terms yields

r2 = r1 +
[Va + 2Vs](logR0)2

2Tc
3 = 0.0143, for the sheep .

The accurate approximation predicts the exact growth rate for a stable population very well.
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Figure B1. 
Generation time (a, c, e, g, i, k) Tc (hatched line) and level of reproduction R0 (solid line), 

and (b, d, f, h, j, l) fitness r along a gradient of parent-offspring correlation (0= no 

correlation, 1= perfect transission of relative size between the parent and the offspring). 

Panels (a-f) resemble weak size specific phenotypic selection on survival (w1 = 0.075) and 

fertility (x1 = 0.075, x2 = 0.075) while panel (g-l) illustrate strong phenotypic selection on 

the trait. Differences in phenotypic correlation in growth are shown for (a, b, g, h) negative 

correlation (g = 0.25), (c, d, i, j) no phenotpyic correlation in growth (g = 0.5), or (e, f, k, l) 

poistive phenotpyic correlation in growth (g = 0.75). For panels (b, d, f, h, j, l) three 

measures of fitness are shown, the exact growth rate r0 (solid line) estimated from the 

complicated renewal equation (Table 3), the simplest approximation (hatched line) based on 

the main result (5) only using the amount R0 and mean timing Tc, r1 =
log(R0)

Tc
, and the more 

accurate approximation (dotted line) using the dispersion terms r2 = r1 +
[Va + 2Vs](logR0)2

2Tc
3 .
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Figure 1. 
Life cycle for a) a stage-only structured population, the killer whale, with four stages 

(yearling, juvenile, mature female, postreproductive female), b) for a simple stage (size) and 

age structured population (Example II), with two ages and four stages (size 1 to 4), and c) a 

two patch (location=stage) structured population with limited dispersal among patches 

(Example III). In Example II (b), individuals are born (age 1) small (size 1), or large (size 2) 

and mainly reproduce small (size 1) offspring. If they survive they can grow to small (size 3) 

or large (size 4) two year olds. After the second year all individuals die. Reproduction at age 

2 is higher compared to age 1. In Exapmle III, individuals in one patch (e.g. valley bottoms) 

reproduce more offspring early in life versus later in life, while in the other patch (e.g. 

mountain tops) reproduction increases throughout life. Adults are philopatric to their patch, 

but 10% of the offspring disperse to the other patch. Survival increases and decreases with 

age in both patches, but is higher in the mountain top patch.
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Figure 2. 
Age-distribution of reproduction of a stable cohort of Killer whales. Note, this is a stage 

only structured model with only one kind of newborns (year-lings) produced.
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Figure 3. 
a) level of reproduction R0 and b) generation time Tc along a gradient of parent-offspring 

correlation (0= no correlation, 1= perfect transission of relative size between the parent and 

the offspring). Dashed lines show estimates under weak selection, the solid lines resemble 

strong selection. Starred values obtain when there is negative correlation between growth 

and size (g = 0.25); circles are values for the case of positive correlation between growth and 

size (g = 0.75).
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Figure 4. 
Age-distribution of reproduction in a stage-age structured population (Example III) with 

stages representing two patches differing in age-specific survival and reproduction patterns.
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Table 1:

Age-Only: Cohorts and Fitness

Quantity Equation Notes

Age a = 1, 2,… Newborns are in age-class 1 Discrete age classes counted at a 
census

Survival probability pa, Probability of surviving from a to a + 1

Survivorship la, Probability of being alive at age a Here, l1 = 1; l2 = p1 l1, l3 = p2 l2, etc.

Fertility fa, Number of offspring of an individual of age a that 
recruit as newborns in next census

Stable Population A population with unchanging age-structure and 
exponential growth rate r

Fitness equals r

Lotka’s equation 1 = ∑ae−rala f a
Largest real solution is r. Also known 
as Leslie equation.

Cohort Group of individuals born together Any cohort is a stable cohort; all its 
off-spring are age 1

Level of Reproduction by a Cohort R0 = ∑a la f a Also called the Net Reproductive 
Rate

Age-distribution of Cohort 
Reproduction ϕa =

la f a
R0

Fraction of cohort reproduction that 
occurs at age a. And ∑aϕa = 1

Mean Age of Reproduction by a Cohort Tc = ∑aaϕa Also called Cohort Generation Time

Mean Square Age of Reproduction μ2 = ∑aa2ϕa

Age-dispersion of Re-
production Va = (μ2 − Tc

2)

Dublin-Lotka approximation r1 = (log R0/Tc)

Dublin-Lotka: a better approximation r2 = r1 + Va(logR0)2/2Tc
3
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Table 2:

Stage and Age: Vital Rates

Quantity Equation Notes

Age a = 1, 2,… Newborns are in age-class 1

Stage y or z = 1, 2,… An individual has both stage and age. Stage-and-age 
composition counted at a census

Stages may include several dimensions 
(e.g., size & developmental state)

Total Recruitment Ma(z), Number of offspring of age a, stage-z individual that recruit as 
newborns in next census

Inheritance Da(y, z), Fraction of Ma(z) off-spring that is born into newborn stage y Parent-offspring transmission function 
∑y Da(y, z) = 1

Fertility Fa(y, z) = Da(y, z) Ma(z). Elements of matrix Fa Number of stage-y recruits produced by 
a stage-z parent of age a

Survival probability Sa(z), Probability that individual in stage z at age a survives to a + 1

Growth Ga(y, z), Probability that individual in stage z at age a changes stage to y 
at a + 1.

Conditional on survival, so 
∑yGa(y, z) = 1

Stage Transition Matrix Pa(y, z) = Ga(y, z) Sa(z), Probability that individual in stage z at age a is 
alive in stage y at a + 1. Elements of matrix Pa

Includes survival and stage change (e.g. 
growth).

Survivorship La(y, z), Probability that newborn arriving in stage z is alive in stage y at 
age a. Elements of matrix La. Here L1(y, z) = 1 if y = z and zero else

L1 = I = the identity matrix. L2 = P1 L1, 
L3 = P2 L2, etc.
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Table 3:

Stage and Age: Stable Population

Quantity Equation Notes

Stable Population A population with unchanging stage-and-age structure and 
exponential growth rate r

Fitness equals r

Stable Stage-structure In stable population, each age a has unchanging stage structure. 
New-borns have stable stage-structure u1. Then can deduce 
stable stage-structure for every age

If only age matters, There is effectively just one 
stage, and u1 collapses to a number

Renewal equation ∑ae−raFaLau1 = u1
Says that discounted reproduction by stable stage-
structure must produce same structure

Renewal matrix A(r) = ∑ae−raFaLa
This matrix has dominant eigenvalue 1 and 
corresponding right eigenvector u1
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Table 4:

Stage and Age: Cohorts to Fitness

Quantity Equation Notes

Generation matrix A0 = ∑aFaLa Given a cohort, determines stage-
composition of offspring

Dominant eigenvalue of A0 R0 Net Reproductive Rate

Corresponding right eigenvector of A0 c, dimension equals number of stages, sum of 
components = 1

Stage-structure of stable cohort

Corresponding left eigenvector of A0 d, dimension equals number of stages, normalized so 
that (d, c) = 1

Generational reproductive value of 
stages in a cohort

Stable Cohort Newborn cohort structure c with stage-structure c A stable cohort’s offspring 
generations grow at rate R0

Level of Reproduction by Stable Cohort R0 Net Reproductive Rate

Age-distribution of Stable Cohort 
Reproduction ϕa = (dTFaLac)/R0, superscript indicates 

transposed vector

Fraction of stable cohort’s 
reproduction that occurs at age a.

Mean Age of Reproduction by a Cohort Tc = ∑aaϕa Also called Cohort Generation Time

Mean Square Age of Reproduction μ2 = ∑aa2ϕa

Age-dispersion of Reproduction Va = (μ2 − Tc
2)

Stage-dispersion of Reproduction Vs = ξ1 − Tc
2

B1 = (1/R0)∑aaFaLa

Z = c dT

h = I − ([A0/R0] − Z) −1

ξ1 = (dTB1hB1c)

Simple stage-age structured approximation r1 = (logR0)/Tc R0 and Tc differ compared to 
Dublin-Lotka approximation

Better stage-age structured approximation r2 = r1 + [Va + 2Vs](logR0)2/2Tc
3 takes age and stage dispersion of 

reproduction into account
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