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Motor dysfunction (e.g., bradykinesia) and motivational deficit (i.e., apathy) are hallmarks of Parkinson’s disease (PD). Yet, it remains
unclear whether these two symptoms arise from a same dopaminergic dysfunction. Here, we develop a computational model that
articulates motor control to economic decision theory, to dissect the motor and motivational functions of dopamine in humans. This
model can capture different aspects of the behavior: choice (which action is selected) and vigor (action speed and intensity). It was used
to characterize the behavior of 24 PD patients, tested both when medicated and unmedicated, in two behavioral tasks: an incentive
motivation task that involved producing a physical effort, knowing that it would be multiplied by reward level to calculate the payoft, and
a binary choice task that involved choosing between high reward/high effort and low reward/low effort options. Model-free analyses in
both tasks showed the same two effects when comparing unmedicated patients to medicated patients: dopamine depletion (1) decreased
the amount of effort that patients were willing to produce for a given reward and (2) slowed down the production of this effort, regardless
of reward level. Model-based analyses captured these effects with two independent parameters, namely reward sensitivity and motor
activation rate. These two parameters were respectively predictive of medication effects on clinical measures of apathy and motor
dysfunction. More generally, we suggest that such computational phenotyping might help characterizing deficits and refining treatments
in neuropsychiatric disorders.
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Many neurological conditions are characterized by motor and motivational deficits, which both result in reduced behavior. It
remains extremely difficult to disentangle whether these patients are simply unable or do not want to produce a behavior. Here, we
propose a model-based analysis of the behavior produced in tasks that involve trading physical efforts for monetary rewards, to
quantify parameters that capture motor dynamics as well as sensitivity to reward, effort, and fatigue. Applied to Parkinson’s
disease, this computational analysis revealed two independent effects of dopamine enhancers, which predicted clinical improve-
ment in motor and motivational deficits. Such computational profiling might provide a useful explanatory level, between neural
dysfunction and clinical manifestations, for characterizing neuropsychiatric disorders and personalizing treatments. j

ignificance Statement

dress in the case of patients with pathological conditions that
combine motivational and motor deficits, such as Parkinson’s
disease (PD). Some of the motor symptoms that characterize PD,
such as akinesia (paucity of movement) or bradykinesia (move-

Introduction
Why don’t we make more effort? Is it because we don’t want to, or
just because we can’t? This question is particularly hard to ad-
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ment slowness), are difficult to disentan-
gle from apathy (motivational deficit),
usually defined as a reduction of goal-
directed behavior.

Candidate neurobiological mecha-
nisms underlying motor and motivational
deficits both involve dopamine. Motor
symptoms are primarily caused by the de-
generation of dopaminergic neurons in
the substantia nigra pars compacta that
project on dorsal parts of the striatum
(Ehringer and Hornykiewicz, 1960; Kish
et al., 1988). Apathy, one of the most fre-
quent nonmotor symptoms in PD (Stark-
stein et al., 1992; Brown and Pluck, 2000),
might also relate to dopamine depletion
(Czernecki et al.,, 2002; Thobois et al.,,
2010), but more specifically to the degen-
eration of dopaminergic projections to
the ventral striatum arising from the ven-
tral tegmental area (Remy et al., 2005;
Brown et al., 2012). Thus, motor and mo-
tivational deficits in PD could arise from
dopamine depletion in distinct territories.
Capturing this dissociation requires a
proper articulation of motivational and
motor functions, an issue that has only
recently received consideration in theo-
retical neuroscience (Shadmehr et al., 2010; Rigoux and Guigon,
2012).

Previous investigations of motor deficits have suggested that
the kinematic characteristics of movements are preserved in PD,
and that bradykinesia can be explained by a shift in a cost—benefit
optimization process (Mazzoni et al., 2007; Baraduc et al., 2013).
This optimization has been formalized in optimal control theory,
which assumes that movement speed is adjusted so as to mini-
mize a cost, related to the accuracy of the movement end point, or
to the energy expended during movement execution (Harris and
Wolpert, 1998; Todorov and Jordan, 2002). However, the impact
of changing the expected benefits is typically not taken into ac-
count in these motor theories (Rigoux and Guigon, 2012).

On the other hand, investigations of motivational deficits fol-
lowing dopamine depletion have generally neglected motor pro-
cesses, even if testing motivation involves reading a motor
output. Incentive motivation can be construed as an implicit
mechanism invigorating action execution in proportion to the
expected reward, or as an explicit choice to exert more effort to
get more reward (Berridge, 2004). It has been formalized in eco-
nomic decision theory, as well as in optimal foraging theory, as an
optimization process that maximizes reward value while mini-
mizing effort cost (Stephens and Krebs, 1986). The role of dopa-
mine in promoting high effort/high reward behavioral policy has
been well established in animals (Walton et al., 2006; Salamone et
al., 2007), and more recently evidenced in humans (Wardle et al.,
2011; Treadway et al., 2012; Chong et al., 2015). However, the
paradigms and analyses used in these seminal works did not allow
specifying the promotivational effect of dopamine as either an
enhancement of reward value or an alleviation of effort cost.

The aim of the present study is to provide a principled account
of the motor and motivational functions of dopamine. For this,
we developed a computational model that combines formalisms
of motor control theory with decision-making principles. The
model was fitted to the behavior produced by parkinsonian pa-
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Behavioral tasks. Successive screenshots displayed in one trial, with duration in milliseconds. 4, The incentive force
task. After a fixation cross, subjects were shown the monetary incentive as a coin image (€0.1,€0.2, €0.5, €1, €2, €5). This
was the trigger to exert a force onahand grip. Online feedback on the force produced was provided as a cursor moving up and down
within ascale graduated from 0 to the maximal force of the subject. The height reached by the cursor determined the fraction of the
monetary incentive earned in the current trial. B, The binary choice task. After a fixation cross, subjects were shown two options
side by side, each corresponding to a potential monetary reward (coin image) associated with a required force level (orange bar).
Subjects selected their preferred option on a keyboard and then had to produce the associated force (i.e., raise the cursor up to the
orange bar). In both tasks, cumulative total of monetary earnings was indicated at the end of the trial.

tients in a cost—benefit trade-off task to characterize the effects of
dopaminergic medication. The task was adapted from a behav-
ioral paradigm that has been used previously in fMRI and lesion
studies to demonstrate the implication of the ventral striatopal-
lidal complex in translating higher monetary incentives into
greater physical effort (Pessiglione et al., 2007; Schmidt et al.,
2008). Here, we implemented two versions of the paradigm (Fig.
1) to capture both the processes that have been described as im-
plicit invigoration and as explicit decision making. The same
model was applied to the two tasks and revealed two independent
computational effects of dopamine enhancers.

Materials and Methods

Subjects

The study was approved by the Ethics Committee of the Pitié-Salpétriere
Hospital (Paris, France). A total of 49 subjects, with 24 PD patients (7
females, 17 males) and 25 healthy controls (13 females, 12 males), were
included in the study. All subjects gave informed consent before taking
part, and all data were recorded anonymously. Subjects were informed
that they would not be paid for their voluntary participation and that the
monetary earnings in the task were purely fictive. This was implemented
to avoid discrimination, as it would be unethical to penalize patients
financially for their deficits. Note that money was equally fictive for
controls and patients, and that previous studies have obtained similar
motivational effects with virtual and real money (Schmidt et al., 2008,
2012).

PD patients were consecutive candidates for deep brain stimulation,
hospitalized for a clinical preoperative examination (for demographic
and clinical details, see Table 1). Inclusion criteria were a diagnosis of
idiopathic PD with a good response to levodopa [>50% improvement
on the Unified Parkinson’s disease rating scale (UPDRS-III)], in the
absence of dementia (Mini Mental State score of >24) and depression
(Montgomery and Asberg depression rating scale score of <20). PD
patients were assessed twice, in the morning on 2 different days: once in
their “Off” state, after overnight (>12 h) withdrawal of levodopa and a
full day (24 h) withdrawal of dopamine agonists, and once in their “On”
state, 1 h after intake of their habitual medication dose. The order of the
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Table 1. Demographic and dinical data

Controls (V=125)  PD-On(N=24)  PD-Off
Age (years) 570 £ 21 60.2 £ 1.6
Sex (female/male) 13/12 mni
Education level (seven-point scale) 59+03 52+0.6
Disease duration (years) 114+£13
Dopaminergic daily dose (mg/d) 1148 = 86
UPDRS-II motor score n7 =17 328 =32
Starkstein apathy score 52*07 8908 143 +£13
MADRS depression score 2907 5910
MMSE cognitive score 273+13
Mattis dementia score 136.6 = 14.3
Cued recall memory score 438 =50

MADRS, Montgomery and Asherg depression rating scale; MMSE, Mini Mental State Examination.

On and Off assessments was counterbalanced across patients. For the
sake of simplicity, we converted all medications as levodopa equivalents
(Table 1), and we used the term “dopaminergic medication” to designate
both levodopa and receptor agonists. Three of the 24 patients were tested
in the On state, but were unable to perform the tasks in the Off state and
were therefore not included in the analysis of medication effects. Because
of organizational issues, the UPDRS score was missing in one patient, for
both the On and the Off states. Apathy was assessed on both the On and
Off days with Starkstein’s scale, except for four patients, whose apathy
was not assessed in the Off state. Although it was mainly developed for
evaluating apathy over stable periods, the guidelines of the apathy eval-
uation scale suggest that it can also be used to assess treatment effects in
hospitalized patients over short periods, as was done in previous studies
(Czernecki et al., 2002).

Healthy subjects were recruited from the community. They were
screened for any history of neurological or psychiatric conditions, psy-
choactive substance abuse or dependence, or current medication that
might have influenced cognitive skills. There was no significant differ-
ence between PD patients and healthy controls in terms of age, gender, or
education level (Table 1).

Experimental settings

Before performing the tasks, participants were given written instructions,
which were also repeated orally step by step. Before each task, they were
asked to squeeze the handgrip as hard as they could. The maximum
reached over three trials was taken as the calibration force, which served
to adjust for each individual the force scale used in the tasks described
below. All subjects used their dominant hand to produce forces. Force
was recorded using a handgrip (MIE Medical Research), with a sample
rate of 60 Hz. The recorded signal was digitalized and fed into the PC
running the task program and read by an in-house MATLAB program
(MathWorks). Stimuli presentation was programmed with MATLAB
using the psychchophysics Toolbox Version 3 (www.psychtoolbox.org).

Force task. The force task was designed to evaluate how subjects adjust
their effort to incentive level. Subjects were instructed to try and win as
much money as possible during the task and were encouraged to perform
as if they were playing for real money. The task included 60 trials, corre-
sponding to 10 repetitions of six monetary incentives (€0.1, €0.2, €0.5,
€1, €2, and €5) presented in a random order. The incentives corre-
sponded to the coins and notes that are most used in everyday life in
France.

Each trial started by the display of a fixation cross for 500 ms. A
monetary incentive then appeared on the top left of the screen, presented
as a coin or a bill image, simultaneously with a graduated scale (Fig. 1A).
The top line corresponded to producing the calibration force and win-
ning the full incentive, and each graduation corresponded to a fraction
(10%) of the monetary incentive. Subjects were told that the payoff was
calculated as the fraction of the incentive proportional to the height they
reached within the scale. They were provided with real-time visual feed-
back of the exerted force (with a cursor moving up and down within the
scale). The appearance of the scale on screen was the trigger signal for
subjects to start squeezing the handgrip to move the cursor up as high as
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possible, within a 5000 ms interval. After every trial, the cumulative total
of the money earned up to that point was displayed for 2000 ms.

Choice task. The choice task was designed to assess how subjects dis-
count the value of reward prospects with the amount of effort that must
be invested. Subjects were presented with a series of choices between low
reward/low effort and high reward/high effort options. The low reward/
low effort option was always presented on the left of the screen, and
yielded a reward of €0.05 after exerting an effort corresponding to 10% of
the subject’s calibration force. The high reward/high effort option asso-
ciates one of six possible rewards (€0.1, €0.2, €0.5, €1, €2, €5) with a force
level varying between 10 and 90%. Each option was presented as a coin or
a bill image on top of a graduated scale with a red bar indicating the
required force level (Fig. 1B). Subjects decided whether or not it was
worth exerting a higher effort to win a higher reward by pressing on the
right or left arrow in a keyboard with the nondominant hand. The chosen
option then remained on screen and the corresponding effort needed to
be produced using the dominant hand, with the same visual display as in
the force task. Note that the same hand was used whether the left or right
option was selected, such that possible asymmetry in motor impairment
would not influence choices. Also the trial did not end until subjects
reached the selected force level, such that there was no possibility of
failure, which discards the possibility of confounding effort with risk.
After every trial, the cumulative total of the money earned up to that
point was displayed for 2000 ms.

A staircase procedure was used to adjust the force level associated with
every reward level in the high option, depending on subjects’ choices, to
gradually converge to indifference points, where subjects equally chose
between the two options. At the beginning, the six possible rewards of the
high option were respectively associated with efforts corresponding to
30, 40, 50, 60, 70, and 80% of the calibration force. This initial pairing was
selected to approximate the indifference points observed in a pilot exper-
iment. It also corresponds to the linear relationship observed between
force produced and incentive level in the motivation task, where no
initial pairing was imposed, discarding any possibility of anchorage ef-
fect. After each choice, the effort level was either increased by 5% for the
next occurrence of the same incentive, if the high option was chosen, or
decreased by 5% in the opposite case. The task was made up of 15 repe-
titions of the six monetary rewards presented in a random order, for a
total of 90 trials. We checked this was sufficient to obtain a stable indif-
ference point for each reward level in each group of participants.

Data analysis

For the force task, we considered three dependent variables: peak of force
and positive and negative peak of yank (the temporal derivative of force)
measured during the contraction and relaxation phases of force pulse
(i.e., the period preceding and following the force peak). Force peak was
extracted in every trial as the maximum reached within the 5 s effort
period following the onset of the graduated scale. Force time series were
low-pass filtered at 15 Hz (zero-phase second-order Butterworth filter),
and yank was computed through numerical derivation. Contraction
(positive) and relaxation (negative) yank peaks were obtained by extract-
ing the maximal and the minimal (most negative) yank measure reached
in the trial.

For the choice task, the dependent variable was the force level associ-
ated with each incentive level at the last trial of the session, hence, after
convergence to indifference points. We also extracted yank peaks during
the contraction but not the relaxation phase, as forces were only recorded
until the required level was reached.

Forces were recorded in newtons, but were expressed, for both tasks, in
proportion to the highest measure to eliminate interindividual differ-
ences in maximal grip force. For each participant, a single highest mea-
sure was taken across all sessions and calibration tests, to allow for
comparison between tasks and sessions. For each task, dependent vari-
ables were compared across groups with the a priori hypothesis that
dopamine depletion would have a deleterious effect; thus, main effects
were assessed using one-tailed t tests. To assess motor effects of dopa-
mine, we performed linear regressions of force peaks against yank peaks.
One-tailed ¢ tests were used to assess the significance of regression coef-
ficients within groups as well as their difference across groups.
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We report comparisons between healthy
controls and Off-PD patients to assess disease
effect, and between Off-PD and On-PD pa-
tients to assess medication effect. The two test
sessions were pooled as the order of On and Off
assessments was counterbalanced across pa-
tients. We nonetheless compared the two ses-
sions in both controls and patients. There was
no test—retest effect in any of our motor and
motivational measures.

Computational model

The basic principle of the model (Figs. 2, 3) isa
cost—benefit optimization, where subjects in-
tend to choose and produce the optimal force
peak F, ie., the one that maximizes a dis-
counted value V(F), calculated as the differ-
ence between expected benefits B(F) and
expected effort cost C(F). We opted for linear
discounting to allow for negative net values,
which account for the fact that doing nothing is
sometimes better:

V(F) = B(F) — C(F)

The benefit term B(F) was decomposed into
reward-dependent and reward-independent
components:

_ | K,RF + F (force task),
B(F) = K.R+F  (choice task).

The reward-dependent component corre-
sponds to effort payoff, which was by design
equal to the product of the reward at stake R
and the exerted force F in the force task (Fig.
2E), and to the reward associated with the con-
sidered option in the choice task. It was
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Figure2. Computational principles. A, Example of a force pulse (top), with force expressed in newtons. The x-axis indicates time
aftertrial onsetin seconds. Yank (bottom) was calculated as the temporal derivative of force. Active periods of force pulses (in gray)
were modeled as sigmoid functions (dashed lines) that approximate the solutions of an optimal motor-control model (see Mate-
rials and Methods). The three colors correspond to three a priori possible trajectories in time. B, Instantaneous cost (arbitrary units)
for each value of force and yank. Simulated force-yank trajectories in time for three force pulses of decreasing duration (0.6, 0.3,
0.25) and all reaching 70% of the maximal force are shown in the cost space (white lines). Circles indicate cost estimated at every
20 ms step. The total cost of each force pulse is the integral of instantaneous costs across the duration of the active period of force
pulse. €, Total cost of force pulses (arbitrary units) as a function of effort duration (in seconds). This function defines the optimal
duration (in green) that minimizes the cost of the force pulse. D, Expected cost (arbitrary units) associated with every force peak,
simulated at the optimal duration of force pulse (peak latency). Force peaks are expressed as a proportion of the maximal force. E,
Expected benefit (arbitrary units) is proportional to the incentive at stake and to the force peak in the incentive force task. Three
possible monetary incentives are represented here (€0.5,€1, and €2). The model assumes that force production is valuable in
itself, even if the expected financial reward is null. Because of this, the expected benefit can be superior to incentive level. F, Net

weighted subjectwise by a free parameter K,
that measured sensitivity to reward.

The reward-independent component re-
flects the benefits of producing an effort, outside of financial aspects, and
was just proportional to the force level F. We acknowledge that this term
is not well characterized at the psychological level. It could represent the
satisfaction of pleasing the experimenter, or breaking previous record, or
showing physical strength, etc. As it shifts the optimal force by a constant,
its role was to account for the fact that most participants do produce
some effort even when reward is negligible. There was no free parameter
to weight this term, first, to preserve the identifiability of the other pa-
rameters, and second, because neither dopaminergic treatment nor dis-
ease status changed the force peaks observed for very low incentives. The
reward-independent term might be preserved and susceptible to activate
the behavior, based on sensory or social triggers, even when the reward-
dependent term is deficient. This pattern has been observed in a severe
apathy syndrome termed “auto-activation deficit” and caused by bilat-
eral damage to the basal ganglia (Schmidt et al., 2008).

The expected cost C(F) was defined as the total motor cost M(F),
multiplied by a subjective weight K_and by a linear fatigue function (for
the sake of simplicity), where N indicates the trial number and K the
individual susceptibility to fatigue:

C(F) = K.M(F)(1 + K, N)

The total motor cost M( F) was defined after motor control theory. It was
calculated as the integral of the instantaneous motor cost over the active
period [0, T1, i.e., from effort onset to force peak of an optimal force
pulse:

M(F) = minufTu(t)zdt, [f0) =0, AT) = F,{0) = AT) = 0]

value associated with every force peak for three incentives (€0.5, €1, and €2).

Optimal force pulse (i.e., the rising dynamics that minimizes the total
motor cost for a given target force F) was modeled as a sigmoid function
(Fig. 2A) that approximates the solution of an optimal motor-control
model (Rigoux and Guigon, 2012) and requires lower computational
resources (see Resolution and approximation of the optimal control
problem). We defined the instantaneous motor cost as the quadratic
neural drive u(t) %, since motor control theory has shown that optimizing
this cost minimizes the signal-dependent motor variability and repro-
duces the cardinal features of movement production (Harris and Wolp-
ert, 1998; Todorov and Jordan, 2002; Guigon et al., 2007). The neural
drive was calculated at each time point of the force pulse through a
simplified model of muscular contraction, in which the force dynamics f
(the dot denotes the temporal derivative) was determined by the neural
drive u(t), by a free parameter 7that individually adjusts the rate of motor
activation/deactivation, and by the current level of force, f, compared to
the maximal theoretical muscular force of the subject, F,

f(t) = 7u(t) [Fro = fi)] = 7f00)

Maximal force, F,,,,,, was modeled as another free parameter, superior or
equal to the highest force produced by the subject. It was meant to reflect
the total muscular mass, and was thus a priori unaffected by pharmaco-
logical manipulations.

The three last equations result in a cost function C(F) that links force
peak F with its expected cost. This means that for each force level there is
a unique motor cost, corresponding to the optimal (sigmoid) dynamics
of force trajectory (Fig. 2A—C, green trajectory). In other words, selecting
a force peak automatically leads to selecting a trajectory in time with a
given yank peak, as reflected in the scaling law. Note that the cost func-
tion is explosive (Fig. 2D): it goes to the infinite when subjects get closer
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Figure3. Model predictions regarding force production. Top row, Simulation of force peaks (in newtons) in a session of 60 trials of the force task, with randomized incentives. Middle row, Effect

of incentive level (in euros) on simulated force peaks. Bottom row, Scaling law relating force peak to yank peak (in newtons per second). Incentive categories are indicated by filled circles. Columns,
Model free parameters: K, (reward sensitivity), . (cost sensitivity), K(fatigability), and (motor activation rate). Graphs illustrate the effects of biasing each parameter toward weaker efforts (gray
to black lines). Decreasing the reward weight K, reduced the impact of incentives on force production. Increasing the cost weight (K,) or fatigue weight (K,) or decreasing the motor activation rate
(7) predicted an overall reduction of forces, independent of incentives. However, K, predicted this shift to be isolated (main effect on force peak only), whereas K, predicted an associated decay of
force peak throughout the session (interaction with trial number), and T an associated shift in the force-yank scaling law (lower yank peaks for given force peaks).

to their maximal force. Thus, even if discounting is linear, the resulting
net value function (Fig. 2F) is not linear but follows an inverted U shape,
with a single maximum. The shape of the cost function C(F) is consistent
with the demonstration that perceived effort increases as a power func-
tion with force (Stevens, 1957). It has been shown previously that con-
cave (parabolic) cost functions provide a better fit of effort discounting
than hyperbolic or linear functions (Hartmann et al., 2013). Divisive
functions such as hyperbolic discounting are well adapted to delay dis-
counting, since net values are kept positive, in accordance with the idea
that an extremely delayed reward is still better than nothing. Yet this may
not be true of effort discounting: climbing a mountain for a peanut may
be worse than doing nothing. This is the reason why we opted for sub-
tractive discounting, which allows for negative net values (worse than
nothing).

Thus, the free parameters of the model (K, K, K, and 7) adjust the
weights of objective quantities (reward, force, and trial number) to indi-
vidual susceptibility, to compute a subjective net value. The modeled net
value was then used to predict the behavioral response on each trial of
both choice and force tasks, with specific policy rules. For the force task,

the predicted force peak, F', was simply the argument that maximized
the net value function:

F = argmax V
F

In the choice task, there are only two possible reward and force levels. The
decision was modeled with a softmax function

1

(Va—Vp)
l4+e *

Py

that converted the difference in net value between the two options into
choice probability, depending on a temperature parameter (. Finally, in
both tasks, yank peak was predicted by the equation of muscular dynam-
ics. Thus, the model was inverted by fitting three behavioral variables:
choices, force peaks and yank peaks.
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Resolution and approximation of the optimal control problem

We want to find the sequence of motor control u(t) that produces, at a
given time T, a force peak F with a minimum of effort. The cost of
movement is the sum of the (squared) motor drive exerted during move-

ment execution:
T
M= u(t)*dt
0

The optimal control problem is thus to find the sequence of input u(t)
that minimizes the cost M while satisfying the boundary conditions:

f((o))—o

AT) - F

C=| Hoy-o |TO
filr) -0

Because the resolution of this boundary value problem is too greedy in
computational resources to be used in the Bayesian model estimation, we
approximated the optimal trajectories with a sigmoid function:

f)=—
11 T)

This allowed us to derive analytically the motor cost and yank peak for
any targeted force peak and pulse duration. While being computationally
tractable, the sigmoid approximation produces trajectories very similar
to those obtained with the optimal model (Rigoux and Guigon, 2012).
More importantly, the sigmoid trajectories provided a very good quan-
titative approximation for the landmarks of interest (yank peak and mo-
tor cost) of the optimal force pulses (R* = 0.990 and R* = 0.986,
respectively).

Bayesian model selection

We used Bayesian model selection (BMS) to test which free parameter
of the computational model was affected by dopaminergic medica-
tion and whether the same parameters could account for the behavior
observed in the two tasks. We did not include healthy controls in the
model comparison because different individuals may have different
parameters, independently of their dopamine level. The comparison
within PD patients was therefore cleaner for isolating the impact of
dopamine. The different models were inverted using a variational
Bayes approach under the Laplace approximation (Friston et al.,
2007; Daunizeau et al., 2009), implemented in a Matlab toolbox
(available at http://mbb-team.github.io/VBA-toolbox/; Daunizeau et
al., 2014). This algorithm not only inverts nonlinear models with an
efficient and robust parameter estimation, but also estimates the
model evidence, which represents a trade-off between accuracy
(goodness of fit) and complexity (degrees of freedom; Robert, 2001).
The BMS procedure included the same number of data points (one
per trial) and put the same weight on prediction accuracy for the three
measurements (yank, force, or choice). The log-evidences, estimated
for each subject and model, were submitted to a group-level random-
effect analysis, which assumes that models could differ between sub-
jects and that they have a fixed (unknown) distribution in the
population. The BMS procedure provided the exceedance probability
(Stephan et al., 2009), which measures how likely it is that any given
model is more frequent than all other models in the comparison set.

Results

Patients

Demographic data and clinical assessments are summarized in
Table 1. Patients (n = 24) and controls (n = 25) did not differ
in terms of gender (7 females, 17 males for PD vs 13 females, 12
males for control; X(247> = 2.64, p = 0.10), age (60.2 for PD vs
57.0 for controls; ¢,y = 1.63, p = 0.11), or education (5.2 for
PD vs 5.9 for controls; ¢, = 1.15, p = 0.26). As one could
expect, we found higher apathy scores in Off-PD patients than
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in controls (Starkstein score, Off, 14.3 vs controls, 5.2; t,,) =
6.63, p < 0.001). In PD patients, dopaminergic medication
(either levodopa or dopamine receptor agonists) not only sig-
nificantly decreased motor symptoms (UPDRS-III score, Off,
32.8vs On, 11.7; t(5,) = 9.75, p < 0.001), but also significantly
reduced apathy scores (Starkstein score, Off, 14.3 vs On, 8.9;
tasy = 6.63, p < 0.001), yet without normalizing them to
controls (Starkstein score, On, 8.9 vs controls, 5.2; 44, = 3.52,
p < 0.001). In the following, we report comparisons between
controls and Off-PD patients to assess disease effect, and be-
tween Off-PD and On-PD patients to assess medication effect.

Dopamine effect on force pulse dynamics

We first assessed how disease status and dopaminergic treatment
affected motor contraction during force pulse, regardless of
monetary incentives (Fig. 4A,B). Healthy controls (HC) and
On-PD patients produced on average higher force peaks than
Off-PD patients in both the force task (HC vs Off-PD, t 5, =
2.41, p = 0.010; On-PD vs Off-PD, t(,4y = 2.29, p = 0.019) and
the choice task (HC vs Off-PD, t43y = 4.53, p < 0.001; On-PD vs
Oft-PD, t,9) = 3.27, p = 0.002). In addition, the force rise was
faster, i.e., produced with higher peak of yank (the temporal de-
rivative of force) in controls and On-PD compared to Off-PD
patients in both the force task (HC vs Off-PD, t 45, = 4.51, p <
0.001; On-PD vs Off-PD, t(,4, = 2.51, p = 0.011) and the choice
task (HC vs Off-PD, t.,3, = 4.07, p < 0.001; On-PD vs Off-PD,
tagy = 3.19, p = 0.002). A similar difference was observed during
the relaxation phase (Fig. 4C): the decline in force also exhibited
greater negative yank peak in controls and in On-PD compared
to Off-PD patients (HC vs Off-PD, t,;, = 7.64, p < 0.001;
On-PD vs Off-PD, t(,5) = 4.84, p < 0.001). These slowing effects
of dopamine depletion on contraction and relaxation yanks were
correlated across patients (Pearson’s p = 0.56, p = 0.01; Fig. 4F).
Below, we intend to demonstrate that the effects on force and
yank peaks stem from independent motivational and motor
functions of dopamine.

Dopamine effect on binary choice

We then tested whether PD and dopaminergic medication affect
the amount of effort allocated to the different reward magnitudes
in the choice task (Fig. 1B) by looking at the indifference points
obtained after convergence of the staircase procedure. The three
groups displayed a significant effect of incentives on choices (Fig.
4D), meaning that they were willing to produce higher force
peaks for higher incentives (all p < 0.001). However, this effect
(regression slope) was significantly reduced in Off-PD patients
compared to both On-PD patients (#.,4, = 2.19, p = 0.021) and
controls (t43y) = 1.76, p = 0.039). Post hoc comparisons showed
that controls and On-PD patients chose higher force peaks than
Off-PD patients specifically for the highest (HC vs Off-PD, t,5, =
3.51, p < 0.001; On-PD vs Off-PD, t(,4, = 2.76, p = 0.006) but
not for the lowest incentive level (HC vs Off-PD, t 5y = 0.41,p =
0.341; On-PD vs Off-PD, t,, = 0.50, p = 0.312).

Dopamine effect on incentive motivation

Next, we tested in the force task (Fig. 1A) whether disease status
and dopaminergic medication affect incentive motivation, the
process by which higher expected rewards are translated into
greater efforts. The force peak significantly increased with incen-
tive level in the three groups (Fig. 4E; all p < 0.001), but this effect
(measured by the regression slope) was smaller in Off-PD com-
pared to On-PD patients (¢,5, = 2.11, p = 0.024) and to controls
(t43 = 2.35, p = 0.012). As in the choice task, post hoc compar-
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isons showed that control subjects and On-PD patients produced
more force than Off-PD patients for the highest (HC vs Off-PD,
ti45) = 4.15,p < 0.001; On-PD vs Off-PD, f ) = 2.92, p = 0.004)
but not for the lowest incentive level (HC vs Off-PD, ,5, = 0.49,
p = 0.315; On-PD vs Off-PD, £,4, = 1.36, p = 0.096).

Dopamine effect on motor scaling law
The preceding results indicate that dopamine has a similar role in
the two tasks: it amplifies the weight of monetary incentives on

effort production. Besides these motivational effects, motor ef-
fects were observed when examining the coupling of force kine-
matics parameters. Higher force peaks were linearly associated
with greater yank peaks during both the contraction phase (Fig.
4G,H; all p < 0.001) and the relaxation phase (Fig. 4L; all p <
0.001). As shown in preceding analyses, the range of force peaks
displayed by PD patients in response to incentive levels was nar-
rower than in controls, and even more in Off compared to On
patients. Yet the linear relationship between force and yank peaks
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was conserved in patients. Dopamine depletion manifested as a
downward shift, meaning that equivalent force peaks were asso-
ciated with lower yank peaks. This shift in the force-yank scaling
law was significant in both the choice task (contraction phase, HC
vs Off-PD, t,3) = 3.11, p = 0.002; On-PD vs Off-PD, t,, = 2.34,
p = 0.015) and the force task (contraction phase, HC vs Off-PD,
tas) = 4.79, p < 0.001; On-PD vs Off-PD, t 1) = 1.92, p = 0.035;
relaxation phase, HC vs Off-PD, t,5, = 7.50, p < 0.001; On-PD
vs Off-PD, t(,5, = 3.44, p = 0.001). Thus, on top of the motiva-
tional effect of dopamine depletion that narrowed down the
range of force peaks observed for the different incentive levels, a
motor effect diminished the speed with which these force peaks
were attained.

Computational analysis

We then studied how these dopamine-dependent modulations of
effort production could be explained at the computational level.
We developed a normative model that predicts how force dynam-
ics should be selected in principle, depending on two contextual
factors (incentive level and trial number) and four free parame-
ters (reward sensitivity, cost sensitivity, fatigability, and motor
activation rate: K,, K, Kp, and 7). The predictions arise from a
two-step optimization. The first step uses motor control equa-
tions to calculate the cost associated with each force peak (Fig. 2,
top). This estimation determines the dynamics of force rise over
time (and therefore the yank peak): the one that minimizes the
motor cost. The second step uses decision theory to calculate the
net value (benefits minus costs) of each force peak (Fig. 2, bot-
tom). This valuation process determines which force peak will be
produced in the force task or selected in the choice task: the one
that maximizes the net value. Note that one additional parameter
was included in the model to fit the choices: choice temperature
(B), which captures the stochasticity of decisions.

We used simulations to verify that each parameter controlled
a specific behavioral pattern (Fig. 3). We then examined which
free parameters best explained the effects of dopaminergic med-
ication on choices and force and yank peaks. These computa-
tional analyses were conducted using the same model with the
same set of parameters for both tasks. Medication effects could a
prioribe accounted for by a modulation of any of the four param-
eters. We considered the 2* possible combinations (modulation
or no modulation for any of the four parameters). These 16 mod-
els were estimated in both tasks simultaneously and compared by
families for each parameter using Bayesian model selection. The
winning model was the one where dopaminergic medication af-
fects both K, and 7 (with family exceedance probabilities xp >
0.95), increasing the weight of monetary incentives and decreas-
ing the rate of motor contraction/relaxation (Fig. 5A). This
model provided a good fit for the three behavioral measures, i.e.,
force peak (mean R* = 0.94), choice (mean accuracy, 0.70), and
yank peak (mean R* = 0.92).

We also tested whether the same parameters could account for
the two tasks, by comparing this family of 16 models to an equiv-
alent family with distinct sets of parameters for the two tasks.
Although the latter better explained the data (xp > 0.95), none of
the parameters showed a consistent effect of task across subjects
(all p > 0.05). Moreover, we separately estimated medication
effects in the two tasks and found correlated estimates across
patients for both K, (p = 0.78, p < 0.001) and 7 (p = 0.43,p =
0.049). This result means that patients exhibiting large computa-
tional change (in K, or 7) in one task also exhibit a large change in
the same parameter in the other task. It strengthens the conclu-
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sults of a Bayesian model selection comparing the plausibility of different possible modulations
of behavioral response by dopaminergic medication in PD patients. For each parameter, the
families of models with and without a modulation by dopaminergic medication were com-
pared. Exceedance probability indicate how likely it is that one family is more frequent than the
otherin the population of PD patients. 4, Bottom, Estimates of model parameters calculated at
the session level in controls (black), On-PD patients (green), and Off-PD patients (red). *p <<
0.05. B, Correlation of medication effects on computational parameters K, and T with clinical
effects on apathy (Starkstein score) and motor dysfunction (UPDRS-III score). Each dot is a
patient. For illustration only, a jitter of 0.5 points was added to y-axis scores to facilitate dis-
crimination of overlapping dots.

sion that using the same set of parameters for the two tasks is the
best compromise between model complexity and data fitting.
Finally, we examined whether the model parameters could
predict the clinical changes observed in patients after dopaminer-
gic treatment. These clinical changes were improvement in both
apathy and motor dysfunction assessed with the Starkstein apa-
thy score and the UPDRS-III motor score, two effects that ap-
peared unrelated across patients (p = —0.11, p = 0.66). Similarly,
the effects of dopaminergic medication on K, and 7 seemed quite
independent (p = —0.12, p = 0.69), meaning that patients who
exhibited large medication effects on reward sensitivity were not
the same as patients exhibiting large effects on motor activation
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rate. Thus, we tested the correlation between the changes in K,
and 7 and the changes in apathy and motor dysfunction. We
found that K, modulation (p = —0.47, p = 0.03), but not that of
T(p = —0.11, p = 0.34), significantly predicted the alleviation of
apathy, whereas Tmodulation (p = —0.47, p = 0.02), but not that
of K, (p = —0.21, p = 0.19), significantly predicted the improve-
ment of motor dysfunction (Fig. 5B). The same dissociation was
obtained when, instead of testing separate correlations, the two
computational effects (dopamine-induced changes in K, and 7)
were included as competing regressors in a same general linear
model meant to explain the improvement in apathy (K,, p =
0.030; 7, p = 0.305) or motor dysfunction (T, 0.018; K,, 0.160).

Discussion

In this study, we assessed the effects of dopamine depletion (com-
paring Off-PD patients to healthy controls) and dopamine reple-
tion (comparing Off-PD to On-PD patients) on effort allocation,
using both binary choice and incentive force tasks. Model-free
analyses showed that dopamine is causally involved in (1) ampli-
fying the boosting effect of potential rewards on force production
and (2) speeding up force rise to the peak, regardless of expected
rewards. We developed a computational model of effort produc-
tion to further characterize the dissociation of motivational and
motor effects, focusing on the effect of dopaminergic medication
in PD patients. Model-based analyses showed that dopamine en-
hancers increase reward sensitivity and increase motor activation
rate, while leaving unaffected other parameters such as cost sen-
sitivity, fatigability, or choice temperature.

Our results are consistent with the idea that dopamine helps
with producing greater effort to obtain greater reward, an idea
that has received a good wealth of evidence in animals (Walton et
al., 2009; Salamone et al., 2012). Previous studies in humans have
shown that d-amphetamine, a dopamine enhancer, enhances the
willingness to exert effort (Wardle et al., 2011; Treadway et al,,
2012). However, effort cost was often confounded with delay of
reward obtainment in previous studies. This confound was min-
imized in our paradigm since higher force pulses were not much
longer to produce. In line with our study, a similar paradigm was
used previously to demonstrate that dopamine promotes the
choice of high reward/high effort options in PD patients, even in
the absence of apathy (Chong et al., 2015).

Moreover, we provide the first demonstration in humans that
dopamine similarly enhances the propensity to select high re-
ward/high effort options (in the choice task) and the energy ac-
tually invested in instrumental behavior (in the force task). These
two processes could be considered as two different components
of the behavior: orientation (which goal is selected) and intensity
(how much energy is expended in goal pursuit). Our model
nonetheless treats them as two instances of a same decision prob-
lem that consists of choosing a pair of effort and reward levels.
The difference is that only two options are available in one task,
whereas the option set is continuous (between 0 and maximal
force) in the other task, making binary choice a special case of the
incentive motivation problem. Yet from a psychological perspec-
tive, a crucial difference might be that the selected reward—effort
pair is explicitly expressed before effort production in the binary
choice but not in the incentive force task. This could change the
behavioral output (force peak), as whenever possible the decision
might be dynamically refined on the basis of sensory feedback.
Our model is essentially static: it determines the best option on
the basis of anticipated estimation of costs and benefits. Although
it provided a good fit of force data in both tasks, the absence of
dynamic adjustment might be one of its limitations.
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Although previous studies did show that dopamine enhances
the willingness to exert higher effort for higher reward, they did
not disentangle between the possibilities that dopamine could
increase reward attractiveness or decrease effort painfulness. Our
model-based analyses suggested that the motivational effect of
dopamine can be accounted for by an increase in K, the subjec-
tive weight of expected reward in the cost—benefit computation.
This is consistent with a previous study showing impaired incen-
tive processing, as measured by neurophysiological markers, in
apathetic PD patients (Martinez-Horta et al., 2014). This specific
effect on K, could also account for why dopamine helps overcom-
ing various types of costs when seeking rewards, from effort
(Salamone et al., 2012), to risk (St Onge and Floresco, 2009), or
delay (Denk et al., 2005). The K, effect is also consistent with the
demonstration that midbrain dopaminergic neurons respond to
stimuli that predict future rewards (Schultz et al., 1997), encode
reward magnitude (Tobler et al., 2005; Roesch et al., 2007), and
promote responses to reward-predicting cues (Tsai et al., 2009;
Arsenault et al., 2014).

Conversely, dopamine did not change the fatigability param-
eter K, nor the subjective weight of effort cost K. These results
are consistent with the absence of support for a role of dopamine
depletion in fatigue (Willner et al., 1992), and with the observa-
tion that measures of nucleus accumbens dopamine or dopami-
nergic neuron activity are much more sensitive to expected
reward than to expected effort (Gan et al., 2010; Pasquereau and
Turner, 2013).

Crucially, we found another effect of dopaminergic medica-
tion that was independent from reward level: after dopamine
depletion, equivalent force peaks were produced with lower yank
peaks, and this was independent from the restriction of force
peaks produced for the different incentive levels. A similar shift in
the motor scaling law had already been observed in PD patients
performing a nonisometric task (Baraduc et al., 2013; Hartmann
et al., 2013). Our results accord well with the view that PD does
not fundamentally change movement organization but restricts
movement kinematics (Mazzoni et al., 2007; Baraduc et al.,
2013). In our model, dopamine depletion decreased the motor
activation rate 7, which adjusts how motor drive impacts move-
ment kinematics. Lower T translates into slower muscle contrac-
tion for a given motor drive, and also slower relaxation. The
mechanisms by which dopamine depletion slows down motor
dynamics might involve an impaired selectivity in basal ganglia
processing, leading to a failure to activate appropriate agonist
muscles, or to inhibit antagonist muscles (Mink, 1996; Pessigli-
one et al., 2005). The modulation of T and its consequences on
contraction and relaxation slowness could therefore account for
both bradykinesia and rigidity.

Although the model clearly distinguishes motivational and
motor processes, it nevertheless allows for motivation to help
reducing motor impairment. Indeed, even if the coupling be-
tween motor command and movement kinematic is impaired, a
high motivation can overcome effort cost and increase the motor
command enough to attain standard movement speed (but still
slower than that of healthy subjects with the same level of moti-
vation). This may explain the benefits of increasing motivation
on motor abilities in MPTP-induced parkinsonism (Pessiglione
et al., 2004) and in PD (Kojovic et al., 2014), and perhaps the
puzzling phenomenon termed “kinesia paradoxica,” i.e., the sud-
den ability of PD patients to exhibit normal movement speed in
urgent situations such as fire or accident (Souques, 1921; Bal-
langer et al., 2006).
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The motivational and motor functions of dopamine might be
supported by topographically distinct functional networks,
namely, the mesocorticolimbic and the nigrostriatal pathways.
Apathy and motor symptoms might therefore reflect the hetero-
geneity in space and time of degeneration in PD. The dopaminer-
gic loss occurs sooner and is stronger in the substantia nigra than
in the ventral tegmental area (Hirsch et al., 1988; Damier et al.,
1999). This translates into a gradient with stronger dopamine
depletion in the dorsolateral putamen, compared to caudate and
ventral striatum (Kish et al., 1988). The severity of motor symp-
toms in PD correlate with substantia nigra neurodegeneration
(Gorell etal., 1995; Du et al., 2012) and with dopamine depletion
in the dorsolateral striatum (Leenders et al., 1986), supporting
involvement of the nigrostriatal pathway in motor dysfunction.
In contrast, the ventral tegmental area has been hypothesized to
play a key role in motivated behaviors (Tsai et al., 2009), through
the mesolimbic projections to the ventral striatum (Berridge,
2007; Salamone et al., 2012), which has been conceived as a func-
tional interface for translating motivational drives into motor or
cognitive behaviors (Mogenson et al., 1980; Schmidt et al., 2012).
In accordance with this view, apathy in PD has been proposed to
depend on the mesolimbic rather than on the nigrostriatal path-
way, and consequently to dopaminergic denervation in the ven-
tral striatum (Javoy-Agid and Agid, 1980; Remy et al., 2005;
Thobois et al., 2010; Brown et al., 2012; Martinez-Horta et al.,
2014). In addition, the mesocortical pathway might contribute to
incentive motivational effects, as, for instance, dopamine func-
tion in the ventromedial prefrontal cortex was found to predict
the willingness to produce greater effort for larger reward (Tread-
way et al., 2012).

In conclusion, our computational analysis suggests that dopa-
mine depletion downweights expected reward in the cost—benefit
computation, and thus lowers the acceptable effort costs, result-
ing in a reduction of goal-directed behaviors, i.e., apathy. On top
of this motivational deficit, dopamine depletion might also
impair how acceptable costs are translated into movement kin-
ematics, resulting in slower actions, i.e., bradykinesia. The moti-
vational and motor effects of dopamine were captured by two
distinct parameters of the model, which were correlated across
patients to clinical assessments of motivational and motor defi-
cits. We argue that computational phenotyping, i.e., the charac-
terization of patients by model parameters adjusted on their
behavior, might provide a useful intermediate explanation level
between the clinical manifestations and the underlying neuro-
physiology. This computational approach could be applied to
various pathological situations to help with personalizing treat-
ments. In the present case, the two computational effects of do-
pamine are likely underpinned by distinct neural circuits, the
mesolimbic and nigrostriatal pathways. Yet demonstratingsuch a
link between computational parameters and underlying neural
circuits requires further investigation.
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