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Multiplexed Population Coding of Stimulus Properties by
Leech Mechanosensory Cells
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Sensory coding haslong been discussed in terms of a dichotomy between spike timing and rate coding. However, recent studies found that
in primate mechanoperception and other sensory systems, spike rates and timing of cell populations complement each other. They
simultaneously carry information about different stimulus properties in a multiplexed way. Here, we present evidence for multiplexed
encoding of tactile skin stimulation in the tiny population of leech mechanoreceptors, consisting of only 10 cells of two types with
overlapping receptive fields. Each mechanoreceptor neuron of the leech varies spike count and response latency to both touch intensity
and location, leading to ambiguous responses to different stimuli. Nevertheless, three different stimulus estimation techniques consis-
tently reveal that the neuronal population allows reliable decoding of both stimulus properties. For the two mechanoreceptor types, the
transient responses of T (touch) cells and the sustained responses of P (pressure) cells, the relative timing of the first spikes of two
mechanoreceptors encodes stimulus location, whereas summed spike counts represent touch intensity. Differences between the cell
types become evident in responses to combined stimulus properties. The best estimation performance for stimulus location is obtained
from the relative first spike timing of the faster and temporally more precise T cells. Simultaneously, the sustained responses of P cells
indicate touch intensity by summed spike counts and stimulus duration by the duration of spike responses. The striking similarities of
these results with previous findings on primate mechanosensory afferents suggest multiplexed population coding as a general principle
of somatosensation.
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Multiplexing, the simultaneous encoding of different stimulus properties by distinct neuronal response features, has recently
been suggested as a mechanism used in several sensory systems, including primate somatosensation. While a rigorous experi-
mental verification of the multiplexing hypothesis is difficult to accomplish in a complex vertebrate system, it is feasible for a small
population of individually characterized leech neurons. Monitoring the responses of all four mechanoreceptors innervating a
patch of skin revealed striking similarities between touch encoding in the primate and the leech: summed spike counts represent
stimulus intensity, whereas relative timing of first spikes encodes stimulus location. These findings suggest that multiplexed
population coding is a general mechanism of touch encoding common to species as different as man and worm. /
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Each patch of leech skin is innervated by only four individual
mechanoreceptor cells, which are sensitive to mechanical stimu-
lation: two T (“touch”) cells and two P (“pressure”) cells with
overlapping receptive fields (Nicholls and Baylor, 1968). Con-
stant pressure stimulation triggers in P cells sustained spiking
activity, whereas T-cell responses adapt rapidly and mainly indi-
cate stimulus changes (Carlton and McVean, 1995; Lewis and
Kristan, 1998). These mechanoreceptors provide the sensory in-
put for the local bend reflex (Kristan et al., 2005), which we can
use to scrutinize their encoding properties. This reflex causes the
leech body wall to bend away from tactile stimulation, depending
on touch intensity, location, and duration. The few mechanore-
ceptors discriminate stimulus location more finely than the hu-
man finger tip, causing different behavioral reactions for stimuli
that are only 500 wm apart (Baca et al., 2005; Thomson and
Kristan, 2006).

Thomson and Kristan (2006) investigated the encoding of touch
location by spike counts versus response latencies of P cells and
found that only the latency difference of two P cells encodes stimulus
location precisely enough to explain the behavioral performance.
Their results agree with evidence for latency coding of location-
specific information in other systems such as rat somatosensory cor-
tex (Foffani et al., 2004) and human tactile afferents (Johansson and

Photograph of the body-wall preparation and sketch of the receptive fields of mechanoreceptors. Inset (right), A
photomicrograph of the ganglion is shown with higher-magnification. Responses of up to three mechanosensory cells (T, P) were
recorded intracellularly (positions of cell bodies and electrodes are marked in the inset), while the skin was stimulated mechani-
cally by the poker (see Materials and Methods). The double-arrow line indicates the stimulation area at the middle annulus of the
10th segment. Ventral midline (the middle between the two black stripes on the skin) is defined as 0°. Stimulus locations to the
right were denoted as a positive number of degrees and to the left as negative degrees. The left end of the preparation marks
—180°, the right side +180°, black stripes are approximately at —90°and +90°. The sketch of the body wall preparation below
the photograph shows the approximate locations and extents of the receptive fields of the full population of mechanoreceptors
responding to mechanical stimulation at the ventral midline: two T cells (dashed gray) and two P cells (orange).
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Birznieks, 2004). However, when Thomson
and Kristan (2006) induced specific latency
differences via current injection to P cell so-
mata, the resulting local bend movements
were not as precisely localized as during skin
stimulation. These results suggest that the
leech uses additional information to regu-
late the exact position of muscle responses
to local touch.

In this study, we aimed at completing
the picture of leech mechanosensory en-
coding that underlies the surprisingly pre-
cise local bend reflex:

First, we investigated responses of T cells
in addition to P cells. The two cell pairs in-
nervating each patch of skin must, together,
transmit all information about this tactile
stimulus available to the animal.

Second, in addition to spike counts
and response latencies, we considered in-
terspike intervals, properties of the T-cell
burst at stimulus onset and combinations
of response features as additional candi-
date codes. Like Thomson and Kristan
(2006), we compared the encoding per-
formances of individual cells and cell pairs
for all response features.

Third, we analyzed the encoding of three
stimulus properties, location, intensity, and
duration, as well as their combinations. Al-
though intensity and duration have been
shown to shape behavioral responses of the
leech (Baca et al., 2005), their encoding by
mechanosensory cells has not been studied
so far.

When considering combinations of
stimulus properties and multiple response
features in both cell types, leech tactile en-
coding strikingly resembles published find-
ings obtained in the primate (Saal and
Bensmaia, 2014): whereas each sensory cell responds ambiguously to
different combinations of stimulus properties, a tiny population of
four cells—two cell pairs of different types— cooperatively encodes
stimulus combinations. Relative spike timing encodes stimulus lo-
cation, whereas combined spike counts represent stimulus intensity
in a multiplexed way.

of segment 10

Posterior

Materials and Methods

Physiology. We used adult, hermaphrodite medicinal leeches (Hirudo
verbana) from Biebertaler Leech Breeding Farm. The leeches weighed
1-2 g and were kept at room temperature in tanks with ocean sea salt
(1:1000) diluted with purified water. Animals were anesthetized with
ice-cold saline (Muller et al., 1981) before and during dissection. Exper-
iments were performed at room temperature. In total, 70 preparations
were used for this study. The body-wall preparation (Fig. 1) consisted of
midbody segments 911, with corresponding ganglia of the ventral nerve
cord. Innervation of segment 10 remained unaffected. Because the leech
nervous system is highly repetitive (Kristan et al., 2005), and to our
knowledge, no indication for differences in mechanoreception between
midbody ganglia has previously been reported, we assume that our re-
sults apply to the entire midbody region of the leech. The body wall was
flattened and pinned out with the ectodermal side of the skin facing
upward in a plastic Petri dish coated with a silicone elastomere (Sylgard;
Dow Corning). In the area of the fifth annulus (counted from anterior) of
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Table 1. Details of stimulation protocols and numbers of recorded cells for seven different estimation tasks analyzed in this study

Stimulus properties

Numbers of cells

Estimation task Location, degrees Intensity, mN Duration, ms Tcells 1T pairs P cells PP pairs TP pairs
Location —20°, —15°, —10°, —5°,0° 5°,10°,15°, 20° 10, 50 200 10 5 10 5 —
Intensities low 0 10, 20, 30, 40, 50 200 14 7 24 12 —
Intensities high 0 10, 20, 50, 70, 100 200 27 8 23 5 n
Duration 0 60 50, 200, 500 10 — 12 — —
Duration and intensity 0 20, 60 50, 200, 500 10 — 12 — —
Location and intensity —20,0° +20 10,50 200 10 5 10 5 —
Location and intensity, —20°, —10°,0° +10°, +20° 10, 20, 50 200 10 5 10 5 —

15 combinations

segment 10, a hole was cut into the skin to provide access to the ventral
side of the ganglion, where mechanosensory cell somata are located
(Kristan et al., 2005). The skin was stimulated at the middle annulus
(third annulus of segment 10), which was identified by location of the
sensilla (Blackshaw et al., 1982).

The ventral midline of each preparation was defined as 0°. Because
stimulus locations to the left are denoted as negative and to the right as
positive numbers of degrees, the preparation spans from —180° to +180°
(Fig. 1). While stimulating the skin mechanically, we performed single,
double, or triple intracellular recordings from P and T cells (Nicholls and
Baylor, 1968). These cells have been well studied and are easily identifi-
able based on their location in the ganglion, their size and electrical
properties (Nicholls and Baylor, 1968; Kristan et al., 2005). We used glass
electrodes with resistances between 20 and 40 M(), filled with potassium
acetate (3M). For numbers of recorded cells and cell pairs, see Table 1.
The experimental rig consisted of mechanical micromanipulators type
MX-1 (Narishige Group), amplifiers (model SEC-05X and BAIS) from
NPI Electronic, and the data were acquired via an interface BNC-2090
with NI PCI-6036E board from National Instruments. Neuronal re-
sponses were recorded (sample rate 10 kHz) and analyzed using
MATLAB software (MathWorks).

Stimulation. For applying pressure stimuli onto the skin, we used a
Dual-Mode Lever Arm System (Aurora Scientific, Model 300B; Baca et
al., 2005; Thomson and Kristan, 2006) with a poker tip size of 1 mm 2,
The stimulus was varied in intensity (10—100 mN) and location (—20° to
+20°, relative to ventral midline, in 5° steps). Tactile stimulation lasted
200 ms (Lewis and Kristan, 1998; Thomson and Kristan, 2006), except in
the duration encoding experiments, in which stimulus durations of 50,
200, and 500 ms were combined with intensities of 20 and 60 mN at 0°.
Table 1 summarizes the combinations of varied and fixed tactile stimulus
parameters (location, intensity, duration) for all seven encoding tasks
analyzed in this study. All combinations of stimulus properties used for one
encoding task were presented 8—15 times in pseudorandomized order.

Analyzed response features. The spike time was defined as the time of
maximum spike amplitude. The neuronal responses were quantified us-
ing response features defined for single cells, as well as for both cells of the
simultaneously recorded cell pair.

(A) Spike count (C): total number of spikes elicited in a single cell
during the stimulation.

(B) Spike count difference (CD): signed difference of spike counts of a
cell pair (left — right cell).

(C) Summed spike count (SC): sum of spike counts of a cell pair.

(D) Latency (L): time between stimulus onset and first spike of one
cell.

(E) Latency difference (LD, also called relative latency): signed time
difference of the first spikes of a cell pair (left — right cell).

(F) First interspike interval (I, 1st ISI): time interval between the first
and second spike of one cell.

(G) First ISI difference (ID): signed interval difference of the ISIs of a
cell pair (left — right cell).

(H) Response duration (RD): time difference between the first spike
and the last spike of the elicited neuronal response.

(I) Burst spike count (BC): number of spikes of one cell in the first
burst after stimulus onset.

(J) Burst duration (BD): time difference between first and last spike of
one cell in the first burst after stimulus onset.

Bursts were identified based on the distribution of ISIs according to
the definition by Oswald et al., 2007. If this distribution was bimodal, we
defined a threshold, separating burst ISIs from longer ISIs (Oswald et al.,
2007). According to this definition, we found that T cells generated a
single burst at stimulus onset (see Figs. 3, 5; Nicholls and Baylor, 1968;
Baltzley et al., 2010), whereas P cells did not produce bursts. Therefore,
the analysis of burst spike counts and durations are shown in Figures 4, 6,
and 8 only for T cells.

Stimulus estimation. The aim of stimulus estimation is to calculate how
well the value of a stimulus property can be estimated based on a specific
response feature (Theunissen and Miller, 1995). The main idea of this
approach is that the experimenter tries to solve the same task as the
nervous system, answering the question “which stimulus was present?”
based solely on the spike responses of the mechanoreceptors innervating
the stimulated patch of skin. We used two stimulus estimation ap-
proaches based on a maximum likelihood method (Aldrich, 1997): pair-
wise discrimination and stimulus classification (see below). In both
approaches, a “leave one out” validation was applied (Quian Quiroga
and Panzeri, 2009).

For a fair comparison of the different response features A—J, we processed
all of them in the same way, even though they differed considerably in their
statistical properties (e.g., spike count can only have integer numbers <20,
whereas latency is a continuous variable). Therefore, we used response fea-
ture ranks rather than absolute values for stimulus estimation. The underly-
ing assumption of this approach is that response features depend in a
monotonic way on stimulus properties and therefore, similar responses have
ahigh probability of being triggered by the same stimulus. We confirmed this
assumption for our datasets, and found that spike counts increase with in-
creasing stimulus intensity as well as with decreasing distance from the re-
ceptive field center (see Figs. 5B, 3D), whereas latencies (see Figs. 5C, 3D) and
first ISIs decrease in either case.

The idea of stimulus estimation is illustrated in Figure 2: in an exper-
iment with N different stimuli (Fig. 24; N = 3; Table 1 shows experimen-
tal parameters), each stimulus was presented M (Fig. 2; M = 4) times. For
each stimulus #i, M — 1 responses were used as stimulus class S; in the
training dataset (Fig. 2B), whereas the remaining response was used as
the test data (Fig. 2C).

(1) In the fist step of the training phase (Fig. 2B), the values of the
response feature investigated (Fig. 2, spike count) obtained in all N X
(M — 1) training responses were sorted and divided into N quantile
classes Q;; n; of equal sizes, according to their ranks (Fig. 2B).

For the analysis of response feature combinations, this step was performed
for both features, so that two training datasets and two corresponding sets of
quantile classes were generated. Response features A—C and H-J (spike
count, response duration, and burst features) were sorted in ascending or-
der; features D-G (latency and ISI features) in descending order.

(2) We counted for each possible response feature value (Fig. 2B, spike
counts from 1 to 6) how often it was contained in each quantile class
Q,..n; and determined the index i of the quantile class with the highest
number of occurrences (in Fig. 2B, a spike count of 3 was contained most
oftenin Q,). Applying the maximum likelihood principle, we assigned all
responses sharing the same most probable quantile class Q; to rank
classes R; (in Fig. 2B, all response traces with spike counts of 3 or 4 are
assigned to R,). Hence, whereas S; contained all the (unsorted) response
feature values that were evoked by stimulus #i, R; could contain values
belonging to any of the stimulus classes S, , (in Fig. 2B, rank class R,
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Figure 2.  Sketch of the stimulus estimation process, consisting of training and test phases. In this example, three stimuli of
different intensities (4) were applied four times: for each of the stimuli, three response traces were included in the corresponding
stimulus response class S, S, or S of the training dataset (B, top row, vertical lines indicate spike times), the remaining trace was
used as test data (C, top row). B, Training: the analyzed response feature, here spike count, was determined for each trace in the
training dataset. These numbers were sorted, and divided into three commensurate quantile classes (Q,, @, Qs) according to their
ranks. We determined how often each possible spike count was contained in each quantile class Q;. For each spike count value, the
index i of the most probable quantile class Q; determined to which rank class R; all responses showing this spike count were
assigned. The rank class look table gives the definitions of (R,, R,, R;) and line 5 shows the rank classes for each of the responses
shown in line 1. The rank class matrix (B, bottom left) shows how many of the traces contained in each stimulus response class (S,
S,.S;) were assigned to each of the three rank classes (Ry, R,, R3). The rank class matrix is used to create a stimulus estimation table
(B, bottom right), giving for each rank class the stimulus, which has most probably elicited the response (maximum likelihood). C,
Test: each trace in the test dataset is assigned to one of the rank classes based on the rank-class look table constructed in the
training. Applying the stimulus estimation table, this rank class determines the estimated stimulus for each test response trace. The
comparison of estimated and presented stimuli for all response traces leads to the percentage of correct estimations.

contains two responses from S,, and one response each from S, and S;).

J. Neurosci., March 30, 2016 - 36(13):3636 —3647 * 3639

more quantile classes had equal probabilities of
eliciting one specific response feature value,
both corresponding rank classes were included
into the look table.

When response feature combinations (e.g.,
spike counts and latencies) were considered, a
rank look table was generated for each response
feature separately. Because increases in spike
counts usually correlated with decreases in la-
tencies and interspike intervals (Figs. 3, 5, 7;
Thomson and Kristan, 2006), we sorted spike
counts in ascending order, whereas latencies
and interspike intervals were sorted in de-
scending order. For each response trace, the
two rank numbers obtained for the two fea-
tures were summed, leading to a single num-
ber. For the example shown in Figure 2, each of
the response traces would obtain a rank class
number between 1 and 3 for its spike count and
a second number between 1 and 3 for its la-
tency, leading to summed rank class numbers
between 2 and 6.

(3) After determining the rank class R; for
each of the responses in the training dataset
(Fig. 2B), we calculated the rank class matrix
for the response feature, showing how many
traces of each stimulus class S; were assigned to
each of the rank classes R;; ;. If the rank-
class look table contained two or more rank
classes for the specific response feature value,
one of them was chosen by chance for the entry
into the rank class matrix.

For combined response features, the rank class
matrix did not have a square shape. In our exam-
ple of Figure 2, the combined analysis of spike
count and latency would lead to a 3 X 5 matrix,
connecting the three stimuli to the five possibili-
ties of summed rank class numbers (see Step 2).

(4) Reading this matrix in the opposite di-
rection, we determined for each rank class R;,
from which stimulus class S; most responses
were obtained. The resulting maximum likeli-
hood assignment table (Fig. 2B, bottom right)
was the basis for the stimulus estimation in the
test phase. Again, if more than one stimulus
classes S; shared the same maximum probabil-
ity for triggering a response in R;, both class
numbers were included into the stimulus esti-
mation table.

This procedure was done in the same way for
single and for combined response features,
leading to the same way of stimulus estimation
in the test phase.

(5) In the test phase (Fig. 2C), the remaining
response traces were used to estimate the stimuli
they were most probably elicited by. For each test
response, the response feature (Fig. 2, spike
count) value was determined and assignment to
one rank class R; according to the rank look table
created during the training phase (Fig. 2B, line 4).
With the stimulus estimation table (Fig. 2B, bot-
tom right), we determined the stimulus class S;
with the highest probability of eliciting a response
belonging to this rank class R; (maximum likeli-
hood). The corresponding stimulus #j was the es-
timated stimulus for this test response (e.g., for

In case of continuous response features like latencies or interspike inter- ~ the rank class R, the stimulus response class S, had the highest probability,
vals, the lookup table defined value ranges for the assignment of the most ~ leading to the assignment of #2 as estimated stimulus for the left-most and
probable rank class. In rare cases (1.33% of all responses) in which twoor ~ middle response traces in Fig. 2C).
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(6) Finally, we constructed a confusion matrix (Quian Quiroga and
Panzeri, 2009) by repeating this procedure consisting of training and test
phase M times, using each of the response traces once as test data. For
each response trace, the value of 1 was added to the component of the
confusion matrix corresponding to the resulting pair of presented and
estimated stimuli. Hence, correct estimations added to the diagonal
components, while wrong estimations added 1 at other positions. If two
or more stimuli shared the highest probability of eliciting a response in
this specific rank class (more than one entry in the estimated stimulus
assignment table), the test response was assigned to all of them to equal
parts, leading to non-integer numbers in the confusion matrix.

(7) In the last step, we calculated the percentage of correct estimations
as the ratio of the summed diagonal components divided by the total
number of responses (Fig. 2C, bottom).

This procedure was used in both estimation approaches, pairwise dis-
crimination and classification (see below), for all response features A—-H
individually and in all possible pairwise combinations for all cells. For T
cells, we additionally analyzed burst spike count (I) in combination with
burst duration (J) and with latency difference (E) as feature pairs.

Pairwise discrimination. The pairwise discrimination deals with the
question as to how well two stimuli can be discriminated based on spe-
cific response features. This approach reveals the minimum differences
between intensities or locations that can be discriminated based on the
neuronal responses. For the example shown in Figure 2, we would at first
analyze a small intensity difference by comparing only the first two stim-
uli and their responses, but ignoring stimulus 3. In the next step, the
discrimination of a larger intensity difference would be analyzed by com-
parison of stimuli 1 and 3. Results are represented in Figures 4A and 6A,
as mean values of percentages of correct decisions with SEM and fitted
with alogistic function. Chance level of pairwise discrimination is always
0.5 and discrimination threshold was defined as 0.75 (75% correct esti-
mation; Johnson and Philips, 1981; Thomson and Kristan, 2006).

Classification. The idea of the classification approach is to quantify
how well a set of N stimuli can be estimated based on a specific response
feature (Fig. 2 shows the classification of three stimuli based on the spike
counts of the response traces). Chance levels for classification depended
on the number of different stimuli. Since in our dataset all stimuli were
presented equally often, the chance level for this method was defined as
100/N % (33.33% in Fig. 2). In this study, classification of nine different
locations (Fig. 4B), five different intensities (Fig. 6B), three different
durations (Fig. 7B), six different combinations of intensities and dura-
tions (Fig. 7C), and six different combinations of intensities and dura-
tions (Fig. 8 A, B) of mechanical stimuli were classified. The exact values
of these stimulus properties are given in Table 1. Classification results in
Figures 4, 6, 7, and 8 are given in percentage correct and displayed in
boxplots, in which black dots mark the median values and box edges the
25th (g,) and 75th (g5) percentiles. Whiskers show minimum and max-
imum data values, which were not considered as outliers. Outliers,
determined by the standard MATLAB boxplot function as values x >
qs + 1.5(q5 — q,) orx < q; — 1.5(q5 — q,), are plotted as individual dots.

For estimation of location-intensity combinations, we used pooled
data of P and T cell double recordings (Fig. 8B) to approximate encoding
by the full mechanosensory cell population. The five P-cell double-
recordings were randomly combined across preparations with the five T-cell
double-recordings. In these cases, the response features of the two cell types
were combined in the same way as previously described for one cell type (see
Stimulus estimation). Briefly, rank class numbers were determined for each
cell type separately for estimation of either intensity or location and com-
bined to one number by summation. All following steps of training and test
phases were performed in the same way as for separate response features.
When performing estimation based on pooled data several times with ran-
dom combinations, the estimation results were stable and did not show any
significant differences across the pooled data groups.

Mutual information. We computed the mutual information (Quian
Quiroga and Panzeri, 2009) of all possible pairs of response features and
stimulus properties in bits.

p(x,7) )

I(X,Y) = 2 p(x, yﬂ%(sz(y)
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where X denotes the stimulus property and Y the observed neuronal
response feature. p(x, ) is the joint probability distribution function of X
and Y; p(x) and p(y) are the marginal probability distribution of X and Y,
respectively. The numbers of repetitions and stimuli influence the max-
imal information for each response feature. To allow a comparison of
results, the values in Tables 2 and 3 are normalized to the maximal
information, defined for each case as the information of a 100% correct
estimation.

Significance tests. Significant influence of stimulus properties on neu-
ronal response features was identified with the Friedman test (Hollander
and Wolfe, 1999) with significance level p < 0.001, which is similar to
two-way ANOVA, using ranks rather than the original data values. In this
test, the response feature values (e.g., spike count or latency) measured
for all stimulus conditions are ranked separately for each cell. Then, ranks
obtained for all cells are grouped according to the stimulus condition
they were elicited by. The null hypothesis is that the distributions of ranks
are identical for all stimuli. If the null hypothesis is rejected, response
ranks of at least one stimulus condition differ significantly from the rank
distributions obtained for the other stimulus values, showing a signifi-
cant effect of the stimulus property on the response feature for the set of
recorded cells.

Significant differences between pairs of classification results in Figure
8 were tested with the Kruskal-Wallis significance test with p < 0.05
(Gibbons, 1985; Hollander and Wolfe, 1999). This test compares medi-
ans of independent samples from two or more groups and is a nonpara-
metric version of the one-way ANOVA.

For pairwise discrimination shown in Figures 4 and 6, a one tailed ¢ test
with p < 0.05 was applied to define which discrimination results were
significantly above the performance threshold of 75%.

All tests were performed with the MATLAB Statistics Toolbox
(MathWorks).

Results
We used three complementary approaches to compare encoding
performances of several response features for specific tactile stimulus
properties and their combinations. First, pairwise discrimination
(Thomson and Kristan, 2006) was used to estimate the minimum
difference between stimulus locations or intensities that could be
discriminated based on a specific neuronal response feature.
Second, we applied a classification approach to obtain a
broader perspective on stimulus encoding. This method was used
to quantify how well all experimentally tested stimulus properties
and their combinations were represented by a specific neuronal
response feature. Thirdly, the results obtained by both estimation
approaches were confirmed by calculating the mutual informa-
tion between stimulus properties and response features. With
these three methods, we studied encoding of the mechanical
stimulus properties location, intensity, and duration, as well as
their combinations.

Encoding of location
In agreement with Thomson and Kristan (2006), we found that
response latency and spike count of P cells depend significantly
on the location of mechanical stimulation (Friedman test, p <
0.001). Qualitatively, the same dependencies were found for re-
sponses of P and T cells (Fig. 3). For touch intensities of 10 mN
and of 50 mN, spike counts, latencies, and first interspike inter-
vals of both cell types significantly depended on touch location
(Friedman test, p < 0.001). Latency increased and spike count
decreased with increasing distance to the center of the receptive
field. Remarkably, both cell types show a smaller variance across
trials in latencies as compared with spike counts (Fig. 3B,C,
shows typical examples).

Encoding performances of several P- and T-cell response fea-
tures were investigated using two stimulus estimation methods
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(Fig. 4). For P cells, our results support the finding of Thomson
and Kristan (2006) that the latency difference of two cells with
overlapping receptive fields is the best encoder of stimulus loca-
tion. For a stimulus intensity of 50 mN, location differences of 10°
could be significantly discriminated (Fig. 4A). For an average
leech, with a circumference of 2.5 c¢m, this corresponds to a dis-
tance of ~0.7 mm. In the more general task of stimulus estima-
tion (Fig. 4B), the latency difference of both P cells allowed
correctly assigning 60% of response traces to one of nine classes
corresponding to the nine different stimulus locations. More-
over, the mutual information of latency difference and location
of a 50 mN stimulus was higher than for any other P-cell response
features (Table 2).

When comparing cell types, we found that latencies’ differences
of T-cell responses encode touch location even more precisely than
P-cell responses (Fig. 4; Table 2). This finding was particularly evi-
dent for very soft touch stimuli of 10 mN, which could not be dis-
criminated based on P-cell responses, whereas T-cell responses
allowed a significant discrimination of location differences as small
as 5° (Fig. 4A). When a higher intensity of 50 mN was applied, T-cell
latency differences still outperformed P-cell responses, with a lower
discrimination threshold of only 5° location difference (Fig. 4A) and
alarger percentage of ~70% correct estimations of stimulus location
(Fig. 4B). Hence, encoding of stimulus location depends on stimulus
intensity, with the most sensitive mechanoreceptor playing the lead-
ing role for soft touch.

Features of the initial transient T-cell response at stimulus
onset (Fig. 4B, features BC and BD) and combinations of re-
sponse features (data not shown) did not improve encoding of
stimulus location compared with the latency difference data of
the pair of T cells. A smaller set of double recordings of one T
and one P cell (data not shown) indicated that location esti-
mation based on the combination of T- and P-cell features fell
behind estimates based on latency differences between two T
or two P cells.

We conclude that the location of tactile stimulation is most
precisely encoded by a temporal population code; the relative
timing of the first spikes produced by a pair of cells of the same

type.

Encoding of intensity

When varying the pressure of mechanical stimuli applied to a con-
stant position of the skin, we found that elevating stimulus intensity
increased spike counts and decreased response latencies of both cell
types (Fig. 5). Spike counts, latencies, and first interspike intervals of
T and P cells showed significant differences (Friedman test, p <
0.001) for different intensities. Qualitatively, the same dependencies
on stimulus intensity were found at different locations. Quantita-
tively, all stimulus intensities used in this study elicited higher spike
numbers and shorter latencies when they were applied closer to a
cell’s receptive field (data not shown).

Stimulus estimation and mutual information based on single T-
or P-cell responses revealed similar results for absolute latencies and
spike counts (Fig. 6B; Table 2). For T cells, the spike count obtained
during the full stimulus duration of 200 ms led to better estimation
results than the spike count during the initial burst after stimulus
onset (Fig. 6B, response features C and BC). Summing spike counts
of two cells of the same type improved the results (Fig. 6 A, B, re-
sponse features C and SC), whereas the performance of latency dif-
ferences clearly fell short (Fig. 6; Table 2). Qualitatively, the same
results were found for an additional large dataset of P and T cells that
were stimulated with a lower range of intensities (Table 1, estimation
task intensities low, results not shown). For the ranges of stimulus
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Table 2. Normalized mutual information of response features with stimulus
properties (mean = SD)

CellsCount Latency ~ Sumcount  Latency diff
Encoding task: 9 locations
Fixed Int & Dur
10 mN, 200 ms T 035%0.120.49 = 0.150.30 = 0.11 0.73 %= 0.12
10 mN, 200 ms P 0.35=*0.070.36 £ 0.07 0.25 = 0.07 0.45 = 0.12
50 mN, 200 ms T 033 +0.040.51 = 0.16 0.28 + 0.08 0.61 = 0.09
50 mN, 200 ms P 036 = 0.040.49 = 0.10 0.33 = 0.06 0.62 = 0.09
Encoding task: 5 intensities
Fixed Loc & Dur
0°, 200 ms T 044 £0.150.46 = 0.16 0.48 = 0.15 0.28 = 0.17
0°,200 ms 0.40 = 0.090.39 £ 0.12 0.47 £ 0.11 0.25 = 0.11
0°,200 ms P-T 0.52 = 0.18 0.38 == 0.11
Encoding task: 3 locations and
2 intensities
Fixed time
200 ms T 038 +=0.140.56 = 0.07 0.36 = 0.11 0.71 % 0.08
200 ms P 053 *=0.140.49 £ 0.15 0.52 = 0.13 0.52 + 0.20

Bold numbers indicate the response feature with the highest mutual information obtained for the estimation task.
Sum, Summed; Diff, difference; Int, Intensity; Loc, location; Dur, duration. Estimation tasks correspond to the stim-
ulation protocols listed in Table 1.

Table 3. Normalized mutual information of response features with stimulus
properties (mean = SD)

CellsCount latency  1°ISl Resp dur
Encoding task: 3 durations
Fixed Int & Loc
60 mN, 0° T 0.60 *0.240.11 £ 0.150.12 = 0.12 0.59 = 0.17
60 mN, 0° P 0.84 %= 0.110.10 = 0.080.18 = 0.09 0.72 = 0.12
Encoding task: 3 durations and
2intensities
Fixed Location
0° T 042013034 £ 0.210.32 = 0.13 0.49 = 0.12
0° P 0.50 = 0.070.30 = 0.7 0.32 = 0.090.53 = 0.05

Bold numbers indicate the response feature with the highest mutual information obtained for the estimation task.
Resp, response; Dur, duration; Int, intensity; Loc, Location; ISI, interspike interval. Estimation tasks correspond to the
stimulation protocols listed in Table 1.

intensities and locations we used in this study, we did not find a
systematic dependency of intensity estimation results on stimulus
location (data not shown). Because postsynaptic cells are not able to
make use of absolute latencies without an additional reference point,
we conclude that spike counts integrated over a small population of
cells are the most suitable response feature for encoding intensity.

Concerning the interaction of cell responses, we found that
the sum of P and T cell spike counts encoded stimulus intensity at
least as well as cell pairs of the same type (Fig. 6). Using the
summed spike counts of one P cell and one T cell yielded ~70%
correct estimations of five different intensities and a pairwise
discrimination became significant at 30 mN intensity difference
(Fig. 6). In summary, the intensity of mechanical skin stimulation
is encoded by a spike-count population code, in which responses
of different cell types might be combined.

Encoding of duration

To analyze the encoding of stimulus duration, we stimulated the skin
with two intensities (20 and 60 mN) for three durations (50, 200, 500
ms). Spike counts of both cell types depended significantly (p <
0.001, Friedman test) on stimulus duration, with longer durations
triggering more spikes (Fig. 7A). As expected, no significant depen-
dency could be found for first interspike intervals of both cell types
and latencies of P cells. For T cells, the distributions of obtained
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Estimation results for stimulus location. A, Pairwise discrimination results for tactile stimulation at 0° compared with stimulus locations between 5°and 40°. Responses of T and P cells

(5TT and 5 PP cell double-recordings, 8 —10 stimulus presentations for each cell) were analyzed for two stimulus intensities, 10 and 50 mN. The black dashed lines show chance level and 75%
threshold. Asterisks indicate mean values that are significantly (p << 0.05, t test) above threshold. B, Classification result for nine locations of a 50 mN pressure stimulus. Black dashed line shows
chance level, black dots mark the median values, and circles indicate statistical outliers (see Material and Methods). Response features: C, spike count; L, latency; |, first ISI; RD, response duration; (D,
spike count difference; LD, latency difference; ID, first ISl difference; SC, summed spike count; BC, burst spike count; BD, burst duration.

response latencies were so narrow that a rank-based significance test
could not be applied in a meaningful way.

Because the mechanosensory cells are not spontaneously active,
their response duration mimics stimulus duration to the first ap-
proximation, even though strong stimuli can cause prolonged firing
(Fig. 5A), perhaps caused by muscle movement. For both cell types,
the spike count and response duration yielded best results for stim-
ulus duration estimation (Fig. 7B). The highest mutual information
on stimulus duration was attained by the spike count of sustained
spiking P cells, whereas the transient T-cell responses clearly fell short
(Table 3). Nevertheless, when stimulus duration was varied in
combination with intensity, the combination of stimulus
properties (Table 1, estimation task duration and intensity)
can best be estimated based on the response duration of P cells,
with T cells performing only slightly worse (Fig. 7C). Accord-
ingly, this P-cell response feature also yielded the highest mu-
tual information for the combination of stimulus intensity
and duration (Table 3). Because we did not apply this stimu-
lation protocol during double recordings, we are not able to
analyze the role of population coding on duration estimation.

Based on the available results, we conclude that the stimulus
duration is best encoded by the temporal feature response dura-
tion of both cell types or by total spike count of P cells.

Encoding of property combinations

To estimate the individual stimulus properties location and in-
tensity, we identified two different population codes. A temporal
feature, the relative latency of two cells of the same type, was
found to be the best encoder for the location of tactile skin stim-
ulation. Stimulus intensity was encoded best by a spike count
code; the summed spike count of cell pairs.

Because touch intensity and location were found to affect the
same response features of T and P cells, the responses of individ-
ual cells to combined stimulus properties must be ambiguous. A
stimulus of a given intensity elicits more spikes at a shorter la-
tency if it is applied closer to the receptive field center. In addi-
tion, at each location, spike counts and latencies depend on the
intensity of mechanical stimulation. A response trace with a low
latency and a high spike count could be elicited either by a light

stimulation close to the receptive field center, or by a stronger
pressure applied farther away. Moreover, different stimulus
properties interfere for encoding: estimation of stimulus location
depends on intensity (Fig. 4A) and spike counts increase more
steeply with stimulus duration for higher intensities (Fig. 7A).
However, for the stimuli applied in this study we did not find a
clear dependency on location for the estimation of stimulus in-
tensity (data not shown).

To test how the leech could solve this ambiguity problem, we
stimulated the skin with combinations of two intensities and
three locations (Table 1, estimation task location and intensity),
while performing T-and P-cell double-recordings (Fig. 8). The
resulting six stimuli could be estimated above chance level based
on the responses of pairs of the same cell type (Fig. 8A). Similar
results were obtained in additional experiments, with up to 15
different stimuli, also for different values of response feature
combinations (Table 1 and data not shown). For T-cell pairs, best
estimation results for the combined stimulus were attained by
latency differences (Fig. 8A, Table 2. For P-cell pairs, the com-
bined stimulus features were best estimated based on summed
spike counts or a combination of summed counts and latency
differences (Fig. 8A; Table 2). For both cell types, estimation
results improved greatly when stimulus properties were esti-
mated separately based on the previously found optimal response
features; location with latency differences and intensity with
summed spike counts (Fig. 8B, two left-most boxplots).

To strictly test whether the interaction of both cell types im-
proves estimation performance, simultaneous recording of the
entire population consisting of both T cells together with both P
cells would be necessary. However, due to our technical limita-
tion of maximally three intracellular electrodes, we had to ap-
proximate full population responses by pooling recordings across
preparations. When analyzing all possible pairs of combined ex-
periments, we found very consistent results across preparations.
The six different stimuli could be estimated almost perfectly (me-
dian 90% correct; Fig. 8B), when spike counts of both P cells were
summed to estimate intensity and T-cell latency differences were
used for location estimation. Summing spike counts of all four T
and P cells for intensity estimation did not change the result
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significantly. All other combinations of cell types, response fea-
tures and stimulus properties led to significantly poorer results
(Fig. 8B). Qualitatively, the same results, albeit on a lower level of
correct estimations, were found for more difficult tasks involving

more stimulus combinations (Table 1, task location and inten-
sity; 15 combinations, results not shown).

In conclusion, we found that mechanoreceptor pairs of both
types encode different stimulus properties in a multiplexed way.
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Without having the opportunity to record from the entire popu-
lation of mechanoreceptors simultaneously, we could show that
combinations of stimulus properties could be estimated well
based on the assumption of cell-type-specific tasks and popula-
tion coding strategies. For our dataset, best stimulus estimation
results were obtained when latency differences of the T-cell pair
were used for the estimation of touch location in combination
with summed spike counts of the P-cell pair for the estimation of
stimulus intensity.

Discussion
The leech is able to react surprisingly precisely to tactile stimuli,
despite its small nervous system and low numbers of mechano-
receptors (Baca et al., 2005; Kristan et al., 2005; Thomson and
Kristan, 2006). Several prior studies examined leech mechanore-
ceptors and local bend behavior (Kristan, 1982; Lockery and
Kristan, 1990; Lockery and Sejnowski, 1992; Lewis and Kristan,
1998; Zoccolan and Torre, 2002; Baca et al., 2005; Thomson and
Kristan, 2006; Baltzley et al., 2010), but neither encoding of stim-
ulus property combinations nor the interaction of mechanosen-
sory cell types have been examined yet. In this study, we present
evidence that multiplexed population coding of tactile stimulus
properties by two mechanoreceptor types provides the basis for
the excellent behavioral performance in stimulus discrimination.

Regarding the literature on leech mechanoreception, these
results can provide the solution to an open question left by the
study of Thomson and Kristan (2006). Analyzing P-cell re-
sponses, they found, in agreement with our study, relative latency
to be the best encoder for stimulus location. Nevertheless, electric
stimulation of P cells simulating their responses to tactile stimuli
did not elicit local bend muscle contractions with the same spatial
precision as tactile stimuli themselves. Our results suggest that
the extremely precisely timed T-cell spikes are required to achieve
this behavioral goal.

In a broader perspective, we discuss our results in the context
of primate mechanoreception and identify common principles of
somatosensory encoding.

Rate coding versus temporal coding

Although rate and temporal coding have traditionally been con-
troversially discussed (Theunissen and Miller, 1995; Shadlen and
Newsome, 1998; deCharms and Zador, 2000), recent studies in
several sensory systems found evidence that simultaneous usage

of both types of encoding represents different stimulus aspects
(Panzeri et al., 2010; Ainsworth at al., 2012; Wohrer et al., 2013).
In particular, the somatosensory system was found to simultane-
ously rely on both spike rates and timing (Harvey et al., 2013; Saal
and Bensmaia, 2014). Mechanoreceptors of the primate glabrous
skin and their downstream cortical targets seem to represent spa-
tiotemporal features of tactile stimuli using temporal response
properties (Johansson and Birznieks, 2004; Mackevicius et al.,
2012; Harvey et al., 2013; Weber et al., 2013), whereas stimulus
intensity is represented by a rate code (Bensmaia, 2008; Harvey et
al., 2013). In good accordance with these results, we found evi-
dence that the leech mechanosensory system also uses both
types of encoding simultaneously. By means of stimulus estima-
tion methods, we identified a temporal feature—relative laten-
cies—as the best encoder for stimulus location. At the same time,
a rate code—summed spike counts— best encoded stimulus in-
tensity. Hence, this study confirms that the general principles of
response feature combinations, rather than a dichotomy of spike
count versus spike timing, applies to sensory coding.

Individual cells versus population coding
The classical hypothesis, that mechanoreception of the primate
glabrous skin is a labeled line code (Abraira and Ginty, 2013;
Zeveke et al., 2013), assumes that different receptor types provide
input to isolated channels of information transmission for differ-
ent modalities. However, several recent studies found evidence
that signals from different mechanoreceptor types participate in
shaping cortical response patterns, causing an integrated percep-
tion of several aspects of cutaneous stimulation (Bensmaia, 2008;
Abraira and Ginty, 2013; Zeveke et al., 2013; Saal and Bensmaia,
2014). These findings are particularly relevant for natural tactile
stimulation in behavioral contexts, because touching and manip-
ulating objects always causes perception shaped by several com-
bined stimulus properties (Johansson and Flanagan, 2009; Saal
and Bensmaia, 2014). In particular, SA-I (slowly adapting) and
FA-I/RA (rapidly adapting) afferents were shown to provide in-
put to the same target cells in the somatosensory cortex (Saal and
Bensmaia, 2014) and both to be involved in overlapping sensory
tasks, such as the perception of intensity (Bensmaia, 2008), stim-
ulus shape (Johansson and Birznieks, 2004), and texture (Weber
et al., 2013) of tactile stimuli.

The mechanoreceptors of the leech serve the same function as
mammalian mechanosensory afferents, i.e., transmitting me-
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chanically induced action potentials to the CNS. They respond
strikingly similarly to the afferents of the mammalian glabrous
skin, e.g., the human fingertip and rodent paws (Zimermann et
al., 2014). P cells resemble SA-I afferents in their sustained, slowly
adapting responses to constant mechanical stimulation, whereas
T cells share with FA-I afferents the rapid adaptation after stim-
ulus onset and also tend to respond to stimulus offset (leech: Figs.
3A, 5A; Nicholls and Baylor, 1968; Baca et al., 2005; human:
Vallbo and Johansson, 1984; Johansson and Flanagan, 2009; Abr-
aira and Ginty, 2013).

Remarkably, these two leech receptor types seem to play very
similar functional roles in encoding tactile stimulus properties to
their primate counterparts. For humans and monkeys, it was
found that estimation of touch intensity requires the integration
of several afferents (Johnson, 1974; Muniak et al., 2007; Bens-
maia, 2008; but see Arabzadeh et al., 2014). SA-I afferents are
essential for intensity estimation of constant mechanical stimuli,
but the perceived intensity of vibrating stimuli is approximated
best by the weighted sum of activities of all afferent types (Muniak
et al., 2007; Bensmaia, 2008). Even though an analysis of opti-
mally weighted response features and cell types remains to be
performed for the leech, we found in agreement that summed
spike counts of two or more leech mechanoreceptors allowed the
best estimation of stimulus intensity, in particular if P-cell re-
sponses were included.

Primates and leeches also share a common population coding
principle for spatial properties of mechanical skin stimulation,
namely relative latencies. In humans, the relative timing of first
spikes represents the shape of tactile stimuli, with RA afferents allow-
ing faster decoding than SA-I (Johansson and Birznieks, 2004). In
leeches, the location of a small tactile stimulus can be estimated very
precisely based on the latency difference of two mechanoreceptors,
in particular of the T-cell pair.

Encoding of single stimulus properties versus multiplexing of
stimulus properties

Leech mechanoreceptors and primate mechanosensory afferents
clearly encode multiple properties of tactile stimuli in a multi-

plexed way. Each slowly adapting (SA-I and P), and each rapidly
adapting (RA and T) cell tunes its spike rate to intensity and, at
the same time, its latency to spatial aspects of tactile stimuli.
Hence, response features on different temporal scales simultane-
ously represent complementary information on two different
stimulus properties. This finding exactly matches the definition
of multiplexing given by Panzeri et al. (2010).

However, our estimation of stimulus property combinations, i.e.,
stimulus location and intensity, suggests specialization of cell types
for encoding one of the stimulus properties with a single response
feature. The relative timing of the fast, and temporally precise, first
spikes of the T-cell pair provides most information about stimulus
location, whereas the summed spike counts of sustained P-cell pair
responses indicate stimulus intensity (Fig. 8). In particular, combi-
nations of response features can be predicted much better when
responses of both mechanoreceptor types are considered rather than
for each cell type separately. Hence, our results suggest that the mul-
tiplexed signals of mechanoreceptors may be split for decoding. This
hypothesis needs to be tested experimentally on the next level of
sensory signal processing, the responses of postsynaptic interneu-
rons in the local bend network. If the leech uses the strategy we
identified, we would expect to find coincidence detector interneu-
rons sensitive to relative spike timing of mechanoreceptor pairs on
the one hand and temporal integrator interneurons summing inputs
from two or more mechanoreceptors over time on the other hand.
Further experiments will reveal whether these distinct types of in-
terneurons exist and which inputs they combine. A specialization to
one mechanoreceptor type would hint toward a labeled line code,
whereas inputs from both mechanoreceptor types to coincidence
detector and integrator interneurons would carry multiplexed pop-
ulation coding onto the next network layer.

Previous studies of the primate sensory system typically fo-
cused on one stimulus property. To the best of our knowledge, no
results were yet published on the encoding of combined intensity
and spatial properties of tactile stimuli. However, very good evi-
dence exists that neurons in the somatosensory cortex receive
inputs from both SA-I and RA afferents and tune their responses
to several (individually analyzed) properties of tactile stimuli,
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including intensity and spatial features (Saal and Bensmaia,
2014).

Conclusions

Leech mechanoreceptors and afferents of primate glabrous skin
share not only their response patterns to tactile stimulation, but also
several encoding mechanisms. Despite the great difference in cell
numbers, both systems use the same stimulus property-specific pop-
ulation coding strategies. Because these strategies are shared by sys-
tems as different as the human fingertip and the leech body wall, they
might be general mechanisms underlying somatosensation. The
question of combined encoding of multiple stimulus properties,
however, requires further analyses, particularly in the context of nat-
ural tactile stimuli. When the hand of a primate or the body wall of a
moving leech touches an object, it induces a complex, temporally
and spatially dynamic mechanical stimulation (Johansson and
Flanagan, 2009), comprising several stimulus properties. The exper-
imentally easily approachable, minimalistic system of the leech
might help to understand how various stimulus features are inte-
grated into one consistent perception, representing an object
touched by a human fingertip.
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