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Synapsin Isoforms Regulating GABA Release from
Hippocampal Interneurons

Sang-Ho Song and “George J. Augustine
Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Republic of Korea 136-791, Lee Kong Chian School of Medicine,
Nanyang Technological University, Singapore 138673, Singapore, and Institute of Molecular and Cell Biology, Singapore 138673, Singapore

Although synapsins regulate GABA release, it is unclear which synapsin isoforms are involved. We identified the synapsin isoforms that
regulate GABA release via rescue experiments in cultured hippocampal neurons from synapsin I, II, and III triple knock-out (TKO) mice.
In situ hybridization indicated that five different synapsin isoforms are expressed in hippocampal interneurons. Evoked IPSC amplitude
was reduced in TKO neurons compared with triple wild-type neurons and was rescued by introducing any of the five synapsin isoforms.
This contrasts with hippocampal glutamatergic terminals, where only synapsin Ila rescues the TKO phenotype. Deconvolution analysis
indicated that the duration of GABA release was prolonged in TKO neurons and this defect in release kinetics was rescued by each
synapsin isoform, aside from synapsin IIla. Because release kinetics remained slow, whereas peak release rate was rescued, there was a
2-foldincrease in GABA release in TKO neurons expressing synapsin IIla. TKO neurons expressing individual synapsin isoforms showed
normal depression kinetics aside from more rapid depression in neurons expressing synapsin IIla. Measurements of the cumulative
amount of GABA released during repetitive stimulation revealed that the rate of mobilization of vesicles from the reserve pool to
the readily releasable pool and the size of the readily releasable pool of GABAergic vesicles were unaffected by synapsins. Instead,
synapsins regulate release of GABA from the readily releasable pool, with all isoforms aside from synapsin IIla controlling release
synchrony. These results indicate that synapsins play fundamentally distinct roles at different types of presynaptic terminals.
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Synapsins are a family of proteins that regulate synaptic vesicle (SV) trafficking within nerve terminals. Here, we demonstrate that
release of the inhibitory neurotransmitter GABA is supported by many different synapsin types. This contrasts with the release of
other neurotransmitters, which typically is supported by only one type of synapsin. We also found that synapsins serve to
synchronize the release of GABA in response to presynaptic action potentials, which is different from the synapsin-dependent
trafficking of SVs in other nerve terminals. Our results establish that different synapsins play fundamentally different roles at
nerve terminals releasing different types of neurotransmitters. This is an important clue to understanding how neurons release
their neurotransmitters, a process essential for normal brain function. j

ignificance Statement

Introduction
Synapsins are key regulators of synaptic vesicle (SV) dynamics in
presynaptic terminals (Hilfiker et al., 1999; Rizzoli, 2014; Song
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and Augustine, 2015). These proteins are known to regulate syn-
aptic transmission by controlling the storage and mobilization of
areserve pool (RP) of SVs (Hilfiker et al., 1999; Gitler et al., 2008;
Cescaetal., 2010). Synapsins may also be involved in other stages
of SV trafficking, such as regulation of SV fusion with the plasma
membrane (Hilfiker et al., 1998, 2005; Humeau et al., 2001; Sa-
migullin et al., 2004) and SV endocytosis (Evergren et al., 2004).

At excitatory synapses of neurons from synapsin I, II, and III
triple knock-out (TKO) mice, complete loss of synapsins does
not affect synaptic transmission evoked by single stimuli (Gitler
et al., 2004a, 2008; Vasileva et al., 2012). However, loss of syn-
apsins does increase the rate of synaptic depression during repet-
itive activity, whereas overexpression of synapsins slows synaptic
depression (Vasileva et al., 2013). These results are consistent
with a role for synapsins in regulating the reserve pool of gluta-



Song and Augustine e Synapsins and GABA Release

matergic SVs. In contrast, at inhibitory synapses of TKO mice,
loss of synapsins reduces the peak amplitude of GABAergic IPSCs
evoked by single stimuli, whereas the kinetics of synaptic depres-
sion are unaffected (Gitler et al., 2004a, 2008; Medrihan et al.,
2013). Loss of synapsins in TKO mice increases dopamine release
from dopaminergic terminals but has no effect on the release of
serotonin (Kile et al., 2010). Therefore, it appears that synapsins
have different roles in terminals that release different types of
transmitters and presumably use different types of SVs.

Alternative splicing of the three synapsin genes creates at least
five different synapsin isoforms (Stidhof et al., 1989; Hosaka and
Siidhof, 1998; Kao et al., 1999; Porton et al., 1999). Therefore, it is
possible that the different roles played by synapsins at different
types of presynaptic terminals could be subserved by different
synapsin isoforms (Song and Augustine, 2015). Consistent with
this possibility, a single synapsin isoform, synapsin Ila, is capable
of rescuing the depression phenotype at glutamatergic synapses
of cultured hippocampal TKO neurons (Gitler et al., 2008),
whereas a different isoform, synapsin Illa, seems to be involved in
regulating dopamine release in striatum (Kile et al., 2010).

The synapsin isoform(s) involved in regulation of GABA re-
lease at inhibitory synapses is less clear. GABAergic transmission
has been examined in knock-out mice deficient in synapsin I
(Teradaetal., 1999; Baldelli et al., 2007), synapsin IT (Medrihan et
al., 2013), or synapsin III (Feng et al., 2002). However, interpre-
tation of these experiments is complicated by the presence of
multiple synapsin genes: if only one or two of the three synapsin
genes are deleted, then the remaining gene products may com-
pensate for the missing isoforms. Further, deletion of a gene will
eliminate all splice variants associated with that gene, possibly
masking different actions of the isoforms produced by that gene.
For these reasons, the roles of individual synapsin isoforms at
inhibitory synapses have not yet been defined.

Here, we have examined the functions of individual synapsin
isoforms in cultured hippocampal interneurons from synapsin
TKO mice by examining the ability of each isoform to rescue the
defects in GABAergic transmission caused by loss of synapsins.
We found thatall synapsin isoforms can regulate the amplitude of
IPSCs at GABAergic synapses. However, there are differences in
the ability of synapsins to synchronize quantal discharge from the
readily releasable pool (RRP): although most isoforms can syn-
chronize GABA release, synapsin IIla is unique because it is un-
able to synchronize GABA release yet does enhance the total
number of quanta released. Therefore, synapsins have unique
roles in regulation of GABA vesicle trafficking relative to traffick-
ing of glutamatergic and dopaminergic SVs.

Materials and Methods

In situ hybridization. To examine the expression of synapsin isoforms in
hippocampal interneurons, we performed in situ hybridization (ISH)
based on the procedures of Schaeren-Wiemers and Gerfin-Moser (1993).
In brief, digoxigenin-labeled cRNA probes designed to distinguish each
synapsin isoform were used for ISH on cryostat sections (14 um thick) of
hippocampal tissue from wild-type mice at postnatal day 50 (P50) to P60
(both male and female). Riboprobes were designed based on sequences
within the unique domains of each isoform and antisense digoxigenin
riboprobes were generated according to the recommendations of the
manufacturer (Roche Diagnostics). Riboprobes were designed from Mus
musculus synapsins; from bases 2110-2490 of synapsin I variant la [Na-
tional Center for Biotechnology Information (NCBI) accession no.:
NM_013680.4,G1:160707900], bases 18752385 of synapsin I variant 1b
(NCBI accession no.: NM_001110780.1, GI:160707902), bases 1443—
2041 of synapsin II variant lla (NCBI accession no.: NM_001111015.1
GI:161168986), bases 1551-2160 of synapsin II variant 1lb (NCBI acces-
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sion no.: NM_013681.3 G1:557357673), and bases 1461-2135 of synap-
sin III variant IIla (NCBI accession no.: NM_013722.3 GI:256985122).
All image processing and analysis was done with Image] software.

To examine the specificity of our probes, we expressed GFP-tagged
synapsin isoforms (syns) individually in HEK293 cells (Fig. 1A1). Suc-
cessful ISH could be detected as a blue reaction product against cellular
mRNA in these cells (Fig. 1A2). To determine whether this product was
found in cells expressing synapsins, we segmented the ISH images based
on thresholds for signal intensity and minimum area (orange areas in Fig.
1A3) and merged the segmented images with images of GFP—synapsin
fluorescence (Fig. 1A4). The example shown in Figure 1A4 shows a good
correlation between the location of cells labeled by the synapsin Ia ribo-
probe and expression of GFP-synapsin Ia (yellow), aside from a small
number of cells in which very intense ISH caused the blue reaction prod-
uct to quench GFP fluorescence (orange). In contrast, labeling was ab-
sent from HEK cells expressing any of the other four synapsin isoforms
(Fig. 1B). This indicates good isoform specificity for this synapsin Ia
probe. Similar analyses were done for riboprobes for all five synapsin
isoforms (Fig. 1C). For every probe, virtually all labeling was restricted to
cells expressing the synapsin isoform used to generate the probe; labeling
of cells expressing off-target isoforms was nearly undetectable. This in-
dicates good labeling specificity for all five riboprobes used in our anal-
ysis of synapsin isoform expression in mouse hippocampal tissue.

Hippocampal neuron culture. Homozygous synapsin TKO mice and
matching triple wild-type (TWT) mice were derived by serial breeding of
the mice described in Gitler et al. (2004a). Hippocampal neurons were
cultured from newborn pups (P0—P2) as described in Banker and Goslin
(1984). Dissociated neurons were plated on 18-mm-diameter coverslips
coated with poly-p-lysine (1 mg/ml). Cultures were grown in Neurobasal
medium (Invitrogen) supplemented with B27 (Invitrogen) and 0.5 mm
L-glutamine. Neurons were allowed to mature for 13-18 d before being
used for electrophysiological analyses. Such cultures represent a hetero-
geneous mixture of projection neurons and interneurons (Bi and Poo,
1998).

Lentiviral vectors. Synapsins were subcloned from pEGFP, pEYFP, or
PECEFP vectors (Gitler et al., 2004b) into the pFUGW plasmid (Lois et al.,
2002), which was constructed by inserting the following into the multi-
cloning site of HR'CS-G (vector backbone from I. Verma, Salk Institute):
HIV-1 flap sequence, amplified by PCR from the HIV NLA4.3 genome,
the human polyubiquitin promoter-C (gift from L. Thiel, Amgen), the
EGFP gene, and the Woodchuck hepatitis virus posttranscriptional reg-
ulatory element WRE. The inserted genes were confirmed via sequenc-
ing. Lentivirus was prepared as described in Lois et al. (2002) and Gitler
et al. (2008). Neurons were infected 11-14 d after plating and analyzed
2 d after infection.

Expression of each synapsin isoform in TKO neurons was examined in
several ways. First, the efficacy of expression of each synapsin isoform
was quantified by comparing the localization of the GFP tag with the
distribution of vesicular GABA transporter (VGAT), a marker of GABA-
containing SVs (Fig. 2A; Chaudhry et al., 1998). Immunocytochemical
visualization of VGAT showed that ~95% of VGAT-positive inhibitory
synapses colocalized with the GFP tag for each synapsin isoform. Further,
comparison of GFP fluorescence intensity for these inhibitory synapses
showed that the level of presynaptic expression was very similar for all
synapsin isoforms (Fig. 2B).

To compare the expression of synapsins expressed in TKO neurons
with the levels of endogenous synapsins in TWT neurons, we used a
variety of anti-synapsin antibodies for Western blot analyses. An anti-
synapsin ITa antibody (gift from Paul Greengard) indicated that levels of
virally expressed synapsin Ila were ~2.5 times as high as the level of
endogenous synapsin Ila (Fig. 2C; n = 5, p < 0.05, unpaired ¢ test).
Similarly, an anti-synapsin Ib antibody (gift from Paul Greengard) indi-
cated that levels of exogenous synapsin Ib were ~30% greater than en-
dogenous synapsin Ib (Fig. 2D; n = 5, p < 0.05, unpaired ¢ test). A
pan-synapsin I antibody (1925-SYNP; Phosphosolutions) revealed that
levels of synapsin Ia and Ib expression in TKO neurons each were less
than the combined expression of synapsin Ia and Ib in TWT neurons
(Fig. 2E). The measurements of synapsin Ib expression shown in Figure
2D allowed us to determine that endogenous synapsin Ia and Ib contrib-
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Figure1.

Specificity of riboprobes for ISH. A, Detection of labeling. A7, Expression of GFP-tagged synapsin lain HEK 293T cells. A2, ISH (blue color) with the synapsin la riboprobe for the same field

shown in A7. A3, Image shown in A2 was segmented (orange) by using intensity and area thresholds to define locations where ISH occurs. Segmented image from A3 was merged with the
fluorescence image from A1, revealing that ISH occurred in nuclei of cells expressing synapsin la. B, A synapsin la riboprobe was used to probe HEK cells expressing the indicated synapsin isoforms
and segmented images, as in A3, were used to visualize ISH. Only cells expressing synapsin la exhibited appreciable ISH, demonstrating the specificity of the synapsin la probe. €, ISH data were
analyzed by counting the number of cells with positive nuclear signals. Each synapsin riboprobe significantly labeled only cells expressing the cognate synapsin isoform, validating the specificity of
each riboprobe. Asterisks indicate p << 0.05 by t test or ANOVA with Holm—Bonferroni post hoc test.

ute in approximately equal amounts to the synapsin I signal measured in
TWT neurons (Fig. 2E), so that exogenous synapsin Ia in TKO neurons
was ~40% greater than that of endogenous synapsin Ia in TWT neurons.
Although we were unable to measure the expression of synapsin IIb or
synapsin I1la directly, it has been reported that synapsin Illa expression
in cultured hippocampal neurons at 15 d in vitro is similar to that of
synapsin ITa (Ferreira et al., 2000). Given that all exogenous synapsins are
expressed at similar levels in TKO neurons (Fig. 2B) and that exogenous
synapsin Ila is 2.5 times as high as endogenous synapsin Ila (Fig. 2C), we

deduce that the level of expression of exogenous synapsin IIa in TKO
neurons is also ~2.5 times the level of endogeneous synapsin IIlain TWT
neurons. In summary, measured levels of exogenous synapsin isoforms
were ~1.3- to 2.5-fold greater than endogenous synapsins in TWT neu-
rons, indicating mild overexpression in virally infected TKO neurons.
Electrophysiology. Whole-cell patch-clamp recordings were made from
cultured hippocampal neurons, as described in Maximov et al. (2007).
Patch pipettes (4—5 M()) were filled with intracellular solution contain-
ing the following (in mm): 140 CsCl, 4 NaCl, 0.5 CaCl,, 5 EGTA, 2
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Figure2. Expression of synapsinisoformsin cultured hippocampal neurons. 4, TKO neurons expressing GFP-synapsin la (green)
were stained with anti-VGAT antibody (red) to define GABAergic presynaptic terminals. Region indicate by white rectangle is
enlarged below, with merged image (right) illustrating colocalization (yellow) of synapsin la and VGAT. B, Quantification of GFP
fluorescence in inhibitory synaptic boutons (defined by VGAT staining) from neurons expressing GFP-tagged versions of each
synapsin isoform. Number of cells: synapsin la (8), synapsin Ib (8), synapsin Ila (5), synapsin lIb (7), and synapsin llla (6). CE,
Western blot analysis of endogenous synapsin expression in TWT neurons and exogenous synapsin expression in TKO neurons
infected with virus expressing indicated synapsin isoforms. Antibodies against synapsin Ila (C), synapsin Ib (D), and synapsin | ()
were used in Western blots (top) to quantify antibody labeling (bottom). Labeling was normalized by levels of GAPDH as a loading
control. Valuesindicate means == SEM, with n = 5 for each measurement. Asterisks indicate statistical significance (p << 0.05) by
ttest or ANOVA with Holm—Bonferroni post hoc test.

MgATP, 0.4 Na;GTP, 10 HEPES-KOH, and 10 QX-314, pH 7.4, ad-
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cepted for analysis when series resistance was
<20 MQ. All recordings were made at room
temperature (21-25°C).

Presynaptic inputs were stimulated with a con-
centric bipolar electrode (FHC) that was placed
within 100-150 wm of the neuron that was being
recorded from and was used to apply brief cur-
rent pulses (0.5 ms). Extracellular stimuli were
generated by a Grass Instruments S48 stimulator
with a SIU5 stimulation isolation unit (Grass In-
struments). Increasing the amplitude of the ex-
tracellular stimulus increased IPSC amplitude
by recruiting larger numbers of interneurons
(Maximov et al., 2007). To make it possible to
compare IPSC amplitudes across experiments,
we used the “minimal stimulation” technique
that has been used widely in hippocampal slice
experiments (Stevens and Wang, 1995; Isaac et
al., 1996). This strategy seemed quite effective:
IPSC amplitudes were relatively consistent in
each genotype and even across genotypes (see Fig.
5B below) aside from the smaller IPSCs expected
for TKO neurons (Gitler et al., 2004a). Electro-
physiological data were sampled at 25 kHz and
low-pass filtered at 10 kHz. Evoked IPSCs
(eIPSCs) were pharmacologically isolated by
adding the AMPA receptor blocker CNQX (20
M) and the NMDA receptor blocker APV (50
M) to the extracellular solution. For measuring
each IPSC evoked by a train of stimuli, the base-
line was defined as the final current level mea-
sured during the preceding event (Gitler et al.,
2004a).

Spontaneous miniature IPSCs (mIPSCs) were
recorded in the presence of tetrodotoxin (1 um)
to block action potentials and were semiautomat-
ically analyzed offline using the MiniAnalysis
program (Synaptosoft). mIPSCs were defined as
events exceeding an amplitude threshold of 5 pA
and rise time <3 ms. Events were also verified by
visual inspection before inclusion in the dataset.
Statistical analyses used are described in the text.
Error bars shown in the figures indicate the SEM.

To determine the time course and magni-
tude of quantal transmitter release during
eIPSCs, we used the deconvolution technique
of van der Kloot (1988) (see also Nishiki and
Augustine, 2004). In brief, for a given eIPSC,
the number of quantal release events at time ,
n(t), was calculated as follows:

n(t) = Ae(de(e)/dt + I(t)/7)/i

where At is the time interval of the measure-
ment (1 ms), I(t) is the amplitude of an
eIPSC at time t, 7 is the time constant of
decay of mIPSCs, and i is the mean ampli-
tude of mIPSCs recorded from the same
postsynaptic neuron.

Statistics. Data are presented as means =
SEM. Origin (OriginLab) or Prism 7 (Graph-
Pad) software were used for all statistical anal-
yses. For each set of data to be compared, we
used the Kolmogorov—Smirnov test to deter-

justed with CsOH. The extracellular solution contained the following mine whether data were normally distributed. All datasets were normally
(in mm): 150 NaCl, 3 KCI, 2 CaCl,, 2 MgCl,, 20 p-glucose, and 10 distributed, permitting the use of nonparametric statistical tests. Differ-
HEPES-NaOH, pH 7.3. Neurons were voltage clamped at —70 mV  ences between the TWT and TKO group means were assessed with an
with an EPC-9D amplifier (HEKA). To minimize series resistance  unpaired Student’s ¢ test. Differences between TKO neurons expressing
errors (Marty and Neher, 1995), IPSC measurements were only ac-  different exogenous synapsin isoforms were assessed by using a one-way
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ANOVA to determine whether there were any
significant differences between groups, fol-
lowed by the post hoc Holm-Bonferroni
method, which allows multiple comparisons
while correcting for familywise error rates
(Holm, 1979). Differences were considered
statistically significant if p < 0.05.

To provide a more reliable measure of mean
values for the rate constants in Figure 10C, we
calculated harmonic means ( H):

% n
= 1 s

E n

i=0 Xi
where x; indicates rate constant determined in
a given experiment and # is the number of ex-
periments. The standard error of H (SEM,;)
was then estimated as:

SDy
SEMy = H> ———,
yn— 1
where the reciprocal standard deviation, SDy,
is the standard deviation of 1/x; (Norris, 1940).

Results

Expression of synapsin isoforms in
hippocampal interneurons

Before analyzing the ability of synapsin iso-
forms to rescue defects in GABA release in
cultured hippocampal interneurons, we
first determined which synapsin isoforms
are found in these interneurons. For this
purpose, we used ISH to analyze synapsin
isoform expression in hippocampal sections
from mouse brain, taking advantage of the
favorable anatomy of the hippocampus:
interneurons are virtually excluded from
the pyramidal and granule cell layers (Buck-
master and Soltesz, 1996; Freund and
Buzsaki, 1996) and glutamatergic neurons
likewise are virtually excluded from the
other layers within the hippocampus
(Lorente de N6, 1934; Corsellis and Bruton,
1983; Ishizuka et al., 1995; Megias et al.,
2001). [The giant glutamatergic neurons in
the stratum radiatum described by Gulyis et
al. (1998) represent <5% of neurons in this
layer, based on our analysis of Vglutl and
Gad67 expression data in the Allen Brain
Atlas; http://mouse.brain-map.org.] To de-
fine interneurons, we used a probe direc-
ted against GAD67, a standard marker of
GABAergic interneurons (Jin et al., 2003).
This probe labeled the cellular mRNA of
many interneurons throughout the hip-
pocampus. As expected, labeling was ab-
sent in the CA pyramidal cell layers and
granule cell layer of the dentate gyrus,
but was abundant in other layers such as
stratum oriens, stratum lucidum, and stra-
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Figure 3.  Expression of synapsin isoforms in hippocampal interneurons. A, Representative ISH images from mouse
hippocampal sections using the indicated riboprobes. Top rows of images were taken at low magnification, whereas
bottom rows show high-magpnification images taken from the areas indicated by rectangles in the low-magnification
images. B, Quantification of labeling of interneurons by the indicated riboprobes. Interneurons were identified by their
location outside of pyramidal cell or granule cell layers. The GAD67 and synapsin Ila and synapsin Illa groups are signifi-
cantly different from each other and from the other groups (asterisks indicate p << 0.05 by ANOVA with Holm—Bonferroni post hoc
test). Values indicate mean number (= SEM) of labeled cells per section. Number of sections are as follows: GAD67 (10), synapsin
1a (16), synapsin Ib (16), synapsin lla (21), synapsin Ilb (14), and synapsin llla (17), taken from six different mouse brains.

We next used the synapsin-specific riboprobes described in the

tum lacunosum-moleculare, where interneurons are known to be ~ Materials and Methods section to analyze the patterns of expression
present (Fig. 3A). By counting the number of GAD67-positive cells  of the five synapsin isoforms. In addition to abundant labeling in
in hippocampal regions, excluding the CA pyramidal cell layersand ~ pyramidal cell layers (Fig. 3A, top rows), each synapsin probe also
dentate gyrus, we determined that there were ~170 interneuronsin  labeled hippocampal interneurons within the other layers (Fig. 3A,

our typical hippocampal section (Fig. 3B).

bottom rows). Comparing results across synapsin probes, the num-
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Figure 4.

Distribution of synapsin expression in hippocampal interneurons. A, Labeling of interneurons in indicated regions with indicated riboprobes. Values indicate mean number (== SEM) of

labeled cells per section. Note change in y-axis scale between GAD67 and synapsin probes. B, €, Synapsin isoform expression was normalized by GAD67 expression and compared across the indicated
hippocampal regions. DG, Dentate gyrus; SLM, stratum lacunosum-moleculare; SO, stratum oriens; SR, stratum radiatum; SL, stratum lucidum.

ber of labeled interneurons varied for different probes (Fig. 3B).
Comparing the number of synapsin-expressing cells with the num-
ber of GAD67-expressing cells measured in different tissue sections,
it appeared that synapsin Ila and synapsin IIla probes each labeled
~50% of the interneurons and the other probes labeled at least 25%
(Fig. 3B). These results indicate that hippocampal interneurons col-
lectively express all synapsin isoforms.

We further characterized the expression of synapsin isoforms
within interneurons in different hippocampal subregions. The
number of GAD67-expressing interneurons varied between re-
gions and layers, with the largest number of labeled interneurons
found in the various layers of CA1 (Fig. 4A). There was a similar
variation in the pattern of synapsin isoform labeling within these
interneurons (Fig. 4A), although there were quantitative differ-
ences that could be discerned by calculating the ratio of number
of nuclei labeled by each synapsin riboprobe relative to the num-
ber labeled by the GAD67 probe. Although these ratios differed
for each isoform, the overall pattern of expression was relatively

consistent across interneurons in many hippocampal regions
(Fig. 4B). In all subregions, this ratio was highest for synapsin Ila
and typically was lowest for synapsin IIb (Fig. 4C).

Rescue of IPSC amplitude by synapsin isoforms

In microisland cultures of hippocampal interneurons from syn-
apsin TKO mice, the peak amplitude of evoked IPSCs is reduced
compared with TWT neurons (Gitler et al., 2004a). To identify
the synapsin isoform(s) involved in regulation of GABA re-
lease, we determined which synapsin isoforms could rescue
this physiological phenotype. For this purpose, conventionally
cultured hipocampal neurons (Banker and Goslin, 1984) were
infected with lentivirus encoding GFP-tagged versions of each
synapsin isoform (Gitler et al., 2008). Previous work has es-
tablished that GFP-tagged synapsins appear to function nor-
mally in regard to synaptic targeting (Gitler et al., 2004b),
phosphorylation by protein kinases (Chi et al., 2003), and
partial rescue of the phenotype of glutamatergic synapses of
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cultured hippocampal neurons (Gitler et al., 2008). The data
shown in Figure 3 (see Materials and Methods) indicate that
virtually all of the cultured interneurons expressed synapsins
after viral infection and the level of synapsin expression was
similar for all isoforms. This information enables straightfor-
ward interpretation of synaptic responses evoked by stimula-
tion of these neurons.

To measure GABAergic synaptic transmission, we used
whole-cell patch-clamp recordings to measure IPSCs evoked in
one cultured neuron when neighboring neurons were minimally
stimulated (see Materials and Methods) with an extracellular
electrode. Glutamate receptor antagonists were used to eliminate
excitatory responses, allowing measurement of IPSCs in isolation
(Maximov et al., 2007). Consistent with previous results in mi-
croisland cultures (Gitler et al., 2004a), the peak amplitude of
eIPSCs was significantly reduced in TKO neurons compared with
TWT neurons (Fig. 5A, top row). On average, eIPSCs of TKO
neurons were ~30% smaller in peak amplitude (Fig. 5B). Re-
markably, GABAergic synaptic transmission was rescued when
any synapsin isoform was expressed in TKO neurons (Fig. 5A).
Peak eIPSC amplitude in neurons expressing any one of the syn-
apsin isoforms was significantly larger than that of TKO neurons
and was comparable to that measured in control TWT neurons
(Fig. 5B). This result indicates that each synapsin isoform can
regulate GABA release, which is quite different from the case of
cultured hippocampal glutamatergic neurons, in which only syn-
apsin Ila causes a significant degree of rescue (Gitler et al., 2008).

Synapsins regulate IPSC kinetics differentially

Synapsins can influence the kinetics of glutamate release (Hilfiker
et al., 1998, 2005; Humeau et al., 2001) and a recent study has
indicated that this may also be the case for GABA release (Medri-
han et al., 2013). We therefore examined IPSC kinetics in TWT
and TKO neurons, as well as in neurons expressing individual
synapsin isoforms. Although the rise time of eIPSCs was similar
in TKO and TWT neurons, the decay of eIPSCs was prolonged in
TKO neurons (Fig. 6A). This prolongation of e[PSC decay was
most evident when eIPSCs were scaled to the same peak ampli-
tude to take into account the reduction in peak amplitude ob-
served in TKO neurons (Fig. 64, right). Quantification indicated
that eIPSC rise time was unaffected in TKO neurons (Fig. 6B) and
these neurons exhibited a selective slowing of eIPSC decay (Fig.
6C). Although eIPSCs were smaller in TKO neurons, the slowing
of eIPSC decay caused the total charge of eIPSCs to be identical in
TWT and TKO neurons (Fig. 6D).

We next investigated which synapsin isoforms rescued the
retardation of eIPSC decay observed in TKO neurons. Synap-
sin Ia, synapsin Ib, synapsin Ila, and synapsin IIb were each
capable of restoring the rapid decay of eIPSCs (Fig. 6C,F). In
TKO neurons expressing each of these isoforms, e[PSC decay
constants were not significantly different from those mea-
sured in TWT neurons (Fig. 6C). eIPSC rise time also was not
different across all genotypes (Fig. 6B). Because the rescue of
faster eIPSC decay rate (Fig. 6C) was accompanied by rescue of
larger eIPSC peak amplitude (Fig. 5B), the eIPSC charge (Fig.
6D, G) was similar in TKO neurons expressing any of these
four synapsin isoforms. Therefore, these four synapsin iso-
forms completely restored eIPSCs to wild-type amplitudes
and time courses.

However, inhibitory synaptic transmission was different in
TKO neurons expressing synapsin I1Ia. In these neurons, eIPSC
decay remained slow, similar to the rate of decay measured in
TKO neurons not expressing any synapsins (Fig. 6C,F). There-
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fore, synapsin IIla does not rescue this aspect of the TKO pheno-
type. Because the peak amplitude of eIPSCs was rescued by
synapsin Illa (Fig. 5B), the eIPSC charge (Fig. 6 D, G) was signif-
icantly larger for these neurons than for any other genoype. These
results indicate a difference between synapsin IIIa and other syn-
apsin isoforms in the ability to rescue the GABAergic phenotype
of synapsin TKO interneurons.

Synapsins regulate presynaptic GABA release

In principle, differences in IPSC decay kinetics observed with
genetic manipulations of synapsins could result from either pre-
synaptic or postsynaptic factors. We therefore next examined the
properties of mIPSCs, quantal events with properties that can
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distinguish between presynaptic and postsynaptic mechanisms
(Fatt and Katz, 1952). Spontaneous mIPSCs were examined in
the presence of tetrodotoxin to prevent spontaneous action po-
tentials, as well as glutamate receptor antagonists to eliminate
miniature EPSCs. Such recordings revealed that mIPSC proper-
ties were relatively similar in each experimental group (Fig. 7A).
Although the frequency of mIPSCs was not significantly different
between TWT and TKO neurons (Fig. 7B), expression of each
synapsin isoform in TKO neurons caused a small increase in

mIPSC frequency that was not statistically significant (Fig. 7B;
p > 0.05). The mean amplitude of mIPSCs was not different for
any genotype (Fig. 7C) and mIPSC rise (Fig. 7D) and decay times
(Fig. 7E) were also similar in each case. These data are consistent
with the conclusion that the observed changes in eIPSCs arise
from a presynaptic locus of action, rather than from changes in
postsynaptic properties.

Determination of mIPSC properties allowed us to calculate the
quantal content, a measure of presynaptic release properties (del
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Castillo and Katz, 1954) that can be defined
in our situation as the ratio of e[PSC charge
to mIPSC charge. The quantal content of
eIPSCs was the same in TWT and TKO neu-
rons (Fig. 6E). Therefore, there was no net
change in the total amount of GABA re-
leased in response to a presynaptic action
potential. Further, the quantal content was
similar for TKO neurons expressing each
synapsin isoform (Fig. 6E), except for syn-
apsin IIla, where the quantal content was
approximately twice as high due to the slow
eIPSC decay (Fig. 6C) and attendant in-
crease in eIPSC charge (Fig. 6D).

TKO

+syn la

+syn lib

+syn lla

Synapsins regulate rates of

GABA release

The fact that loss of synapsins in TKO
neurons slows the time course of decay
of eIPSCs (Fig. 6A,C), but not the decay
of mIPSCs (Fig. 7E), indicates a slowing of
the time course of evoked transmitter re-
lease (Diamond and Jahr, 1995). To quan-
tify the influence of synapsins on the
kinetics of GABA release, we applied de-
convolution analysis. This analysis uses
eIPSC properties to determine precisely
the time course and magnitude of quantal
transmitter release in response to a pre-
synaptic action potential, provided that
the amplitude and time course of the un-
derlying unitary quantal events (mIPSCs)
are known (Van der Kloot, 1988; Dia-
mond and Jahr, 1995; Vorobieva et al.,

+syn lb

+syn llla

o

mIPSC frequency (Hz)_, 0
()]

o

1999; Neher and Sakaba, 2001; Hefft and D
Jonas, 2005). We used the deconvolution =3
technique of van der Kloot (1988) (see £
also Nishiki and Augustine, 2004) to com- 2o
pare release rates during eIPSCs in TWT =
and TKO neurons. This analysis revealed 2 1
that the peak rate of GABA release was 2
lower in TKO neurons (Fig. 84, left), ac- % .

counting for the reduced peak amplitude
of eIPSCs in these cells (Fig. 5B). In addi-
tion, the timing of GABA release was de-
synchronized in TKO neurons compared
with TWT, with a prolonged enhance-
ment of GABA release lasting up to several
hundred milliseconds after a stimulus
(Fig. 8A). Integration of release rates over
time revealed the total amount of GABAe-
rgic quanta released in response to a stim-
ulus. In both genotypes, integrated release
was an exponential process (Fig. 8B), with a significantly slower
rate constant for TKO neurons (Fig. 8C). This desynchronization
of GABA release accounts for the observed differences in e[PSC
decay between the two genotypes (Fig. 6C). The desynchroniza-
tion of release also causes the total amount of GABA release to be
very similar in both genotypes (Fig. 8 B,D). This can explain the
similar quantal contents for eIPSCs in the two genotypes
(Fig. 6E).

Release rates were next determined for TKO neurons express-
ing each synapsin isoform. All isoforms rescued the peak rates of

Figure 7.
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release (Fig. 8E), accounting for the rescue of eIPSC peak ampli-
tudes by all synapsins (Fig. 5B). In addition, all isoforms except
synapsin I1la were able to accelerate release kinetics, indicated by
recovery of the faster rate constant of release (Fig. 8C). Asaresult,
the total number of GABA quanta released by a presynaptic ac-
tion potential was similar in all conditions except for TKO neu-
rons expressing synapsin IIla, in which evoked release nearly
doubled due to the persistent, asynchronous release of GABA
(Fig. 8D, F). These results account for the effects of these iso-
forms on eIPSC charge (Fig. 6 D, F). In summary, deconvolution



Song and Augustine e Synapsins and GABA Release

J. Neurosci., June 22, 2016 - 36(25):6742— 6757 * 6751

A B
1.0 7 600 -
g 4 4 © g TWT
g g TKO g O
5 TWT ® g 4001
<2 7]
. £ 0.5 1 5
© : Q@
E 2 1 E o
2 5 g 20
© I TWT ©
% TKO 5 o
14 z =
0 T T T T T 0 T T T
0 200 400 600 0 200 400 600 0 200 400 600
Time (ms) Time (ms) Time (ms)
C * * D
0.015 - | | 1200 - &
e ?
§ 0.01 S 800 -
17 [}
c s
3 3
o ©
© o)
= 0.005 © 400
3 =
@ £
[}
©
14
0 0
TWT TKO +Syn +Syn +Syn +Syn +Syn TWT TKO +Syn +Syn +Syn +Syn +Syn
la Ib lla llb lla la b lla b Nla
E F
6 E
] +syn llla £ 10001
@
= +syn llb =4 +syn llla
< +syn lla =
g 44 +syn Ib % TWT
£ +syn la B TKO
8 9] +syn la
e TKO _; 500 +syn lla
[0} 2 Qo +syn Ib
@ - © +syn llb
9] o)
© 3
x £
0 0 T T T
0 200 4 600 0 400 800
Time (ms) Time (ms)

Figure8.

Synapsins influence the rate of quantal GABA release. A, Deconvolution analysis was used to determine rate of quantal release from average elPSC waveforms. Left, Release rates for TWT

and TKO neurons. Right, Same as left but scaled to the same maxima and superimposed. B, Integrals of release rate plots shown at left of A. C, Mean release rate constants for integrated release
were determined for indicated genotypes. Release rate constants were prolonged in TKO neurons, as well as in TKO neurons expressing synapsin llla. D, Integrated amount of release for indicated
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calculated from traces in E.

analysis indicates that synapsins control both the peak rate of
GABA release and the temporal structure of GABA release in
response to a presynaptic action potential. Both of these ac-
tions are regulated by all synapsin isoforms, aside from the
inability of synapsin IIla to synchronize GABA release.

Synapsins and depression of GABAergic transmission

At glutamatergic synapses, perturbation of synapsin function ac-
celerates the rate of synaptic depression (Pieribone et al., 1995;
Rosahl et al., 1995; Hilfiker et al., 1998, 2005; Gitler et al., 2004a).

This usually is interpreted as a synapsin-dependent defect in mo-
bilization of SVs from a RP (Greengard et al., 1993; Akbergenova
and Bykhovskaia, 2007; Gitler et al., 2008; Vasileva et al., 2012).
Because it has been reported that loss of synapsins does not affect
depression kinetics at GABAergic synapses of cultured hip-
pocampal neurons (Gitler et al.,, 2004a), we have reexamined
eIPSC depression in TWT and TKO neurons, as well as in TKO
neurons expressing synapsin isoforms.

We began by using pairs of stimuli to examine the kinetics of
recovery from depression. In this protocol, synaptic depression
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was elicited by the first stimulus and this caused eIPSCs evoked by
the second stimulus to be smaller in amplitude than eIPSCs
evoked by the first stimulus (Fig. 9A). This was the case for both
TWT and TKO neurons. By varying the interval between the
stimuli, the amplitude of the second eIPSC could be used to
monitor the rate of recovery from depression: longer interstimu-
lus intervals yielded less depression of the amplitude of the sec-
ond eIPSC (Fig. 9A). In TWT neurons, the amplitude of the
second eIPSC fully recovered with interstimulus intervals of 500
ms or greater (Fig. 9B). Recovery from depression in these neu-
rons could be fit by an exponential function with a time constant
of 122 = 9 ms (Fig. 9B, D). Loss of synapins caused a significantly
faster rate of recovery in TKO neurons, with a time constant of
68 = 11 ms (Fig. 9B, D). Expression of any individual synapsin
isoform in the TKO background restored the slower rate of re-
covery from depression, indicating that all synapsin isoforms can
rescue the phenotype (Fig. 9C,D).

The rate of synaptic depression was determined by measuring
the decline in eIPSC charge during trains of stimuli (10 Hz, 50 s).
In both TWT and TKO neurons, during such trains, there was a
rapid (but variable) initial drop in eIPSCs followed by a slower,
exponential decline to a steady-state level (Fig. 10A; Jensen et al.,
1999; Gitler et al., 2004a). Consistent with previous studies
(Gitler et al., 2004a, 2008), the time course of depression was

measured by fitting an exponential decay function to the slower
decline. The time constant for this exponential was very similar in
both TWT and TKO neurons, being nearly 12 s under our stim-
ulus conditions (Fig. 10B). Introduction of synapsin Ia, synapsin
Ib, synapsin Ila, or synapsin IIb into TKO neurons did not affect
the kinetics of synaptic depression (Fig. 10B). However, expres-
sion of synapsin I1Ia caused a nearly 3-fold acceleration in the rate
of depression (Fig. 10B). Given that synapsin Illa increases the
total amount of GABA release (Fig. 8D), it is likely that the faster
depression in TKO neurons expressing synapsin IIla is a conse-
quence of this increased GABA release. To test this possibility, we
raised extracellular Ca** concentration to increase GABA release
while measuring the resulting rate of depression in TWT neu-
rons. Increasing Ca*" concentration increased release ~3-fold,
as determined from eIPSC charge, and caused the time constant
of depression to decrease ~3-fold as well, from 11.3 * 2.4 s to
4.1 = 0.9s. Across all experimental conditions, the rate of depres-
sion, measured as the inverse of the depression time constant, was
correlated with the amount of transmitter release, measured by
IPSC charge (Fig. 10C). This provides support for the idea that
synapsin IIla accelerates depression by increasing the rate of
GABA release. The correlation further indicates that desynchro-
nization of GABA release can explain why rates of depression are
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similar in TWT and TKO neurons even though the peak eIPSC
amplitude is reduced in TKO neurons (Gitler et al., 2004a).
Finally, we used synaptic depression as a tool to assess the size
of the RRP and the rate of mobilization of GABAergic vesicles
from the RP. For this purpose, we measured the kinetics of inte-
grated GABA release during a train of stimuli (Schneggenburger
et al., 1999; Stevens and Williams, 2007) employing the same
stimulus paradigm (10 Hz, 50 s) used for the experiments shown
in Figure 9. To account for differential effects of synapsins on
release kinetics (Fig. 8), we measured eIPSC charge produced in
response to each stimulus and then integrated these responses
over the course of the entire stimulus train. For both TWT and
TKO neurons, such plots had two distinct kinetic components: a
rapid initial increase, corresponding to depletion of the RRP,
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followed by a slower linear increase associated with mobilization
from the RP (Fig. 11A). RRP size could be defined by back-
extrapolating the slower linear component back to its y-intercept
(dashed lines in Fig. 11A). Comparison of RRP values for TWT
and TKO neurons indicated that the presence or absence of syn-
apsins does not affect RRP size (Fig. 11B). Further, there were no
changes in RRP size observed in TKO neurons expressing any of
the individual synapsin isoforms (Fig. 11B). Mobilization, repre-
senting the rate of replenishment of SVs from the RP to the RRP,
was determined by the slope of linear fits to the late component of
integrated eIPSC charge (Fig. 11A). The rate of mobilization of
GABAergic vesicle mobilization was also not significantly differ-
ent across genotypes, being unaffected by loss of synapsins or by
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reintroduction of any of the synapsin iso-
forms (Fig. 11C). Therefore, we conclude
that, for GABA release, synapsins affect
neither the rate of mobilization from the
RP nor the size of the RRP.

Given that eIPSCs in TKO neurons ex-
pressing synapsin II1a have a higher quan-
tal content (Fig. 6E) even though their
RRP size is the same as for all other geno-
types (Fig. 11B), it appears that synapsin
IIIa affects the probability of GABA re-
lease in response to a presynaptic action
potential. To quantify this effect of synap-
sin IIIa, we calculated release probability
for each genotype by dividing eIPSC
quantal content (Fig. 6E) by RRP size.
These calculations indicate that release
probability is indeed significantly higher
in TKO neurons expressing synapsin I1la
compared with all other genotypes (Fig.
11D).

In conclusion, all synapsins affect the rate of release of GABA
quanta residing within the RRP. Most synapsin isoforms syn-
chronize the kinetics of GABA released by a presynaptic action
potential; the exception is synapsin IIla, which approximately
doubles the probability of GABA release without affecting the
timing of release (Fig. 12).

Figure 12.

Discussion

Until now, it was unclear which synapsin isoforms regulate
GABA release. Previous genetic studies were confounded by the
presence of multiple synapsin genes that may compensate for
each other (Rosahl et al., 1993, 1995; Li et al., 1995; Ryan et al.,
1996; Feng et al., 2002; Medrihan et al., 2013). Indeed, our results
indicate that most synapsin isoforms can compensate for each
other in supporting GABA release. To avoid such issues, we rein-
troduced individual synapsin isoforms in a null TKO background
and found that all of these isoforms, aside from synapsin Illa, are
responsible for synchronizing quantal GABA release from the
RRP. Although synapsin Illa is unable to synchronize GABA re-
lease, it is still capable of rescuing the related defect in the peak
rate of GABA release. This indicates that synapsin IIla shares
some, but not all, molecular characteristics required to support
proper trafficking and exocytosis of GABAergic SVs.

The ability of multiple synapsins to rescue the TKO phenotype
is consistent with our finding that all five major synapsin iso-
forms are expressed in hippocampal interneurons. However,
there was heterogeneity in the patterns of expression; no synapsin
isoform was found in every hippocampal interneuron, likely due
to the presence of many different interneuron types within the
hippocampus (Maccaferri et al., 2000; Klausberger, 2009). Our
physiological measurements side-stepped this heterogeneity by
using a large sample size to achieve a reliable measure of “aver-
age” responses of the interneuron population. The validity of
this strategy can be seen in the consistency of our measure-
ments of transmission (IPSC amplitudes and time course of
release) across many different genotypes. However, it remains
possible that there are quantitative differences in GABA re-
lease properties (and synapsin rescue) between interneuron
types (Maccaferri et al., 2000; Hefft and Jonas, 2005) that were
concealed by our population-based determinations.
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Model for regulation of GABA release from RRP by synapsins. Although most synapsins allow GABA release to be
synchronized by a presynaptic action potential, synapsin llla does not but increases the probability of GABA release from the RRP.

Synapsins and kinetics of GABA release

Although the total amount of GABA released by a presynaptic
action potential was the same in TKO and TWT interneurons
(Fig. 6E), GABA release was temporally dispersed in TKO neu-
rons (Fig. 8). The phenotype of synapsin TKO neurons is rem-
iniscent of the loss of synchronized transmitter release found
in neurons deficient in synaptotagmins (Geppert et al., 1994;
Nishiki and Augustine, 2004; Maximov and Stidhof, 2005) or
complexins (Reim et al., 2009; Dhara et al., 2014). It is not
clear whether this similarity reflects a commonality in mech-
anism; synapsins are not known to interact physically or ge-
netically with either synaptotagmins or complexins.

Our results contrast with the observation that knock-out of
the synapsin II gene causes faster and more highly synchronized
GABA release from hippocampal interneurons (Medrihan et al.,
2013). In our studies, expression of either synapsin IIa or IIb in
TKO neurons accelerates releases kinetics (Fig. 8E), which is the
opposite of expectations based on the synapsin II-null pheno-
type. These differing results could arise from differences in ge-
netic strategy. In our case, only individual synapsin isoforms
were expressed on a null background, whereas in the synapsin II
knock-out mice, two isoforms are removed together and three
other synapsin isoforms remain. Interneuron heterogeneity
could also contribute; whereas we examined interneurons from
throughout the hippocampus, Medrihan et al. (2013) examined
GABA release from only dentate gyrus interneurons. Future work
will be needed to explain the reported differences in the pheno-
types of TKO and synapsin II knock-out mice.

The time course of evoked GABA release (~80 ms time con-
stant; Fig. 6C) was 4-fold slower than the decay of a mIPSC (20 ms
time constant; Fig. 7E). This difference could result from the
mIPSCs being generated at synapses that are electrotonically
closer to the cell body compared with synapses that produce
eIPSCs (Major et al., 1994; Maccaferri et al., 2000). However, this
was not the case: the rise time of eIPSCs (2.07 = 0.06 ms across all
118 neurons in Fig. 6B) was identical to that of spontaneous
mIPSCs (2.14 £ 0.06 ms; n = 109 neurons in Fig. 7D), indicating
that evoked and spontaneous responses arise from synapses with
similar spatial distributions. Instead, it appears that asynchro-
nous release determines the time course of GABA release, even
for TWT neurons containing a full complement of synapsins.
This is consistent with previous reports that asynchronous release
governs the time course of evoked synaptic transmission (Dia-
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mond and Jahr, 1995; Isaacson and Walmsley, 1995; Maximov
and Stidhof, 2005; Medrihan et al., 2013). However, phasic re-
lease is still present, indicated by the abrupt increase in release
rate immediately after a stimulus (Fig. 8A4), whereas the decay of
release is blurred by asynchronous release of GABA that persists
for a few hundred milliseconds. Given that the amount of asyn-
chronous GABA release differs between interneuron types and
can yield long-lasting inhibition (Hefft and Jonas, 2005), the in-
ability of synapsin Illa to support synchronized GABA release
might indicate a unique physiological role for this synapsin iso-
form in certain interneurons.

The prolonged enhancement of GABA release from TKO neu-
rons may produce the apparently faster rate of recovery from
synaptic depression in these neurons. Faster recovery is observed
only at 100-150 ms (Fig. 9B,D), a time window when GABA
release is more pronounced in TKO neurons (Fig. 8A,B) and
could contribute to eIPSCs evoked by the second stimulus when
measuring recovery from depression. This is consistent with pre-
vious evidence that recovery from depression is limited by time-
dependent changes in release probability (Wu and Borst, 1999).
Although TKO neurons expressing synapsin IIla show a similar
prolongation of release kinetics (Fig. 8E), these neurons have a
normal time course of recovery from depression (Fig. 9D). This
may be related to the greater amount of depression in these cells
(Fig. 10B,C).

Synapsins and trafficking of GABAergic vesicles

Although the RP of glutamatergic SVs in cultured hippocampal
neurons is maintained by synapsins, specifically synapsin Ila
(Gitler et al., 2008), our results indicate a role for synapsins in
controlling release from the RRP of GABAergic SVs. RRP size was
identical in TKO and TWT neurons (Fig. 11B), indicating that
synapsins influence the properties of GABA release from the
RRP, rather than the number of SVs within the RRP. This is
consistent with previous EM analyses indicating that the number
of docked GABAergic SVs, which presumably represent the RRP
(Schikorski and Stevens, 2001; Imig et al., 2014; cf. Rizzoli and
Betz, 2004), is only mildly (20-30%) reduced in TKO neurons
(Gitler etal., 2004a). Our observations that most synapsins rescue
the kinetics of GABA release indicate that such isoforms work at
a step that synchronizes release of GABA from the RRP. The
exception is synapsin IIla, which cannot rescue release kinetics
(Figs. 6F, 8C), but approximately doubles RRP release probability
(Fig. 11D). A diagram summarizing our conclusions regarding
synapsin action in trafficking of GABAergic SVs is shown in Fig-
ure 12.

How synapsins control the kinetics or magnitude of GABA
release from the RRP is unknown. One possibility is that syn-
apsins regulate the spatial relationship between SVs and pre-
synaptic Ca*" channels (Medrihan et al., 2013). Alternatively,
synapsins may participate in a postdocking priming reaction
that influences the speed of SV exocytosis. Further work will
be needed to distinguish between these and other possible
explanations for how synapsins control the kinetics of GABA
release.

Structural features of synapsins important for GABA release

Our comparison of the functional properties of synapsin iso-
forms allows us to make some structural deductions. Nearly all
synapsin isoforms can rescue the kinetics of GABA release at
TKO neurons; this implicates conserved synapsin domains (A,
B, and/or C) in mediating this function. Within these con-
served domains, domain Cis a prime candidate for controlling
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the kinetics of GABA release because this domain is known to
regulate the kinetics of glutamate release (Hilfiker et al., 2005).
Domain C can bind to many different proteins (Cheetham et
al., 2001), including self-association to mediate multimeriza-
tion (Hosaka and Siidhof, 1999; Brautigam et al., 2004). It is
unknown which, if any, of these binding activities are involved
in control of GABA release kinetics. In the case of synapsin
I11a, which did not rescue GABA release kinetics, it is possible
that the function of its conserved domains is regulated by the
J domain, which is unique to this isoform (Kao et al., 1998).
These structural requirements for synapsin function provide
important clues for understanding how synapsins subserve
their roles in trafficking of GABAergic SVs (Song and Augus-
tine, 2015).

In summary, at GABAergic terminals, multiple synapsin iso-
forms can synchronize quantal discharge from the RRP. This
differs from glutamatergic vesicles, in which only one isoform,
synapsin Ila, is capable of maintaining SVs within the RP. These
contrasts reveal fundamental differences in the roles of synapsins
in the trafficking of different types of SVs.
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