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In perceptual decision-making tasks, par-
ticipants are usually assumed to apply
only a single cognitive strategy through-
out the course of a task. Variability in ob-
served behavior (e.g., reaction times) is
explained as the result of variability in the
same cognitive process that gave rise to
the observed behavior. For example, in
most theories of perceptual decision-
making, it is assumed that variability in
reaction times is the result of the variabil-
ity in the amount of information the
stimulus provides, the efficiency of infor-
mation processing, the amount of re-
sponse caution, and the speed of the
motor response (Gold and Shadlen, 2007;
Brown and Heathcote, 2008; Ratcliff and
McKoon, 2008; Forstmann et al., 2015).
Such theories assume that during every
trial of a perceptual decision-making task,
stimulus information is processed and used
to guide a choice. This assumption could be
challenged by hypothesizing that, on a sub-
set of trials, participants are guessing instead
of using the stimulus information provided.
Such a guessing strategy seems plausible in
speeded decision-making, where a response
has to be given very quickly. In a recent pub-
lication in The Journal of Neuroscience,
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Noorbaloochi and colleagues (2015) sug-
gest that, under such circumstances, partic-
ipants are likely to use mixed task strategies.

Interestingly, such an account of
speeded decision-making, where under
speed stress participants sometimes em-
ploy a guessing strategy, has been tested
before, yielding conflicting results (Dutilh
etal., 2011; van Maanen, 2015). Different,
but related, work has also suggested that
sometimes the behavioral patterns in
decision-making under severe speed-
stress cannot be explained by classical
models of decision-making, but has sug-
gested the presence of an urgency signal
rather than an additional guess process
(Hawkins et al., 2015a).

In the study by Noorbaloochi et al.
(2015), participants had to judge whether
a rectangle was shifted to either the left or
the right relative to a reference location
and received monetary compensation for
every correct answer. Additionally, before
every stimulus, a cue indicated whether an
additional reward would be given for a
correct response in a specific direction
and, if so, in which direction. Participants
would only get a monetary reward when
they correctly indicated the direction of
the shift, but a substantially larger one
when this direction was congruent with
the direction of the cue. This resulted in
biased responses toward the alternative
with a higher payoff (see also Diederich
and Busemeyer, 2006; Mulder et al,
2012).

Computational models of cognition
offer a way to investigate such choice be-

havior precisely. They can make concrete,
quantitative predictions for behavioral
data and map raw behavioral measure-
ments to meaningful latent cognitive vari-
ables (Lewandowsky and Farrell, 2010;
Forstmann et al., 2011). The most pro-
minent of such models in perceptual
decision-making are sequential sampling
models (Gold and Shadlen, 2007; Brown
and Heathcote, 2008; Ratcliff and Mc-
Koon, 2008). These models can explain
differences in choice proportions and the
shape of the reaction time (RT) distribu-
tions by differences in model parameters.
These parameters all capture some aspect
of decision-making, such as the efficiency
of information processing or response
caution. In sequential sampling models,
every choice option in an experiment is
represented as an evidence accumulator.
During a trial, all accumulators race
against each other, and the first one that
crosses its response threshold determines
the choice of the subject on that trial. The
evidence accumulators can have different
rates to account for the quality of infor-
mation the stimulus provides. For exam-
ple, if a trial is very easy, the average speed
of the accumulator corresponding to the
correct response will be much higher than
the rate of the accumulator corresponding
to the incorrect response. Therefore, this
accumulator is more likely to win the race,
resulting in a correct response. The accu-
mulators can also have different starting
points to account for the amount of evi-
dence the decision maker deems sufficient
to choose that particular option.
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In their study, Noorbaloochi et al.
(2015) observed that participants were
more likely to choose the cued option, es-
pecially when they responded quickly.
They used a sequential sampling model
[the linear ballistic accumulator (LBA)
model; Brown and Heathcote, 2008] to
explain that pattern of behavior. Origi-
nally, the authors had two different hy-
potheses. The first hypothesis was that on
biased trials, the starting point of the ac-
cumulator with a higher payoff was
heightened and the other was lowered.
The second hypothesis was that on biased
trials, the rate of the accumulator with a
higher payoff was increased and the rate
of the other was decreased. Both hy-
potheses can be implemented in a LBA
model and provide specific predictions
about the shape of the correct and in-
correct reaction time distributions, as
well as the number of correct responses,
in different conditions.

Importantly, it turned out that neither
of the two models could fully explain the
behavioral pattern observed. Specifically,
they could not explain the occurrence of
“fast errors.” These are incorrect re-
sponses with a shorter mean RT than the
correct responses.

In addition to behavioral data, electro-
encephalography (EEG) data were col-
lected throughout the experiment. Such
neural data can give additional insight
about the cognitive strategy participants
use, when behavioral data alone fall short
(Marr, 1982; Forstmann et al., 2011).
Here, the focus of analysis was on the lat-
eralized readiness potential (LRP), a well
established event-related brain potential
measured contralateral to the motor re-
sponse. The LRP is thought to be related
to decision-making processes (Gratton et
al., 1988; Hawkins et al., 2015a). Analysis
of the acquired EEG data suggested that in
biased trials, but not unbiased trials, the
LRP showed a shift toward the cued direc-
tion shortly after stimulus presentation
but well before the large surge of activity
that indicated choice.

Noorbaloochi et al. (2015) interpreted
this early component in the LRP as evi-
dence that an additional process was tak-
ing place on a subset of the biased trials. In
addition to the original two hypotheses of
a shift in starting points or drift rates, a
third hypothesis of mixed strategies was
formalized using an extended LBA model.
In this extended model, a third “fast
guess” accumulator races with the two
original accumulators, but starts earlier
and is completely independent of stimu-
lus information. This extended fast-guess

LBA model was successful in predicting
the observed fast errors, as well as the
other patterns in the behavioral data. Im-
portantly, the Akaike information crite-
rion (AIC) for this model was lower than
the other two models in all participants.
The AIC is a measure of the goodness-of-
fit of a model that penalizes for the num-
ber of parameters used. The lower AICs
for the fast-guess LBA thus provides evi-
dence that the better fit of the model is not
just the result of overfitting because of a
larger number of parameters (Vandeker-
ckhove et al., 2015).

Although the results and interpreta-
tion by Noorbaloochi et al. (2015) are
compelling, there is another plausible in-
terpretation of the data that has not been
discussed or tested. This alternative ac-
count proposes that participants use some
urgency signal to reduce their response
thresholds during the course of a single
trial. A recent reanalysis of some large da-
tasets suggests that both humans and non-
human primates might sometimes apply
such a strategy and that the resulting be-
havioral patterns cannot be described by
standard sequential sampling models
(Hawkins et al., 2015a). Hawkins et al.
(2015a) suggest that such strategies might
arise from extensive training on the task,
as well as very short response deadlines.
Both extensive training and heavy speed
stress were used in the experiment by
Noorbaloochi et al. (2015). Participants
performed >10,000 trials and were paid
additional money to give faster responses
during the training sessions. Further-
more, the RT distributions presented in
the paper lack the long tail of slow re-
sponses that are very typical of RT dis-
tributions (Luce, 1986). Indeed, such
Gaussian-like RT distributions are a hall-
mark of an “incoming bounds” strategy,
where the response thresholds are lowered
as a function of elapsed decision time
(Hawkins et al., 2015a,b).

Interestingly, the standard LBA mod-
els in the study by Noorbaloochi et al.
(2015) were unable to account for fast er-
rors, which is not in line with previous
studies (Brown and Heathcote, 2008).
The misfits that were found in the study
by Noorbaloochi et al. (2015) might be
present because the model can only ac-
count for the lack of a tail in the RT distri-
butions by sacrificing its fit of the fast
errors. It would be interesting to see how a
sequential sampling model with (nonlin-
ear) incoming bounds would perform
compared with the fast-guess LBA.

The EEG data might help distinguish be-
tween the two alternative models. However,
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to do this, the link between neural dataand a
cognitive model should be made more tight
by using quantitative methods (Turner et
al,, 2013). For example, if individual differ-
ences in the amount of fast guesses, as esti-
mated by the fast-guess LBA, can be
predicted by individual differences in the
early component of the LRP, this would
strengthen the interpretation that this signal
isrelated to a fast-guess process. Conversely,
if the rate of the incoming bounds can
be predicted by some component of the
LRP, this would strengthen the incoming
bounds-interpretation.

The authors ought to be applauded for
sharing the data and modeling code of the
paper publicly. Sharing data allows other
researchers to fit these data using different
models and compare their performance.
Data sharing helps cognitive neuroscien-
tists in distinguishing between competing
theories of speeded decision-making im-
plemented in different models more
quickly, and ultimately further our under-
standing of how we make everyday deci-
sions (Munafo et al., 2014).
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