
Viewpoints

This article is based on a Presidential Lecture presented at the 2016 Annual Meeting.

Toward Whole-Body Connectomics

X Chung-Chuan Lo1,2,3 and X Ann-Shyn Chiang1,3,4,5,6,7,8

1Brain Research Center, 2Institute of Systems Neuroscience, 3Department of Life Science, and 4Institute of Biotechnology, National Tsing Hua University,
Hsinchu 30013, Taiwan, 5Genomics Research Center, Academia Sinica, Nankang, Taipei 11529, Taiwan, 6Institute of Physics, Academia Sinica, Nankang,
Taipei 11529, Taiwan, 7Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, and
8Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, California 92093-0126

Recent advances in neuro-technologies have revolutionized knowledge of brain structure and functions. Governments and private
organizations worldwide have initiated several large-scale brain connectome projects, to further understand how the brain works at the
systems levels. Most recent projects focus on only brain neurons, with the exception of an early effort to reconstruct the 302 neurons that
comprise the whole body of the small worm, Caenorhabditis elegans. However, to fully elucidate the neural circuitry of complex behavior,
it is crucial to understand brain interactions with the whole body, which can be achieved only by mapping the whole-body connectome.
In this article, we discuss the current state of connectomics study, focusing on novel optical approaches and related imaging technologies.
We also discuss the challenges encountered by scientists who endeavor to map these whole-body connectomes in large animals.

Introduction
Understanding the functions of the brain, which supports our
consciousness and mental processes, is the ultimate challenge of
the biological sciences (Kandel et al., 2012). Efforts to develop
this understanding resulted in modern neuroscience and began
with the technology developments initiated by Camillo Golgi in
1873. Golgi’s staining method led to the innovative work of San-
tiago Ramón y Cajal, who drew hundreds of exquisite illustra-
tions of neuronal cells and their networks (De Carlos and Borrell,
2007). More than a century after Cajal’s work, we have gained
considerable knowledge regarding the molecular and cellular
processes underlying neuronal functioning. However, the func-
tions of a nervous system cannot be fully understood without
knowing its connectome, which is the comprehensive map of
neuronal connections (Sporns et al., 2005; Lichtman et al., 2008;
Pastrana, 2013). To accomplish this goal, technological advances
are required for mapping and studying neural circuits (Jorgenson
et al., 2015). In recent decades, neuroscience has taken large steps
toward this goal. Several technologies have been developed, en-
abling study of the structures and functions associated with large-
scale brain circuits at an unprecedented speed, as well as analyses
of the enormous datasets generated from these studies.

Despite these advances, there is still a discrepancy between
current connectomics approaches and the ultimate goal of un-
derstanding brain functions. We propose that, to fully under-
stand how the brain works, a detailed map between neural
circuitry, neural activity, and complex behavior must be con-
structed. Therefore, connectomics studies must be constructed in
situ and expanded beyond the brain (C. W. Lin et al., 2015), by
investigating whole-body connectomes (Bidaye et al., 2014); the
brain cannot function in isolation from interactions with the
external environment and other internal body parts.

Whole-body connectomics involves all levels of imaging tech-
nologies, including macroscopic MRI, which reveals connectivity
between brain regions; microscopic light microscopy, which
images neuronal circuits at the cellular levels; and nanoscopic
electron microscopy (EM), which identifies synapses and intra-
cellular structures. This review focuses on the optical technolo-
gies that are designed for high throughput mapping with
reasonable image acquisition speed (Osten and Margrie, 2013),
rather than providing a comprehensive discussion of all related
brain imaging technologies. Considering the compatibility with
various genetic labeling and manipulation techniques, we believe
that optical imaging will provide feasible solutions for mapping
the whole-body connectomes of large animals in the near future
(Lemon et al., 2015). Here, we review the current technologies
available for mapping the brain connectome and discuss the chal-
lenges associated with mapping whole-body connectomes.

Key technologies
The first step to mapping a connectome is to image large tissue
structures at the cellular level. After a connectome is constructed,
its benefit is determined by how it can be used to study brain
functions. Moreover, because of the scale of data, a connectomics
project must be supported by advanced data analysis and man-
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agement technologies. Therefore, we discuss the relevant tech-
nologies using the following three categories: structure, function,
and informatics.

Structure
Connectomics studies begin with acquisition of high-resolution
structural brain images, which enable the cellular-level connec-
tome to be reconstructed. The images must also be acquired rap-
idly, so that the whole project can be accomplished within a
meaningful timeframe. Therefore, neuroscientists must over-
come challenges related to four domains: neuron labeling, optical
tissue clearing, large volume tomography, and high-resolution
microscopy. In this section of our review, we discuss the key
technologies that are designed to overcome these challenges.

Neuron labeling
Neuronal structures must be labeled, either genetically or chemi-
cally, before they can be imaged using an optical microscope. Despite
its broad application, Golgi staining is limited because cell labeling is
random, only postmortem fixed tissues can be labeled, and it is dif-
ficult to accomplish 3D reconstruction for use in a modern connec-
tome study, where a large volume of comprehensive fine neural
circuitry construction is required. To overcome these limitations,
several genetic labeling methods have been developed.

Mosaic analysis with a repressible cell marker (MARCM) and its
modified versions remove the GAL80 transcriptional repressor dur-
ing cell division and allow GAL4 to activate cell marker expression in
a few individuals, and within a specific subset of neurons (Lee and
Luo, 1999, 2001; Zong et al., 2005). To distinctly image many neu-
rons in a sample, Brainbow has been developed for combinatorial
multicolor stochastic labeling, which exclusively expresses only one
of three or four spectrum-separated fluorescent proteins in each
neuron (Livet et al., 2007; Hadjieconomou et al., 2011; Hampel et al.,
2011; Richier et al., 2015). Recently, MultiColor FlipOut was used to
label neurons using two different recombinases to achieve control of
labeling density, using a controlled number of color combinations
(Nern et al., 2015).

Labeling two or more connected neurons within a functional
circuit is useful to information flow analyses. Such demand is ful-
filled by trans-synaptic labeling techniques, which use viruses as the
tracers (Callaway, 2008). This viral tracing can be anterograde, ret-
rograde, or bidirectional and can even be designed to cross only one
synapse (Wickersham et al., 2007). Although tissue degradation is a
potential methodological limitation, viral tracing is widely used in
studies of neural circuitry, including the mouse connectome project
by the Allen Institute (Oh et al., 2014).

Optical tissue clearing
The next challenge in reconstructing the 3D brain structure is to
acquire and process images from deep tissues, which are usually
opaque. Although the challenge may be partially resolved by me-
chanical sectioning, it inevitably produces tissue loss or distor-
tion, making image alignment between sections problematic. In
contrast, optical tissue clearing techniques minimize light scat-
tering, thereby providing an alternative method of acquiring
fluorescent images from deep tissue. However, traditional
organic-based clearing requires dehydration, which results in tis-
sue deformation. Moreover, the whole clearing process takes sev-
eral days, which reduces the emission of fluorescent proteins due
to their instability in the organic solution (Dodt et al., 2007;
Renier et al., 2014). The first breakthrough in the clearing process
resulted from the invention of an aqueous clearing solution, Fo-
cusClear, which produces minimal tissue deformation and is

compatible with most immunolabeling fluorescent dyes (Chiang
et al., 2001; Liu and Chiang, 2003). This development led to
initiation of the first large-scale Drosophila brain connectome
project, which has acquired more than 20,000 high-resolution
images of single brain neurons, which are hosted in the FlyCircuit
database (Chiang et al., 2011) and several other neural image
databases (Osumi-Sutherland et al., 2012; Parekh and Ascoli,
2013). In the past few years, several other clearing techniques
have been developed, including additional aqueous solutions (Ke
et al., 2013; Kuwajima et al., 2013; Costantini et al., 2015), urea-
assisted hydration (Hama et al., 2011), and hydrogel embedding
(Chung et al., 2013; Yang et al., 2014). The CLARITY technique
(Chung et al., 2013) is considered to be suitable for high-
resolution connectome reconstruction. Using CLARITY, the
brain is embedded in hydrogel while the major light-scattering
substances (tissue lipids) are removed by SDS via electrophoresis.
The samples are subsequently cleared in FocusClear or 80% glyc-
erol, allowing imaging of fluorescence up to a depth of 3– 4 mm in
the mouse brain. The rapid development of tissue clearing tech-
nologies has also enabled whole-body clearing, which is achieved
by intracardiac perfusion of tissue-clearing agents (Tainaka et al.,
2014; Yang et al., 2014; Hama et al., 2015; Pan et al., 2016). In
summary, tissue clearing technologies enable 3D in situ imaging
of large tissues and have become an important alternative to stan-
dard histological examinations using thin tissue slices.

Large-tissue tomography
Despite recent advances, the tissue clearing technologies have a
fundamental limitation: the working distance of optical micros-
copy. Without physical sectioning, an objective lens with high
numerical aperture (�1.2) for resolving submicron-resolution
details does not have enough working distance (�0.28 mm) to
visualize cellular structures that are more than several millimeters
deep. This limitation can be partially addressed by shrinkage-
mediated imaging, which reduces the tissue volume after clearing
(Pan et al., 2016). However, serial sectioning is still required for
3D imaging and reconstruction of large tissues.

Serial sectioning has been used with transmission EM to recon-
struct the whole-body connectome of Caenorhabditis elegans (White
et al., 1986; Xu et al., 2013) and larval Drosophila (Ohyama et al.,
2015) as well as the partial optic medulla connectome in Drosophila
(Takemura et al., 2013). However, the use of transmission EM in
connectome reconstruction is limited by the labor-intensive tissue
sectioning process and the difficulty using it in large nervous sys-
tems. These issues are addressed by serial block-face scanning EM,
which incorporates an ultramicrotome that automatically and re-
peatedly sections a thin slice from the top surface of the sample block
after each image is acquired (Denk and Horstmann, 2004). Serial
block-face scanning EM greatly improves the speed of image acqui-
sition; however, the postacquisition data analyses are extremely la-
bor intensive, as they include tracing, segmentation, synapse
identification, and circuit reconstruction. Therefore, although EM
imaging has an advantage over light microscopy in unambiguously
identifying synapses and other structures at the nanometer level, the
time-consuming imaging acquisition and postprocessing make it a
challenge for EM to reconstruct the connectome of large animals,
such as mammals. Another advantage of EM is to uniquely deter-
mine the identity of a neuron through detailed morphology and
connectivity. However, it is still difficult for EM to detect neuronal
properties (e.g., neurotransmitters) due to lack of specific markers
producing distinguishable electron dense signals.

Optical microscopy combining automated serial sectioning
allows 3D reconstruction of large tissues, such as the whole
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mouse or even the whole human brain, although resolution is
compromised. It scans faster, enables imaging deeper in the tis-
sue, overcomes the limitations related to the working distance of
the high-resolution objective lens, and provides multichannel
images with distinguishable labeling for easier image processing.
Array tomography achieves a depth-independent immunofluo-
rescent image by ultrathin sectioning to improve spatial resolu-
tion on the z-axis (Micheva and Smith, 2007; Tapia et al., 2012).
Using automated serial sectioning, knife-edge scanning micros-
copy (Mayerich et al., 2008) and micro-optical sectioning tomog-
raphy (Li et al., 2010) image fine structures on the knife edge to
increase the speed of image acquisition in large-volume tissues.
Using serial two-photon tomography, an automated system that
removes the surface tissue after two-photon imaging (Ragan et
al., 2012), the Allen Institute for Brain Science has constructed a
mesoscale connectome atlas of the mouse brain with cellular level
resolution (Oh et al., 2014). These optical imaging technologies
have advanced the connectome frontiers from the brain to the
whole body, and from small animals to large animals. Further-
more, we envision a continual trend of developing new technol-
ogies. For example, confocal microscopy combining tissue
clearing and automated sectioning should further improve the
speed of 3D image acquisition for large tissues, with improved
image quality, as well as minimal tissue distortion and loss.

Advanced optical microscopy
With advances in neuron labeling, tissue clearing, and large-
tissue tomography technologies, the next major challenge is de-
termining how to acquire images with scanning speeds and
spatial resolutions that are sufficient for detailed connectome
reconstruction. Acquiring images from large tissue volumes is
time-consuming using conventional confocal microscopy, due to
the nature of point scanning. Moreover, low temporal resolution
limits the ability of confocal microscopy to capture the progress
of cellular processes that occur within millisecond timeframes.
This issue is addressed by more advanced optical imaging tech-
nologies, including light field microscopy (Levoy et al., 2006),
light sheet microscopy (Huisken et al., 2004; Planchon et al.,
2011), and multifocal multiphoton microscopy (Bewersdorf et
al., 1998; Bahlmann et al., 2007). Among these technologies,
light-sheet microscopy is the most popular approach for observ-
ing living samples because this type of microscopy creates a thin
slice of illuminated area and thereby provides a much faster im-
aging speed compared with confocal microscopy; light-sheet mi-
croscopy also minimizes unfocused background and premature
photobleaching (Planchon et al., 2011). Recently, lattice light-
sheet microscopy was developed to increase temporal and spatial
resolution while also reducing phototoxic tissue damage (Chen et
al., 2014).

Another limitation of conventional confocal microscopy is its
spatial resolution, which does not allow imaging of individual
synapses. Without the precise information regarding synapses, a
detailed connectome will not be established. In the last two de-
cades, the development of super-resolution microscopy, includ-
ing stimulated emission depletion microscopy (Hell et al., 1994),
localization microscopy (Betzig et al., 2006; Rust et al., 2006), and
saturated structured illumination microscopy (Gustafsson,
2005), has achieved resolution at levels �100 nm, thereby en-
abling the possibility of reconstructing detailed dendritic struc-
tures, or even synapses, using optical approaches (Dani et al.,
2010; Nägerl and Bonhoeffer, 2010). Furthermore, expansion
microscopy has recently been developed as an alternative
approach to high-resolution microscopy. In contrast to shrin-

kage-mediated imaging, expansion microscopy uses tissue en-
largement by a water-absorbing gel that contains polyacrylate.
Physical enlargement increases the optical resolution fourfold
(Chen et al., 2015; Tillberg et al., 2016). Rapid development of
innovative super-resolution imaging will soon enable direct visu-
alization of synaptic connections in deep tissue.

Function
The aforementioned technological advances enable acquisition
of high-resolution images for use in reconstructing a detailed
connectome. However, to study brain functions, information is
required regarding how diverse neurons differentially process
signals, how signals flow between neurons within a responsive
circuit, and how emergent properties generate behavior. Here, we
discuss the technologies that are designed to classify neuron
types, to identify synapses, to monitor cellular responses, to alter
neural activity, and to control behaviors on a large scale.

Cell typing
Structure determines function. Neurons are morphologically
and functionally diverse, and categorizing them is therefore an
important step toward systematic annotation for data man-
agement (van Pelt et al., 2001; Peng et al., 2015). Moreover,
unlike EM, which can be used to reconstruct the connectome
of one single individual, light-microscopy-based connectome
has to be reconstructed by integrating images from a large num-
ber of individuals. The integration can be challenging consider-
ing the interindividual variation and hence crucially relies on
proper cell-type categorization. Traditional neuronal taxonomy
only considers neuron morphology; however, other properties
related to function, such as spatial location, innervation sites, and
connectivity, may also be useful considerations when designing
tools for cell categorization. Initial attempts to differentiate neu-
rons were based on innervations across different brain regions,
with efforts to “bar code” each neuron for comparison (Chiang et
al., 2011). Recently, more rigorous algorithms have been devel-
oped for clustering neuronal morphology by location and local
geometry (Costa et al., 2016). In addition to morphology, the
genes, molecular markers, or characteristic neural activity (Sharpee,
2014) may also be used to differentiate cell types (or subtypes).
Using labeling with polarity makers, individual cells forming the
mushroom body, which is the learning and memory center in the
Drosophila brain, have been categorized into input, output, and
modulatory neurons (Aso et al., 2014a, b) (Fig. 1). This compre-
hensive cell typing has led to the discovery of neurons responsible
for individual smell preferences, which requires functional plas-
ticity of the mushroom body output neurons acting collectively
to register odor memories (Pai et al., 2013; Hige et al., 2015).
Tracing mushroom body output neurons (as well as input and
modulatory neurons) along their upstream and downstream
neurons promises to reveal the circuit mechanisms of individual
differences in odor memory. With the recent availability of large-
scale neuron image databases for Drosophila, more cell-typing
proposals are likely, which will greatly advance explorations of
the connectome data.

Recordings of synaptic and neuronal activity
To study the flow of neural signals, we first need to identify
whether two given neurons form synapses. In optical micros-
copy, synapses can be imaged using green fluorescence protein
(GFP) reconstitution across synaptic partners (GRASP), which
splits a GFP into two nonfluorescent fragments and expresses
them separately in two different neurons. The GFP fragments
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may then reconstitute and emit fluorescence if two neurons con-
tact closely within a distance similar to synaptic contact (Feinberg
et al., 2008). GRASP has been demonstrated in C. elegans and
Drosophila (Feinberg et al., 2008; Gordon and Scott, 2009), and a
modified version, mGRASP, has also been developed for mam-
malian brains, using optimized transmembrane split-GFP carri-
ers (Kim et al., 2012). However, from a functional perspective, it
is more important to record synaptic activation than to simply
identify the presence of synapses. Indeed, sensory signals can use
different neural pathways under different environmental or be-
havioral conditions (H. H. Lin et al., 2013). Recoding synaptic
activation can be achieved by a recently developed technique,
X-RASP (Macpherson et al., 2015). X-RASP is a multicolor and
activity-dependent GRASP that uses synaptobrevin, a small
membrane protein found in secretory vesicles, as a carrier for the
GFP1–10 fragment.

In addition to label-activated synapses, it is also informa-
tive to record the activity of individual neurons. Although
calcium imaging has been widely used for observing neuronal
activity, this technique requires online recording and is lim-
ited by a small field of view. These limitations are addressed by
a new technique, calcium-modulated photoactivatable ratiometric
integrator (CaMPARI), which uses the photoconvertible protein
mEos2 as a probe for the calcium concentration. This technique
allows a snapshot or recording of an episode of circuit activity
within a precise time window and can be used for large volumes
of brain tissue (Fosque et al., 2015).

Behavior manipulation
The ability to record synaptic and neuronal activity on a large
scale facilitates systematic mapping of the neural correlates of

Figure 1. Diverse neurons forming mushroom bodies in the Drosophila brain. The mushroom body is comprised of three major types of intrinsic Kenyon cells (light blue), with dendrites forming
calyx and axons forming �, ��/��, and �/� lobes. Two large modulatory neurons (yellow), anterior paired lateral and dorsal paired medial, innervate all mushroom body lobes. Each lobe is
subdivided into consecutive domains, which are innervated by dopaminergic input neurons (magenta) output neurons (green), and some neurons with both axons and dendrites connecting
between two mushroom body domains (dark blue). Assembling the intersections between Kenyon cells and other cells reveals an intricate mushroom body circuit (top). All neuron images were
derived from FlyCircuit database.

Figure 2. Optogenetic mapping of whole-body neural-behavioral circuits in Drosophila.
A, Laser (593.5 nm) activation of a small group of brain neurons initiates backward walk-
ing behavior in a VT50660-Gal4�UAS-ReaChR fly fed with 100 �M all-trans-retinal. B,
The whole-body anatomy (250 �m thick) reveals several brain neurons (green) extending
axons to the thoracic muscles in the VT50660-Gal4�UAS-mko;z-disc::GFP fly. Red repre-
sents muscle. Gray represents body and tracheal cuticle stained by Congo red dye. Scale
bar, 500 �m.
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behavior. However, correlation does not necessarily indicate a
cause-and-effect relationship because the behavior and corre-
lated neuronal activity may be elicited by a common source. To
verify the cause-and-effect relationship, the behavior must be
altered by activating or inhibiting the neurons of interest. This
challenge is resolved by a number of recently developed technol-
ogies, including optogenetics (Boyden et al., 2005; Lima and
Miesenböck, 2005; Nikolenko et al., 2007; Zhang et al., 2007;
Hsiao et al., 2015), thermogenetics (Kitamoto, 2001; Peabody et
al., 2009), chemogenetics (Armbruster et al., 2007; Becnel et al.,
2013), magnetogenetics (Long et al., 2015; Wheeler et al., 2016),
and sonogenetics (Ibsen et al., 2015). Most of these technologies
express specific proteins (e.g., membrane receptors) in geneti-
cally targeted neurons and manipulate them by activating or si-
lencing the proteins using physical (heat, light, magnetism, or
ultrasound) or chemical means. Optogenetics, which uses light-
sensitive opsins, is the most developed and adopted of these tech-
niques. Optogenetics has been used to demonstrate a variety of
neuron-behavior correlations, including locomotor control
(Lima and Miesenböck, 2005; Aravanis et al., 2007; Kravitz et al.,
2010; Leifer et al., 2011; Heiney et al., 2014; Y. Y. Lin et al., 2015),
memory (Liu et al., 2012), and parallel pathway shunting (H. H.
Lin et al., 2013). Despite its popularity, optogenetics has a major
limitation: restricted light penetration depth. Fortunately, pene-
tration depth can be improved by implementation of a red-
orange light source with long-wavelength opsins (J. Y. Lin et al.,
2013), or by multiphoton excitation (Rickgauer and Tank, 2009;
Hsiao et al., 2015). The development of optogenetics and other
neuron manipulation technologies enables possibilities for non-
invasive neuron manipulation in free-moving animals (Leifer et
al., 2011). In particular, because of its temporal and spatial pre-
cision benefits, optogenetics has been incorporated into a new
behavioral apparatus, the Automated Laser Tracking and Opto-
genetic Manipulation System (ALTOMS), which integrates
optogenetics, laser tracking, machine learning, and pattern rec-
ognition technologies (Wu et al., 2014). In ALTOMS, free-
moving fruit flies are tracked by a video monitoring system and

their behaviors are analyzed in real time. Targeted neurons in the
flies can be activated or inhibited by a precisely positioned laser
beam, using optogenetics, when preset criteria are met. ALTOMS
offers opportunities to systematically map brain circuits that or-
chestrate specific behaviors, as well as testing predictions made by
connectome analyses or computational models (Chiang et al.,
2011; Shih et al., 2015). Neuroscientists will soon be able to con-
struct integrated whole-body neuron-behavior maps in Drosoph-
ila using these advanced genetic tools to manipulate the activity
of specific neurons (Bidaye et al., 2014) (Fig. 2).

Informatics
Large-scale connectome projects generate enormous quantities
of 3D images, and each image requires complex processing before
useful information can be extracted. Furthermore, advanced
software tools are required for efficient analyses and management
of the data. Here, we discuss the challenges and required infor-
matics technologies in image processing, creating databases, and
computer modeling (Fig. 3).

Image processing
Typical postprocessing of optical brain images includes the fol-
lowing: (1) noise reduction; (2) segmentation and tracing, which
extract the 3D structure of the target neurons from the back-
ground image; and (3) warping, which transforms and registers
each neuronal image in standard brain coordinates. In a large-
scale connectome project, such labor-intensive processes must be
automated. Various computer tools for high-throughput image
processing have been developed (Donohue and Ascoli, 2011;
Peng et al., 2011a, b, 2015; Halavi et al., 2012; Helmstaedter and
Mitra, 2012; Lee et al., 2012; Ostrovsky et al., 2013; Xiao and
Peng, 2013). Next, the polarity (i.e., axon vs dendrite) of each
neuronal arbor must be identified. Although the polarity can be
accurately identified using immunolabeling, this information is
often not available from connectome datasets. This issue is par-
tially addressed by development of a computer algorithm, SPIN
(skeleton-based polarity identification for neurons), which pre-

Figure 3. Steps toward brain simulation. Raw images first undergo complex image processing, followed by tracing and segmentation of single neurons. The data are then analyzed and stored
in a database, which contains information at the neuronal, circuitry, and system levels. The data can then be used for network analyses, as well as model construction, which form the foundation for
large-scale brain simulations. These computer simulations and network analyses may inspire novel technologies in neuromorphic computing and provide insight into neural circuit mechanisms of
brain functions and associated disorders.
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dicts the polarity of arbors purely based on morphological fea-
tures extracted from neuronal skeletons (Lee et al., 2014).

Creating databases
A large-scale connectome project easily produces several tera-
bytes or even petabytes of data. Although this amount of data is
manageable with current database technology, the central chal-
lenges are as follows: (1) how to develop ontologies for efficient
data management, (2) how to build a user-friendly web interface,
and (3) how to integrate and transform the data to address scien-
tific questions. Several large-scale databases have been estab-
lished, which emphasize high-resolution neuron images and
connectome for nematode Caenorhabditis elegans (Xu et al.,
2013), fruit fly (Chiang et al., 2011; Shinomiya et al., 2011;
Osumi-Sutherland et al., 2012; Parekh and Ascoli, 2013), mouse
(Kuan et al., 2015), and other species (Peng et al., 2015). These
databases provide invaluable information for connectomics
research.

Network analysis and brain simulation
Connectomic data can be used to construct whole-brain or
whole-body network models. By analyzing the network architec-
ture with graph theory or other statistical tools, one can obtain
insights into the functional organization of the brain (Sporns et
al., 2005; Takemura et al., 2013; Shih et al., 2015). Additionally,
the data can be applied to construction of detailed computational
brain models. In the past decade, various large-scale modeling
projects have been initiated to simulate the partial brain
(Markram, 2006; Izhikevich and Edelman, 2008; Eliasmith et al.,
2012). The whole-brain or whole-body connectome provides an
opportunity for building computational models for a whole ner-
vous system at the single-cell level. However, there are challenges
that result from the enormous number of unknown parameters.
Furthermore, if detailed neuronal and synaptic dynamics are
simulated, the required computational power becomes incredi-
bly large. Two lines of solutions are in development: (1) graphical
processing unit-based computing (Ben-Shalom et al., 2013; Ho-
ang et al., 2013; Givon and Lazar, 2016), and (2) neuromorphic
chips (Schemmel et al., 2010; Indiveri et al., 2011; Benjamin et al.,
2014; Furber et al., 2014; Merolla et al., 2014). Both solutions are
much faster than the traditional CPU-based computations. How-
ever, coding for the graphical processing unit-based solution
is relatively cumbersome and platform/hardware-dependent,
whereas neuromorphic chips are limited by their inflexibility and
inability to simulate biologically realistic models. Despite these
challenges, several data-driven whole-brain or whole-body com-
putational models at the single-neuron level are under develop-
ment. OpenWorm is an international open science project with
the aim to simulate the whole nervous system of C. elegans (Pa-
lyanov et al., 2011; Szigeti et al., 2014). The Flysim project aims to
develop a brain-wide computational model for Drosophila, based
on data from the FlyCircuit database (Huang et al., 2014). Addi-
tionally, NeuroKernel/NeuroArch is an innovative open source
platform that provides graphical processing unit-based simula-
tion for the Drosophila brain (Givon and Lazar, 2016).

Conclusion and perspective
Our ability to map the brains depends largely on the invention of
connectomics neurotechnologies. In the coming decade, new
technologies will allow us to identify abundant new types of neu-
rons and to reveal the operation principles of information inte-
gration by the complex neural circuits, which hold the key to
understanding our consciousness and intelligence. However,

given the current microscopy technologies, it remains time-
consuming to conduct whole-brain scanning at subcellular levels
in large animals, which is even more burdensome for the whole-
body connectome. Therefore, there is a need for another technol-
ogy breakthrough that increases the image acquisition speed
manyfold. Correspondingly, data processing must also be greatly
improved because the scale of a connectome project is enormous.

It is reasonable to ask how society will benefit from the heavy
investment currently made to the connectomics studies. The
benefits can be explained by the following applications:

1. Basic science: Understanding the mind and consciousness
is one of the most important questions underlying brain
research. Various governments and agencies have invested
tremendous resources to explore our universe; it is the
same curiosity that motivates us to explore the universe
within ourselves, which contains 86 billion neurons
(Azevedo et al., 2009) and tens of thousand times more
connections.

2. Public health: In the past few decades, considerable knowl-
edge has been acquired regarding the genetic, molecular,
and cellular mechanisms underlying various brain dis-
eases. However, increasing evidence suggests relationships
between circuitry-level abnormalities and several brain
disorders, including epilepsy, autism, and schizophrenia
(Yizhar et al., 2011; Lisman, 2012; Paz and Huguenard,
2015). Connectome data will facilitate studies on the cir-
cuit mechanisms of brain diseases and potentially result in
improved treatments.

3. Industrial applications: Machine learning and artificial in-
telligence have made tremendous progress in recent years
(Ghahramani, 2015; LeCun et al., 2015). Although artifi-
cial intelligence outperforms humans on certain tasks
(e.g., playing Go), it still does not achieve human capabil-
ities on most tasks, such as the speed of learning. More-
over, the nature of feedforward connections in most
artificial neural networks is distinctly different from the
strong feedback circuits that are present in every part of
the human brain. Understanding detailed brain connec-
tomes may reveal the core reasons for the fundamental
differences between artificial intelligence and human
brains, and may contribute to further advances in artificial
intelligence.

In the era of rapidly developing biotechnologies, the ultimate
goal of understanding brain activity and the resulting behavior is
increasingly attainable. However, given the scale of a connectome
project, no single laboratory, or even small group of laboratories,
has the capacity to accomplish every aspect of a full connectome
study from data acquisition to analyses. Hence, connectome
projects should be conducted with publicly shared data, using a
collaborative approach (Chiang et al., 2011; Milham, 2012; Burns
et al., 2014; Poldrack and Gorgolewski, 2014; Peng et al., 2015).
Data sharing would allow researchers from all disciplines to par-
ticipate in generating new hypotheses and testing novel methods,
thereby transforming connectomics research and accelerating
progress toward understanding the brain.
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pmann CD, Güler AD (2016) Genetically targeted magnetic control of
the nervous system. Nat Neurosci 19:756 –761. CrossRef Medline

White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the
nervous system of the nematode Caenorhabditis elegans. Philos Trans R
Soc Lond B Biol Sci 314:1–340. CrossRef Medline

Wickersham IR, Lyon DC, Barnard RJ, Mori T, Finke S, Conzelmann KK,
Young JA, Callaway EM (2007) Monosynaptic restriction of transsyn-
aptic tracing from single, genetically targeted neurons. Neuron 53:639 –
647. CrossRef Medline

Wu MC, Chu LA, Hsiao PY, Lin YY, Chi CC, Liu TH, Fu CC, Chiang AS
(2014) Optogenetic control of selective neural activity in multiple freely
moving Drosophila adults. Proc Natl Acad Sci U S A 111:5367–5372.
CrossRef Medline

Xiao H, Peng H (2013) APP2: automatic tracing of 3D neuron morphology
based on hierarchical pruning of a gray-weighted image distance-tree.
Bioinformatics 29:1448 –1454. CrossRef Medline

Xu M, Jarrell TA, Wang Y, Cook SJ, Hall DH, Emmons SW (2013) Com-
puter assisted assembly of connectomes from electron micrographs: ap-
plication to Caenorhabditis elegans. PLoS One 8:e54050. CrossRef
Medline

Yang B, Treweek JB, Kulkarni RP, Deverman BE, Chen CK, Lubeck E, Shah S,
Cai L, Gradinaru V (2014) Single-cell phenotyping within transparent
intact tissue through whole-body clearing. Cell 158:945–958. CrossRef
Medline

Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O’Shea DJ, Sohal
VS, Goshen I, Finkelstein J, Paz JT, Stehfest K, Fudim R, Ramakrishnan C,
Huguenard JR, Hegemann P, Deisseroth K (2011) Neocortical excita-
tion/inhibition balance in information processing and social dysfunction.
Nature 477:171–178. CrossRef Medline

Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG,
Bamberg E, Nagel G, Gottschalk A, Deisseroth K (2007) Multimodal fast
optical interrogation of neural circuitry. Nature 446:633– 639. CrossRef
Medline

Zong H, Espinosa JS, Su HH, Muzumdar MD, Luo L (2005) Mosaic analysis
with double markers in mice. Cell 121:479 – 492. CrossRef Medline

Lo and Chiang • Whole-Body Connectomics J. Neurosci., November 9, 2016 • 36(45):11375–11383 • 11383

http://dx.doi.org/10.1038/nature13186
http://www.ncbi.nlm.nih.gov/pubmed/24695228
http://dx.doi.org/10.1038/nature14297
http://www.ncbi.nlm.nih.gov/pubmed/25896325
http://dx.doi.org/10.1038/nmeth.2477
http://www.ncbi.nlm.nih.gov/pubmed/23722211
http://dx.doi.org/10.1101/pdb.prot071738
http://www.ncbi.nlm.nih.gov/pubmed/23547150
http://dx.doi.org/10.1093/bioinformatics/bts113
http://www.ncbi.nlm.nih.gov/pubmed/22402613
http://dx.doi.org/10.1073/pnas.1216336110
http://www.ncbi.nlm.nih.gov/pubmed/23610406
http://dx.doi.org/10.3233/ISB-2012-0445
http://www.ncbi.nlm.nih.gov/pubmed/22935967
http://dx.doi.org/10.1038/nmeth.3964
http://www.ncbi.nlm.nih.gov/pubmed/27548807
http://dx.doi.org/10.1016/j.neuron.2013.03.008
http://www.ncbi.nlm.nih.gov/pubmed/23522039
http://dx.doi.org/10.1038/nmeth.2509
http://www.ncbi.nlm.nih.gov/pubmed/23866324
http://dx.doi.org/10.1038/nn.3950
http://www.ncbi.nlm.nih.gov/pubmed/25710837
http://dx.doi.org/10.1523/JNEUROSCI.4241-08.2009
http://www.ncbi.nlm.nih.gov/pubmed/19295141
http://dx.doi.org/10.1038/nmeth.1602
http://www.ncbi.nlm.nih.gov/pubmed/21532582
http://dx.doi.org/10.1093/bioinformatics/btr237
http://www.ncbi.nlm.nih.gov/pubmed/21685076
http://dx.doi.org/10.1016/j.neuron.2015.06.036
http://www.ncbi.nlm.nih.gov/pubmed/26182412
http://dx.doi.org/10.1038/nmeth.1586
http://www.ncbi.nlm.nih.gov/pubmed/21378978
http://dx.doi.org/10.1038/nn.3818
http://www.ncbi.nlm.nih.gov/pubmed/25349916
http://dx.doi.org/10.1038/nmeth.1854
http://www.ncbi.nlm.nih.gov/pubmed/22245809
http://dx.doi.org/10.1016/j.cell.2014.10.010
http://www.ncbi.nlm.nih.gov/pubmed/25417164
http://dx.doi.org/10.1002/wdev.166
http://www.ncbi.nlm.nih.gov/pubmed/25491327
http://dx.doi.org/10.1073/pnas.0907084106
http://www.ncbi.nlm.nih.gov/pubmed/19706471
http://dx.doi.org/10.1038/nmeth929
http://www.ncbi.nlm.nih.gov/pubmed/16896339
http://dx.doi.org/10.1016/j.neuron.2014.08.040
http://www.ncbi.nlm.nih.gov/pubmed/25233315
http://dx.doi.org/10.1016/j.cub.2015.03.021
http://www.ncbi.nlm.nih.gov/pubmed/25866397
http://dx.doi.org/10.1002/cne.22540
http://www.ncbi.nlm.nih.gov/pubmed/21280038
http://dx.doi.org/10.1371/journal.pcbi.0010042
http://www.ncbi.nlm.nih.gov/pubmed/16201007
http://dx.doi.org/10.3389/fncom.2014.00137
http://www.ncbi.nlm.nih.gov/pubmed/25404913
http://dx.doi.org/10.1016/j.cell.2014.10.034
http://www.ncbi.nlm.nih.gov/pubmed/25417165
http://dx.doi.org/10.1038/nature12450
http://www.ncbi.nlm.nih.gov/pubmed/23925240
http://dx.doi.org/10.1038/nprot.2011.439
http://www.ncbi.nlm.nih.gov/pubmed/22240582
http://dx.doi.org/10.1038/nbt.3625
http://www.ncbi.nlm.nih.gov/pubmed/27376584
http://dx.doi.org/10.1007/s004290100197
http://www.ncbi.nlm.nih.gov/pubmed/11720232
http://dx.doi.org/10.1038/nn.4265
http://www.ncbi.nlm.nih.gov/pubmed/26950006
http://dx.doi.org/10.1098/rstb.1986.0056
http://www.ncbi.nlm.nih.gov/pubmed/22462104
http://dx.doi.org/10.1016/j.neuron.2007.01.033
http://www.ncbi.nlm.nih.gov/pubmed/17329205
http://dx.doi.org/10.1073/pnas.1400997111
http://www.ncbi.nlm.nih.gov/pubmed/24706830
http://dx.doi.org/10.1093/bioinformatics/btt170
http://www.ncbi.nlm.nih.gov/pubmed/23603332
http://dx.doi.org/10.1371/journal.pone.0054050
http://www.ncbi.nlm.nih.gov/pubmed/23342070
http://dx.doi.org/10.1016/j.cell.2014.07.017
http://www.ncbi.nlm.nih.gov/pubmed/25088144
http://dx.doi.org/10.1038/nature10360
http://www.ncbi.nlm.nih.gov/pubmed/21796121
http://dx.doi.org/10.1038/nature05744
http://www.ncbi.nlm.nih.gov/pubmed/17410168
http://dx.doi.org/10.1016/j.cell.2005.02.012
http://www.ncbi.nlm.nih.gov/pubmed/15882628

	Toward Whole-Body Connectomics
	Introduction
	Key technologies
	Structure
	Function
	Informatics
	Conclusion and perspective
	References


