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Limitations of Neural Map Topography for Decoding Spatial
Information
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Topographic maps are common throughout the nervous system, yet their functional role is still unclear. In particular, whether they are
necessary for decoding sensory stimuli is unknown. Here we examined this question by recording population activity at the cellular level
from the larval zebrafish tectum in response to visual stimuli at three closely spaced locations in the visual field. Due to map imprecision,
nearby stimulus locations produced intermingled tectal responses, and decoding based on map topography yielded an accuracy of only
64%. In contrast, maximum likelihood decoding of stimulus location based on the statistics of the evoked activity, while ignoring any
information about the locations of neurons in the map, yielded an accuracy close to 100%. A simple computational model of the zebrafish
visual system reproduced these results. Although topography is a useful initial decoding strategy, we suggest it may be replaced by better

methods following visual experience.
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ignificance Statement

A very common feature of brain wiring is that neighboring points on a sensory surface (eg, the retina) are connected to neighboring
points in the brain. It is often assumed that this “topography” of wiring is essential for decoding sensory stimuli. However, here we
show in the developing zebrafish that topographic decoding performs very poorly compared with methods that do not rely on
topography. This suggests that, although wiring topography could provide a starting point for decoding at a very early stage in
development, it may be replaced by more accurate methods as the animal gains experience of the world.
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Introduction

Topographic maps are a fundamental organizing principle of
brain wiring, and their widespread presence across many species
and sensory modalities suggests that such maps serve an impor-
tant functional purpose (Kaas, 1997; Wandell and Winawer,
2011; Groh, 2014). One such possibility is minimal wiring
(Cowey, 1979; Chklovskii and Koulakov, 2004): to perform local
processing in stimulus space the neurons representing neighbor-
ing stimuli should be connected, and locating these neurons in
close proximity in the brain reduces the length of wiring needed
to connect them. However, minimal wiring does not imply that
topography is actually required to decode sensory stimuli. The
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idea of a topography requirement for decoding is a much stron-
ger claim; for example, that the topography of the map from the
retina to the tectum is actually required for the spatial locations of
objects in the visual field to be determined from tectal activity.
Nonetheless, as pointed out many times before (Cowey, 1979),
no in-principle requirement exists; for instance, a smartphone
can perform face recognition without requiring that neighboring
pixels in its camera be connected to neighboring positions on its
circuit board. Organisms could still be using topographic rela-
tionships for decoding, but it remains unclear for most biological
systems whether the accuracy of such decoding is at all close to
that of statistically optimal methods that the animal could use,
especially for distinguishing stimuli that are close together.

In many neural systems, such as the cortex or tectum, each
sensory stimulus is represented by the combined activity of many
neurons, ie, a population code (Georgopoulos et al., 1988; Niell
and Smith, 2005). The activity of single neurons is often unreli-
able, and it is therefore the statistics of the population that
provide decoding reliability (Averbeck et al., 2006). Simple
population-based decoding methods, which treat the position of
each neuron as indicating its feature preference can, under re-
stricted circumstances, perform optimally. That is, they can find
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the stimulus that was statistically most likely to have generated
that pattern of response (maximum likelihood estimation;
Snippe, 1996). However, this equivalence only holds given many
assumptions, not least of which is that the topography of the map
must be perfectly ordered. How well topography-based popula-
tion decoding performs in real systems is mostly unknown.

An attractive model system for studying these questions is the
retinotectal map in zebrafish (Stuermer, 1988; Poulain and
Chien, 2013). Hunting behavior in larval zebrafish is primarily
guided by vision, and larval zebrafish start to hunt and capture
live prey from 5 d postfertilization (dpf). At this age zebrafish
visual acuity is ~3° (Easter and Nicola, 1996; Haug et al., 2010).
The optic tectum is essential for the accurate detection of prey,
and the release of appropriately targeted behavioral responses
(Ewert et al., 2001; Gahtan et al., 2005). However, tectal cells have
very broad receptive fields (Niell and Smith, 2005), with an aver-
age width of ~40° (Romano et al., 2015). Furthermore, despite
the rough preservation of spatial relationships within the retino-
tectal map (Burrill and Easter, 1994; Muto et al., 2013; Kita et al.,
2015), its topographic arrangement is quite imprecise, with sub-
stantial scatter in the mapping from spatial location in the visual
field to position on the tectum (Niell and Smith, 2005; North-
more, 2011). This raises the obvious question of how effectively
spatial location in the world can actually be determined using
topography-based decoding from the activity of tectal neurons,
which is the signal passed on to downstream targets. This ques-
tion is particularly acute for distinguishing closely spaced stimuli,
which produce largely overlapping patterns of tectal activity.
Here we addressed this issue using a combination of calcium
imaging of tectal activity and computational modeling.

Materials and Methods

Fish housing. Nacre zebrafish embryos of either sex were collected and
raised according to established procedures (Westerfield, 1993) and kept
under a 14/10 h on/off light cycle. Larvae were fed rotifers (Brachionus
plicatilis) from 5 d postfertilization (dpf).

Larval injections. The calcium indicator dye Oregon Green 488
BAPTA-1-AM (OGB; Invitrogen) was dissolved in 4 ul of 20% pluronic/
DMSO and diluted 1:15 with filtered NKH solution (125 mm NaCl, 2 mm
KCl, 10 mm HEPES). Six to 8 dpf larvae were anesthetized in 0.02%
tricaine, mounted in 1% low melting point agarose (Seaplaque, Lonza),
and then bolus injected under a dissection microscope (20X), using a
glass micropipette (tip opening 2-3 um) and a digital-gated pressure
injection system Femtojet (2-3 pulses of 500 ms at <1 psi). Adequate
loading of the tectum was reached when the AlexaFluor 564 marker dye
also present in the injection solution (42 uM, Invitrogen) was present
throughout the stratum periventriculare (SPV) neurons. Immediately
after the injections, larvae were excised from the agarose and left in the
dark at 28.5°C in E3 medium for 1 h of recovery before experiments.
Before time lapse imaging, fish were paralyzed using tubocurarine
(Sigma-Aldrich) and mounted in 1.75% low melting point agarose in a
custom made rectangular glass-bottomed chamber consisting of one ver-
tical coverslip side through which the fish could see the visual cues
presented.

Visual stimuli and image acquisition. OGB-labeled tectal cells were
imaged with a 63X water-immersion objective on an inverted 3i Yok-
ogawa W1 spinning disk confocal microscope and a 488 nm diode laser.
Images of 512 X 512 pixel resolution covering one plane of the labeled
tectum were acquired at 5 Hz. Pixel size was set to 0.4 wm. Visual stimuli
were generated using custom software based on MATLAB (MathWorks)
and Psychophysics Toolbox, and consisted of 10-degree-wide black spots
at three different positions (—10°, 0°, 10°), which were randomly pre-
sented for 1 s each, followed by 8 s of blank screen to allow calcium signals
to return to baseline levels. Zero degrees was defined as being orthogonal
to the body axis at the eye. Visual stimuli were projected on a screen 27
mm away from the fish covering ~90° X 60° the visual field using an
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Optoma PK302 projector. A no. 47 Wratten Kodak filter was placed
directly in front of the projector to block green light to prevent interfer-
ence with the fluorescence emission of OGB. For synchronization of
image acquisition and visual stimuli, we used a NA-USB-6501 I/O TTL
device.

Image registration. All fluorescence data stacks were corrected for x—y
movements using custom-written MATLAB software. Trials that showed
a drift in the z-plane were discarded. Single trial data stacks were first
aligned with a reference frame within the movie using MATLAB custom-
written code based on a rigid image registration algorithm. To align
stacks between trials, the reference frames of all trials were aligned with
the first trial’s reference frame.

Cell detection. Custom-written software in MATLAB was used to au-
tomatically detect the region-of-interest (ROI) of each active cell, ie, the
group of pixels defining each cell. The software searched for active pixels,
ie, pixels that showed changes in brightness across frames (Ahrens et al.,
2012), resulting in an activity heat map of all the active regions across
frames. The activity map was then segmented using a watershed algo-
rithm. The threshold for the watershed algorithm was tuned to mark
apparent cells on the activity map. Within each segmented region, we
computed the correlation coefficients of all pixels in the region with the
mean of the most active pixel and its eight closest neighboring pixels.
Correlation coefficients showed a mainly bimodal distribution: one peak
of highly correlated pixels representing pixels of the cell, and a second
peak of relatively low correlation coefficients representing nearby pixels
that were not part of the cell. Using a Gaussian mixture model, we looked
for the correlation coefficient to threshold this bimodal distribution so
that we could differentiate between pixels likely to form the active cell
and neighboring pixels that were not part of the cell. Detected potential
cells were also screened for the minimal number of pixels (60) to repre-
senta cell. The software allowed visual inspection and modification of the
parameters values where needed. All pixels within each cell’s ROI were
averaged to give a raw fluorescence trace over time. Raw calcium signals
for each cell, F(t), were then converted to represent changes from base-
line level, AF/F defined as (F(t) — F,(1))/Fy(t). The time varying baseline
fluorescence, F,(t), for each cell was a smoothed curve fitted to the lower
50% of the points. The value of F, at each time point was the minimum of
the smoothed fluorescence trace in a 4 s window before that time point.

Center of mass decoding. For each population response vector,

R = (r, ry ..., ry), the center of mass (CoM) was calculated as
follows:
N,
riX;
> _ =
XCoM = "N.

where r; is the response of cell i and X; is the spatial coordinate vector of
neuron i. To represent an averaged position on the map for each stimu-
lus, we calculated the mean CoMs (Xcon)s» Where ( ), denotes the mean
over all presentations j of the same stimulus s. Mean CoMs for the de-
coder were calculated from a training set separate from the test set to be
decoded using a leave-one-out strategy, in which a single population
response vector was decoded using the mean CoMs calculated from all
other presentations but the test vector. The CoM of a given test popula-
tion response vector Xcqy was computed, and the Euclidean distance of
its CoM from each of the averaged CoMs representing the three stimuli
A(Xcoms> (Xcom)s;) was calculated. The given test population response vec-
tor was then classified as the stimulus having its closest averaged CoM.
Maximum likelihood decoding. Decoding the population response con-
sisted of searching for the stimulus (s,,; ), which had the highest proba-
bility of evoking a given population response R = (ry, 15, ..., 'y):

sy = argmax P(R | s).

sE{s1, 2, 53}

The probability distributions P(R | 5;) were hard to estimate from the
biological data because the dimensionality of R was high compared with
the number of samples available. A simplifying assumption that is often
made is to assume that the responses of all neurons are conditionally
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independent given the stimulus s, in which case, P(R|s))

= I, p(r;] 5;). This model requires fewer observations to fit, because it
requires estimation only of the one-dimensional distribution of r; for
each stimulus. We therefore computed the conditional probability that
each cell 7 had response r; given that stimulus s; was presented, P(r; ['s).
N, X N; histograms were computed (N number of cells, and N num-
ber of stimuli) and probability density estimates based on a smoothed fit
to the histogram using the MATLAB ksdensity function were computed
for each histogram. Performance statistics for the decoder were calcu-
lated from a training set separate from the test set to be decoded, using a
leave-one-out strategy, in which a single population response vector was
decoded using the statistics calculated on the basis of all presentations
other than the test vector. Decoding performance was defined as the
proportion of the responses tested and classified correctly out of the total
number of responses tested.

Linear decoding. We also used linear discriminant analysis to decode
the stimulus. The algorithm received as an input population response
vectors and their respective stimulus labels (the stimulus evoking each
response vector). The algorithm output the linear discriminant coeffi-
cients for the population for the three different stimuli. Given a test
population response, linear scores were calculated for each stimulus and
its respective stimulus probability. The test population response was clas-
sified as the most probable stimulus. The performance statistics for the
decoder were calculated from a training set separate from the test set to be
decoded, using a leave-one-out strategy, in which a single population
response vector was decoded using the statistics calculated on the basis of
all presentations other than the test vector. Decoding performance was
defined as the proportion of the responses classified correctly out of the
total number of responses tested.

Computational model. To more closely examine the performance of
the decoders we developed a simple computational model of the ze-
brafish retinotectal system. The model consists of two one-dimensional
layers of cells, representing the horizontal visual field of the retina and the
anterior—posterior axis of the tectum, joined by directed weighted con-
nections from the retinal layer to the tectal layer (see Fig. 5A).

Stimuli were represented as step functions in a 160° field-of-view with
coordinates in [ —80° 80°]. The N, = 16 cells in the retinal layer had F, =
10° wide receptive fields, based on experimentally found values in the
range 7-13° (Sajovic and Levinthal, 1982b), which collectively covered
the full field-of-view, with no gaps and no overlap. When a stimulus from
s, to s, was presented to the model, each cell k’s response r;, was defined as
avaluein (0, 1) corresponding to the proportion of its receptive field the
stimulus covered:

1
n=5 max (0, min(x;, + 0.5F,, 5,) — max(x;, — 0.5F,, 5,)),

where x; is the position of the center of retinal cell k. The weight w; ; of the
connection between retinal cell k and tectal cell i was defined by a Gauss-
ian with SD o, = 0.15:

.o (% — x)°
Wk,r' = exp T 5

where x; and x; are the positions of the retinal and tectal cells, respec-
tively, normalized so that their values were in the range [—1, 1] rather
than [—80° 80°]. These weights were then normalized such that the
weights on the connections into each tectal cell summed to 1:

The tectal layer was comprised of N, = 35 cells, based on a 250 um tectum
(anterior—posterior axis) with 7 um wide cells approximately matching
the fish we examined experimentally, spaced evenly along the tectum
with no gaps or overlap. The response r; of each cell i was a sample from
a Poisson process with firing rate A; determined by the weighted sum of
the retinal cell responses,
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N,
A= fb + fEWk,iT’;o
=

where f, = 5 Hz is the baseline firing rate and f = 30 Hz is the maximum
firing rate. The baseline and maximum firing rates, ie, the signal-to-noise
ratio of the tectal responses, were chosen such that the overall perfor-
mance of the decoders matched their performance on the experimental
data. We measured the tectal cell receptive fields in our model by fitting
Gaussians to the responses of the tectal cells when each retinal cell was
fully stimulated in turn, and the fits gave full-width at half-maximum
values of ~28° which matches experimentally found receptive field
widths in the range 25-39° (Sajovic and Levinthal, 1982b).

The stimuli used were as in the experiments, three spots of width 10°
centered at —10°, 0°, and 10° around the center of the visual field, which
are equivalent to step functions in our one-dimensional model. To gen-
erate responses for decoding, we presented each stimulus to the model 50
times, for a total of 150 presentations. The response r; of each tectal cell to
each presentation of each stimulus was recorded. Decoding was per-
formed as described above for the experimental data, using the center of
mass, linear and maximum likelihood decoders, and a leave-one-out
strategy for training and testing.

To investigate the effects of topography, we destroyed the topography
of the retinotectal map by shuffling the positions of the tectal cells while
leaving their connections intact. That is, we randomly shuffled the tectal
cell position vector x = (xy, x,, ..., Xy,). We measured the level of dis-
order of a shuffled tectum as the Kendall tau distance (Kendall, 1938)
between the shuffled vector of tectal indices and the sorted vector, di-
vided by the maximum possible distance N,(N, — 1)/2 to obtain a value
between 0 and 1. This measure is equivalent to the count of the number
of swaps of unordered adjacent elements required by the bubble sort
algorithm to sort the shuffled vector. To generate vectors with a specific
level of disorder, we swapped ordered adjacent pairs of indices in a sorted
vector until the desired Kendall tau distance was reached. To fairly test
the performance of CoM with a shuffled tectum, we averaged its decod-
ing performance over several runs, in each the stimuli being centered at a
different point in the visual field, specifically —40, —30,..., 30, 40°, rather
than just at 0°. To model the increase in retinal ganglion cell arbor size in
the blumenkhol mutant zebrafish, we increased the parameter controlling
the width of the Gaussian used to define the connection weights o, and
defined the arbor size as the full-width at half-maximum of the Gaussian.

Results

To study the functional role of the topographic map we per-
formed calcium imaging on larval zebrafish (n = 5), for which the
visual system has been well studied (Fig. 1A; Sajovic and
Levinthal, 1982a; Stuermer, 1988; Easter and Nicola, 1996; Ki-
noshita and Ito, 2006). Injection of OGB into the tectum resulted
in labeling of a substantial number of cell bodies in one hemi-
sphere, in particular the cell bodies of the SPV, where a vast
majority of the tectum’s cell bodies are located (Fig. 1B). Para-
lyzed, unanesthetized OGB-labeled zebrafish larvae (6—8 dpf)
were mounted in an imaging chamber, which allowed simultane-
ous calcium imaging of visually induced tectal responses, in con-
junction with presentation of visual stimuli to the eye
contralateral to the labeled tectum. Images were produced on a
screen placed in front of the eye via a projector. We provided the
fish with prey-like visual stimuli (Bianco and Engert, 2015),
which consisted of 10° black spots presented at three different but
adjacent positions of the visual field (—10°, 0°, 10°), where 0° was
arbitrarily defined as orthogonal to the body axis at the eye (Fig.
1C). Spots were presented for 1 s each, followed by 8 s of blank
screen to allow the calcium signals to return to baseline levels. In
each trial, the three different stimuli were each presented in a
random order a total of seven times. The number of trials varied
between fish (3-7 trials), resulting in a total of 63-147 spot pre-
sentations per fish. Trial movies were registered to remove slow
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The population response is variable and largely overlapping. 4, Dorsal view of the zebrafish head. Visual information enters the eye and is conveyed to the contralateral tectum via retinal

ganglion cell axons, which synapse to the dendrites of the tectal SPV cells. Dotted, blue square indicates the region being imaged. The anterior (A) and posterior (P) ends of the tectum are indicated.
B, Alabeled tectum afterinjection of 0GB. Middle-third of the tectum is cropped. €, Schematic of the visual stimulation assay. A zebrafish embedded in a chamber wasimaged using confocal spinning
disk microscopy. The eye contralateral to the labeled tectum was presented with a screen onto which the visual stimuli were projected. Visual stimuli consisting of 10° spots at three different positions
(—10°,0° 10°) were randomly presented for 1 s each, followed by 8 s of blank screen. D, Top, Calcium signal from a randomly chosen cell. Dashed vertical lines represent the onset of spot
presentations (red, —10°; green, 0°; blue, 10°). This particular cell responded to all three stimuli and showed variability in response amplitude to the same stimulus. Bottom, Multi-trial raster plot
of evoked calcium transients induced in a population of 42 tectal cells (4 of 7 trials are shown) with many cells active due to the three stimuli presented. Stimuli were presented in a random order.
E, Population response vectors projected onto the two-dimensional space defined by the first two principal components. The identity of the stimulus which evoked the response (dots) is color-coded.

in-plane (XY) drifts and neurons were segmented using custom-
ized image processing algorithms (see Materials and Methods),
resulting in calcium signals of each neuron in the population as a
function of time.

Response to three adjacent stimuli is largely overlapping

Consistent with the broad receptive fields previously reported
for tectal neurons (Sajovic and Levinthal, 1982a; Niell and
Smith, 2005; Romano et al., 2015), we found that a single spot
presented in the visual field elicited a response in a population
of many cells. The three nearby spots produced largely spa-
tially overlapping population responses. An example of the
response of a single cell across time shows responsiveness to all
three stimuli (Fig. 1D, top). High variability in the response
amplitude to repeated presentations of the same stimulus is
also apparent for this example. Thus, due to the noisy nature
of neurons, the population pattern varied between repeated
presentations of the same stimulus (Fig. 1D, bottom). As the
response measure, we used the area under the calcium signal
over one second from the stimulus onset. Other measures were

also tested, such as the mean amplitude over different time
windows from stimulus onset, or the peak amplitude during a
1 s time window from stimulus onset, but using these alterna-
tive measures did not qualitatively change our results.

A population response due to a stimulus can be described as
an N_ dimensional vector, where N_ is the number of cells in the
population. The dataset therefore contained a total of N X N, X
Ny such vectors (Ng: number of stimuli, N,: number of presen-
tations of the same stimulus per trial, N;: number of trials). Every
vector in this set of population response vectors can be described
asapoint in the N, dimensional space, R = (r}, 15, ..., ry,) where
there is an axis for each cell, and the response of a single cell is the
projection of this point onto the axis representing this cell.
To help visualize the internal structure of this set of high-
dimensional population response vectors, we projected each of
these onto the first two principal components of the N, dimen-
sional space. The projected population responses reveal rough
clustering representing the three stimuli (Fig. 1E), indicating
shared features between vectors within the clusters. However,
there was also substantial overlap between the clusters, suggesting
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Maximum likelihood decoding. A, Normalized histograms of cell responses due to each of the stimuli (blue bars) and their estimated probability density (red curve; 5 different cells are

shown). B, Population response vectors projected onto the two-dimensional space defined by the first two principal components for one fish. The identity of the stimulus which evoked the response
(dots) is color-coded as in Figure 1£. Decoded stimuli (color-coded) are also shown for each untrained population response using the ML decoder (squares). Performance is given by the percentage

of observations which were decoded correctly, for this fish 97%.

that the features are also partially shared between clusters. This
could potentially lead to ambiguity in differentiating response
vectors evoked by different stimuli.

Linear and maximum likelihood decoding

Is it nonetheless possible to reliably decode the identity of the
stimulus from these variable and strongly overlapping responses?
We first applied a simple linear decoder (LD). This classifies the
stimulus by taking a weighted sum of the activity of all the neu-
rons, with the weights chosen so as to maximize the classification
accuracy over all stimuli. The LD performed at an average accu-
racy rate of 90% (88%, 89%, 90%, 91%, and 92% for each fish;
performance for other decoding strategies below is quoted in the
same order of fish).

However, the LD is not a statistically optimal decoder. Assum-
ing all stimuli are a priori equally likely, the unbiased decoder (ie,
one for which the expected value of its decoding error is zero)
which provides the smallest possible variance in the estimate is
maximum likelihood (ML; Deutsch, 1965). This chooses the
stimulus s; that is statistically most likely to have elicited a given
population response R. That is, it calculates the likelihood func-
tion P(R | s;), the probability that the particular collection of neu-
ral responses R was generated by stimulus s;, for all possible s, and
chooses the s; that makes P(R | s;) the largest. Assuming that the
responses of tectal neurons are statistically independent from
each other, P(R | ;) is simply the product of the conditional prob-
abilities P(r, | s;) that each cell i evoked response r; from neuron i
given that stimulus s; was presented.

Histograms of P(r; | s;). were computed for all combinations
of neurons 7 and stimuli j. To produce continuous probability
estimates from these, each histogram was fitted by a smoothing
function (see Materials and Methods; Fig. 2A). Smoothing pa-
rameters were optimized to achieve best performance, and were
robust across datasets. To measure performance we used a leave-
one-out cross-validation approach. That is, we used all but one of
the set of population response vectors to learn the conditional
probabilities, and then used these probabilities to determine the
most likely stimulus for the one remaining response vector, leav-
ing each response vector out in turn. The performance was de-
fined as the proportion of population response vectors that were
correctly classified. The ML decoder performed at an average

accuracy rate of 95% (87%, 100%, 95%, 97%, and 97%; Fig. 2B).
Thus, despite the apparent unreliability of the tectal response, it is
still possible for the fish to decode with high reliability the identity
of the stimuli presented.

Topography-based decoding of visual targets
We then asked how well a simple topography-based decoder
could identify the presented stimuli, based on the position of
tectal cell activity. To characterize the position of the population
response on the tectal topographic map, we used the CoM ap-
proach. The center of mass (CoM) for a given population re-
sponse was calculated as the average of the cells’ spatial
coordinates weighted by their strength of response to the stimu-
lus presented. We again used a leave-one-out cross-validation
approach, dividing the set of population response vectors into
training and test sets. We calculated the CoM of every population
response vector in the training set. CoMs were widely spread and
formed spatial clusters with some overlap, covering a region of
~15 pum on the tectum. To characterize the typical spatial posi-
tion of the population response due to each stimulus, we aver-
aged all CoMs of all population responses in the training set
elicited by a specific stimulus (ie, average CoM within each clus-
ter). To test the decoder for a given population response, we
calculated its CoM and classified it according to the stimulus
having the closest average CoM. The performance was then de-
fined as the proportion of population response vectors, which
were correctly classified. An example of the spatial spread of the
CoMs on the tectum due to each presentation is shown in Figure
3A. Also shown are the average CoMs, representing the response
position on the map due to the three stimuli. These were only a
few micrometers apart, whereas CoMs for individual presenta-
tions of the same stimulus were highly variable. The topography-
based decoder performed at an average accuracy rate of only 64%
(83%, 62%, 49%, 53%, and 73%). This is significantly better than
chance (¢ test, p < 0.01), but also significantly inferior to the
performance achieved by maximum likelihood (¢ test, p << 0.05).
This indicates that, with respect to localizing nearby cues in the
visual field, topographic decoding is somewhat informative but
far from reliable.

The CoMs used above were defined by a very limited set of
data. Could there be spatial reference positions in the tectum (for
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Topography-based decoding. 4, Each population vector’s center of mass (dot) plotted on the relevant area of the tectum, color-coded according to the stimulus. B, CoM of population

vectors elicited by the same stimulus were averaged to find the mean position due to each of the stimuli (color-coded diamonds). Due to the high degree of overlap between responses, all averaged
CoMs are located within 10 pum. €, Center of mass decoding. CoM decoded stimuli (color-coded circles) for each population vector (dot). Performance is given by the percentage of observations that
were decoded correctly, for this fish 73%. D, Testing whether performance could be improved by choosing different mean positions for decoding. Potential centers were considered along the
extended anterior—posterior axis defined by the original mean CoMs (diamonds); here we allowed up to 50% extension of this axis, so that each of the mean potential centers could be in any of five
potential spots along this axis (5 yellow circles), ie, potential CoMs (PCoMs). The best decoding performance achieved due to a particular spread of the mean potential centers is shown by the
color-coded stars. CoM decoded stimuli for each untrained population vector using these PCoMs are also shown (color-coded circles). In this case performance remained similar (71% of the

population vectors were decoded correctly as opposed to 73% using the original mean CoMs).

instance generated by averaging CoMs over a much larger set of
data) against which each pattern of activity could be compared
that would give better decoding performance? To test this we
allowed the three potential reference points (which we still refer
to as CoMs) to be placed on a linear grid of five different positions
along the anterior—posterior axis of the tectum defined by
the original CoMs axis. This axis was extended in length by 10—
50%, allowing the CoMs to spread over a greater area than
originally used. This yielded 5 X 4 X 3 = 60 potential CoM
placement combinations in total (Fig. 3B). However this decoder
showed only a slight improvement of 2-5% (Fig. 4A). Thus, the
topography-based decoder remained inferior to the optimal
decoder.

The role of stimulus spacing

Intuitively, one would expect the performance of all the decoders
to improve as the stimuli move further apart, leading to more
widely spaced patterns of activity on the tectum. To test this using
our dataset we compared the decoding performance for the bi-
nary choices of spots 1 versus 2 and 2 versus 3 (10° separation
between stimulus centers) compared with the binary choice of

spots 1 versus 3 (20° separation). As expected there was an im-
provement for all decoders (Fig. 4B; though none of these im-
provements were statistically significant). ML showed the
smallest improvement, because its performance is already close
to perfect for 10° separation. These results reinforce the idea that
CoM decoding can be an effective method for distinguishing
widely separated spatial locations in this system, but is substan-
tially inferior to more sophisticated methods for closely separated
locations.

The role of population size

In several other systems it has been found that decoding accuracy
is a sublinear function of the number of neurons used in the
decoding (Wessberg et al., 2000), and that performance often
effectively saturates within a few tens of neurons (Nicolelis and
Lebedev, 2009). Is this true in zebrafish tectum, and is the rate of
saturation affected by the decoding method used? To test this we
averaged performance at each population size over 10 possible
combinations of neurons. In agreement with results reported in
primates (Nicolelis and Lebedev, 2009), performance rapidly in-
creased with the number of neurons initially, but saturated at
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simulations with different random seeds are shown.

~20 neurons (Fig. 4C). These neuron-dropping curves demon-
strate both the single neuron insufficiency principle (ie, individ-
ual neurons carry only a limited amount of information about a
given variable) and the mass effect principle (ie, a certain number
of neurons in a population is needed for their information capac-
ity to stabilize at a high value; Nicolelis and Lebedev, 2009). Thus,
independent of the decoding method used, only ~20 tectal neu-
rons were required to convey as much information about stimu-
lus location as can be conveyed using that coding method on the
full tectal population imaged.

Decoding in a computational model of the retinotectal system
To more closely examine the performance of the decoders, and
how they are affected by different aspects of the retinotectal sys-
tem and visual stimuli, we developed a simple computational
model of the zebrafish retinotectal system. The model consists of
two one-dimensional layers of cells, representing the retina and
the tectum, joined by weighted connections which send re-
sponses from the retina to the tectum (Fig. 5A; see Materials and
Methods). The stimuli and decoding procedures were the same as
those used for the experimental data (see Materials and Meth-
ods). The tectal cells in the model form a dense and regular array
of approximately Gaussian tuning curves, (that is, the response of
each cell drops off as a Gaussian function of distance from its
preferred stimulus in the retina), in which case the center of mass
decoder is equivalent to maximum likelihood (Snippe, 1996).
However this equivalence is only true under the assumption that

there is very little or no background noise of cells or other
stimulus-independent activity (Seung and Sompolinsky, 1993;
Snippe, 1996), which is not the case in the experimental data. To
account for this in the model we adjusted the signal-to-noise ratio
of the tectal cells to achieve overall decoding performance similar
to the results obtained using the experimental data (see Materials
and Methods). Although their overall performance was tuned to
the data, the relative performance of the center of mass, linear,
and maximum likelihood decoders in the model matched well
with the experimental results (Fig. 5B), with the average perfor-
mance of each decoder being 62% for CoM, 89% for LD, and 94%
for ML (average of 10 simulations in each case).

We then varied the stimulus parameters in the model. When
the separation between the stimuli was increased, all the decoders
increased in performance (Fig. 5C). LD and ML performed per-
fectly for any separation larger than the spots themselves (10°),
whereas CoM required almost 40° of separation between the
stimuli to perform at 100%. The performance of the model also
matched with the data comparing fine scale discrimination be-
tween two points 10° apart with two points 20° apart (Fig. 5D)
with all decoders showing significant improvement (¢ test, p <
107 in each case).

We also measured the performance of the decoders as the
number of presentations of each stimulus was varied from 2 to 50
(Fig. 6A). Whereas ML and LD performed poorly for very small
numbers of presentations, the performance of CoM saturated
very rapidly. This is because ML and LD require sufficient train-
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layers. Arrows show connections with weights >0.1from asingle retinal cell, which were defined by anormalized Gaussian. B, The performance of the three decoders, CoM, LD, and ML, in the model
matched well with their performance on the experimental data (Fig. 4A). C, The performance of the decoders increased with increasing separation (ie, gap) between stimuli, with CoM taking much
longer to reach saturating performance. D, Comparison of decoder performance for 10° versus 20° separation. Mean and SEM from 10 simulations shown in B—D.

ing data to form adequate representations of the responses,
whereas CoM can perform well with only a single presentation
per stimulus. Increasing the number of stimuli to be decoded
caused further decreases in performance of CoM, but no substan-
tial change in the performance of ML or LD (Fig. 6B). We gener-
ated the neuron-dropping curve for each decoder in the same way
as above for the experimental data (Fig. 6C). As expected the
performance of all decoders increased with the size of the neuron
population used for decoding, and saturated at ~25-30 cells.

Decoding in a model without topography
To probe the influence of topography on stimulus decoding, we
first removed the topographic retinotectal map in the model by
shuffling the positions of the tectal cells while leaving the connec-
tivity between the retina and tectum intact (Fig. 7A). In this non-
topographic model, the LD and ML decoders were unaffected as
they do not make use of the positions of the tectal cells. In con-
trast, the average performance of the CoM decoder dropped from
62% in the topographic case to 48% when the tectum was shuf-
fled. This is expected because it is reliant on a topographic repre-
sentation of visual stimuli in the tectum. Surprisingly however,
the variance in performance across simulations greatly increased
for the CoM decoder, from a SD of 3% in the topographic case to
9% in the shuffled case, and for some shuffling instances, the
performance of CoM actually increased compared with the top-
ographic case.

To analyze this variance in performance, we gradually per-
turbed the initially topographic retinotectal map by only partially
shuffling the tectal cell positions, to create varying levels of dis-

order. When CoM performance was analyzed as a function of this
partial shuffling, the decoder showed an approximately linear
decrease in performance with increasing map disorder, along
with a large increase in variance (Fig. 7B). This increase in vari-
ance is expected however, because there will be some particular
instances of a disordered tectum, which will by chance separate
the responses to the three spot stimuli we used widely across the
tectum, thereby separating the centers-of-mass and allowing the
decoder to perform very well. To get a reliable performance mea-
sure, we averaged the performance of CoM over stimuli pre-
sented at points across the visual field rather than just at the
center. This averaged performance now had approximately con-
stant variance for all levels of tectal disorder, while showing the
same decrease in decoding performance (Fig. 7B).

Although a completely nontopographic retinotectal map has
not been produced experimentally in zebrafish, the blumenkhol
mutant provides an interesting case. This mutant shows impaired
visual acuity (Smear et al., 2007). This impairment was linked to
reduced glutamate concentration at the retinotectal synapse cleft
(Smear et al., 2007), which may lead to dispersed termination
zones in small group of axons as a homeostatic response to low-
ered synaptic activity (Smear et al., 2007). Although it is unclear
experimentally whether this acuity impairment represents a
causal effect, we tested this computationally by increasing the
width of the connections between the retina and the tectum in
our model, effectively increasing the axonal arbor size. Surpris-
ingly this resulted in decreased performance of the LD and ML
decoders, while leaving the CoM decoder mostly unaffected (Fig.
7C). The increased arbor size results in a higher level of overlap
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between the responses to the three different stimuli, which is
detrimental to the performance of the LD and ML decoders as
they then have difficulty separating the responses. However the
centers of these overlapping responses were largely unaffected by
arbor size, and so the CoM decoder performed well regardless of
the size of the arbors. As behaviorally the visual acuity of the blu
mutant is decreased, these results are consistent with the hypoth-
esis that a decoder like LD or ML, rather than a simple
topography-based decoder like CoM, is used by zebrafish at the
age of 6—8 dpf to localize visual stimuli.

Discussion

Maps serve as a ubiquitous organizing principle in the brain. In
many sensory systems, such as audition, vision, and somatosen-
sation, topographic maps are evident throughout multiple levels.
Maps such as retinotopy and tonotopy persist from the receptor
surface up to the cortex (Kaas et al., 1990; Kaas, 1997). However,
despite the prevalence of topographic maps, the function they
subserve is still unclear (for review, see Kaas, 1997). Here we have
shown that fine scale localization of targets in the visual field of
the larval zebrafish can be performed far more accurately by lin-
ear or maximum likelihood decoding than by topography-based
decoding. Our computational model of the zebrafish visual sys-
tem reproduced these results, and confirmed that topography-
based decoding performs well only for widely separated stimuli.
Thus, the retinotectal map in zebrafish is neither required in
principle for stimulus decoding, nor does it provide a particularly
accurate method for achieving this.

Topographic versus nontopographic decoding

For a dense and regular array of neurons forming a well organized
map, and satisfying certain other conditions including low levels
of background noise, a topography-based decoder is equivalent
to maximum likelihood (Snippe, 1996). This concept of a perfect
map helps support the idea that space within the brain is used to
represent information about space in the world (Groh, 2014).
However, although maps may be topographically smooth at the
macroscale, they are often locally heterogeneous. In general, to-
pographies have been reported as blurred, variable, distorted,
incomplete, and biased due to the multidimensional nature of
receptive fields, natural signal statistics, and behavioral relevance,
particularly in awake animals (Evans and Whitfield, 1964; Recan-
zone et al., 1993; Schreiner and Winer, 2007; Schreiner and Pol-
ley, 2014). In the zebrafish in particular, although there is a
approximately linear relation between the position of the cell and
the center of its receptive field, this relationship is noisy (Niell and
Smith, 2005; Romano et al., 2015), with a substantial proportion
of “misplaced” cells (Northmore, 2011). As we have demon-
strated, this leads to a substantial degradation in fine-scale stim-
ulus discrimination for a topography-based decoder compared
with a statistically optimal decoder that does not rely on topog-
raphy. Moreover, the zebrafish blumenkhol mutant provides a
case where the topographic map is altered via increased receptive
field size. Intriguingly, simulating the blu mutant in our model
has shown that the experimentally observed decrease in behav-
ioral performance (which we equate with decoding accuracy) was
reproduced by the LD and ML but not CoM decoders (Fig. 6C).
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Although in general the afferents of retinal ganglion cells termi-
nating in the tectum could have more precise topography than
the activity of tectal neurons, the only information passed on to
downstream targets of the tectum is tectal cell activity. The notion
that a degraded topography might aid decoding of stimuli in
some way that we have not addressed is inconsistent with our
finding that ML decodes almost perfectly.

Stimulus decoding during hunting behavior

Zebrafish hunting responses show mixed selectivity for com-
binations of visual features, specifically stimulus size, speed,
and contrast polarity. Convergent saccades are specifically as-
sociated with prey capture and precede a strike at the prey. In
tethered fish, dark 10° spots on a light background are the
most effective stimuli to evoke a convergent saccade (Bianco
and Engert, 2015). Conversely, in freely swimming fish, as well
as in tethered fish, stimuli smaller than 5° produce orienting
responses whereas stimuli >10° trigger aversive turns (Bianco
et al., 2011; Trivedi and Bollmann, 2013). When a larval ze-
brafish engages in prey capture behavior, it performs several
swim bouts within a few hundred milliseconds, during which
the larva successively minimizes the angle and distance be-
tween its body axis and the prey, until it is close enough to
capture the prey with high probability (McElligott and
O’Malley, 2005; McClenahan et al., 2012). This series of swim

bouts increases the angular size of the target from 4° to 12°
(Trivedi and Bollmann, 2013). Hence, at the crucial moment
in time before the larva strikes, when the target is ~10° angular
size, it needs its best accuracy in estimating the position of the
target in its visual field. Thus, the 10° spots used in this study
are highly relevant ecological stimuli, which require accurate
decoding. The poor performance of the topography-based de-
coder for a spot size matching that at which the fish usually
launches an attack (10°) suggests that this type of decoding
may be insufficient for subserving effective predation.

Successful hunting behavior relies on two major compo-
nents: accuracy in aiming at the prey during the strike, ie,
snapping at the right resolved place (Beyer, 1980) and the
speed of the strike, ie, preventing the prey from escaping
(Drenner et al., 1978; Winfield et al., 1983). Catching perfor-
mance in other fish species improves rapidly during develop-
ment, mainly due to the strike speed (Drost, 1987). The
hunting accuracy rate has not been thoroughly studied
throughout zebrafish gestational development, but is 50% for
8 dpflarvae (Westphal and O’Malley, 2013). However, it is not
clear whether it is strike speed or aiming accuracy that con-
strains this performance rate. Thus, although strike speed in-
creases during development, it is also possible that the neural
code itself adapts over time to improve stimulus decoding,
thereby giving the larvae better aiming estimates.
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To study the role of topography of the retinotectal map, we
presented transiently appearing spots, rather than moving
spots as commonly used for virtual prey. Although fast-
moving spots are more likely to elicit hunting behavior (Bi-
anco etal., 2011), our data and those of Niell and Smith (2005)
show that transiently appearing spots in the visual field elicit
visual responses in the tectum. It is possible that these visually
evoked tectal responses did not evoke the motor program for
hunting behavior (eg, convergent saccades that precede a
strike at prey), but this does not alter our conclusions reg-
arding the superiority of nontopographic decoding over
topography-based decoding.

Implementation issues and a possible role for the

retinotectal map

The tectal representation of a visual target must be trans-
formed into an estimate of a position-related variable that can
optimally guide behavior. Sensory likelihoods provide an op-
timal platform for generating these estimates. A biologically
feasible transformation of sensory responses to sensory likeli-
hoods requires a combination of each neuron’s response and
the logarithm of its own tuning curve (Jazayeri and Movshon,
2006). On the other hand, a linear decoder, which in our
system performed almost as well as maximum likelihood, has
a much simpler implementation and in general is more likely
to be related to computations actually performed by the ner-
vous system (Salinas and Abbott, 1994).

Although, like the topographic decoder, the performance
of ML increases rapidly with the number of stimulus presen-
tations, the more biologically plausible LD decoder requires
substantially more training to reach high performance (Fig.
6A). This design feature of rough hard-wired decoding for the
topographic decoder suggests the possibility that the brain
might use the topographic map to localize targets during de-
velopment when the network is still developing, but then
switches to a more optimal method as a result of experience-
dependent plasticity. In addition, there may be speed-
accuracy trade-offs: perhaps, given biological constraints,
topographic decoding can sometimes provide faster decoding
than more statistically optimal methods. It is thus possible
that decoding strategies are flexible, and can vary over both
developmental and potentially even moment-by-moment
timescales.
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