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Visual Stimulus Detection Correlates with the Consistency of
Temporal Sequences within Stereotyped Events of V1
Neuronal Population Activity
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Sensory information about the world is translated into rate codes, such that modulations in mean spiking activity of neurons relate to
differences in stimulus features. More recently, it has been proposed that also temporal properties of activity, such as assembly formation
and sequential population activation, are important for understanding the relation between neuronal activity and behavioral output.
These phenomena appear to be robust properties of neural circuits, but their relevance for perceptual judgments, such as the behavioral
detection of stimuli, remains to be tested. Studying neuronal activity with two-photon calcium imaging in primary visual cortex of mice
performing a go/no-go visual detection task, we found that assemblies (i.e., configurations of neuronal group activity) reliably recur, as
defined using Ward-method clustering. However, population activation events with a recurring configuration of core neurons did not
appear to serve a particular function in the coding of orientation or the detection of stimuli. Instead, we found that, regardless of whether
the population event showed a recurring or nonrecurring configuration of neurons, the sequence of cluster activation was correlated with
the detection of stimuli. Moreover, each neuron showed a preferred temporal position of activation within population events, which was
robust despite varying neuronal participation. Furthermore, the timing of neuronal activity within such a sequence was more consistent
when a stimulus was detected (hits) than when it remained unreported (misses). Our data indicate that neural processing of information
related to visual detection behavior depends on the temporal positioning of individual and group-wise cell activity.
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Introduction
Neurons in sensory cortex represent the outside world through
modulations in firing rate that are dependent on the presence of

particular features, such as the orientation of a visually presented
grating (Hubel and Wiesel, 1959). Stimulus representations by
single neurons have been studied over the past decades, but more
recent studies have shown that the interplay between neurons is
also of critical importance for understanding how sensory input
is translated into behavioral output (Petersen et al., 2002; Aver-
beck et al., 2006; Beck et al., 2008; Gutnisky and Dragoi, 2008;
Cafaro and Rieke, 2010; Churchland et al., 2010; Benucci et al.,
2013; Adibi et al., 2014; Pennartz, 2015; Schölvinck et al., 2015;
Sadacca et al., 2016). The behavioral detection of near-threshold
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Significance Statement

Temporally coactive neurons have been hypothesized to form functional assemblies that might subserve different functions in the
brain, but many of these proposed functions have not yet been experimentally tested. We used two-photon calcium imaging in V1
of mice performing a stimulus detection task to study the relation of assembly activity to the behavioral detection of visual stimuli.
We found that the presence of recurring assemblies per se was not correlated with behavior, and these assemblies did not appear
to serve a function in the coding of stimulus orientation. Instead, we found that activity in V1 is characterized by population events
of varying membership, within which the consistency of the temporal sequence of neuronal activation is correlated with stimulus
detection.
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stimuli depends on a population’s average activity but is more
strongly related to neuronal population phenomena, such as in-
stantaneous correlations in neuronal activity (Romo et al., 2003;
Luna et al., 2005; Cohen and Maunsell 2009, 2011; Mitchell et al.,
2009; Carnevale et al., 2013; T. W. Chen et al., 2013; Safaai et al.,
2013; Buran et al., 2014; Montijn et al., 2015). Although the com-
bination of these rate-based phenomena can predict an animal’s
choice probability to a large degree, also considering temporal
interdependencies may lead to a deeper understanding of neural
coding and its relation to stimulus detection.

It has been proposed that the temporal co-occurrence of
spiking activity in sensory cortex plays a role in information
processing, and especially in boosting the probability that repre-
sentations of stimuli with low salience are transmitted to postsyn-
aptic neuronal populations (Hebb, 1949; König et al., 1995;
Harris, 2005; Pennartz, 2015; Zandvakili and Kohn, 2015). This
has given rise to several hypotheses, of which we will focus on two
in particular. First, it has been proposed that in mouse primary
visual cortex (V1) groups of neurons are coactive in recurring
configurations (Miller et al., 2014; Carrillo-Reid et al., 2015).
These “ensembles” are hypothesized to show similar configura-
tions during spontaneous activity and in response to visual stim-
ulation. On top of this core ensemble configuration, additional
participating neurons can signal stimulus aspects, such as orien-
tation and salience. The second hypothesis entails that activity in
sensory cortex consists of discrete “packets” of neuronal firing,
with a relatively rigid temporal structure, where each neuron has
a preferred position relative to the packet’s temporal center of
mass (Luczak et al., 2007, 2013, 2015). This packet-like structure
would allow the weak effects of individual spikes to efficiently
summate and effect a strong postsynaptic response. Evidence for
these two proposals has been raised in passively stimulated sen-
sory cortex, but their relevance for behaviorally reported visual
detection of stimuli has not been established.

Therefore, we investigated whether assembly formation and
consistent temporal ordering are behaviorally relevant in a stim-
ulus detection paradigm. We used two-photon calcium imaging
of populations of �100 neurons in V1 L2/L3 of mice performing
a detection task. Superficial layers are easy to access with calcium
imaging, show ensemble activity in V1 (Miller et al., 2014), and
display neural correlates of stimulus detection (Ito and Gilbert,
1999; van der Togt et al., 2006; Glickfeld et al., 2013; Montijn et
al., 2015). We show that (1) recurring assemblies are present in
L2/L3 of mouse V1 but (2) do not encode stimulus orientation,
and their presence per se is not correlated with stimulus detection.
Instead, (3) V1 responses consist of stereotyped events with vary-
ing neuronal membership, and the sequential activation of these
events is more similar during the detection of visual stimuli.
Moreover, (4) within population events (PEs), the precision of
temporal positioning of neuronal responses is correlated with
visual detection. We conclude that the sequential structure of
neuronal activation is more behaviorally relevant than the mere
activation of these assemblies.

Materials and Methods
Note on present study. The current study presents analyses of datasets
that have been previously described (Montijn et al., 2015). Although
the data used for these studies are the same, the questions investigated
(and analyses performed) are very different. For more information on
the methods and data used, and for further analyses, see Montijn et al.
(2015).

Animals and surgery. All experiments were approved by the animal
ethics committee of the University of Amsterdam. Eight male C57BL/6J

mice (Harlan, 128 –164 d old at the day of calcium imaging) were used in
experiments. Before the imaging sessions, a head-bar implant was surgi-
cally fixed to animals, and the cranial window was sealed using a layer of
glue, silicon elastomer on top, and a small cover glass (6 mm) to fix the
silicone. Animals were then trained to perform a head-fixed visual go/
no-go detection task (see Behavioral training). On the day of the calcium
imaging recording, intrinsic signal imaging was performed to identify the
retinotopic region of the primary visual cortex (V1) responsive to the
employed visual stimulus. A small craniotomy (1.5–2.0 mm) was then
performed in the identified region. Multicell bolus loading with Oregon
Green BAPTA-1 AM (OGB) was used to be able to detect calcium tran-
sients. Sulforhodamine-101 was used to label astrocytes (Stosiek et al.,
2003; Nimmerjahn et al., 2004).

Behavioral training. Animals were trained daily (�45 min/d) over the
course of 10 –12 weeks. Mice were water-deprived for 6 h preceding
training and otherwise had ad libitum access to water. Animal weight was
consistently monitored and never dropped below 90% of the ad libitum
growth curve. Training was performed in dark, sound-attenuated cham-
bers and took place in the active (dark) cycle. The first 5 training days
were used to condition a licking response following visual stimulation, by
pairing passive stimulation with reward delivery (�9 ml of water with
15% sucrose containing 1% vanilla extract). After this phase, full-
contrast visual stimuli (for details, see Craniotomy and dye injection)
were presented until mice made a licking response. Licking was moni-
tored via a custom-made infrared lick detector. Upon detection of a
licking response, visual stimuli terminated and reward was available for
5 s. This phase lasted for at most 5 d. The next phase consisted of training
animals on a simplified version of the final task: stimulus presentation
time was reduced to at most 5 s and a trial could start only after a random
interval of 1–3 s without any licking response. Reward size was gradually
reduced to �3 �l per trial. Once animals could perform at least 80 trials
within 45 min, task complexity was increased. First, we introduced 0%
contrast probe trials to test for false alarm (FA) responses and calculate
whether performance was statistically above chance. Also, the intertrial
interval was increased to a 6 – 8 s random duration. Once a sufficient ratio
of hit/miss trials was achieved, we increased the intertrial interval to
10 –12 s and introduced mild air puffs as a negative reinforcer, to be
applied whenever mice would lick outside the stimulus presentation or
reward delivery period. To avoid explicitly teaching animals to make fast
behavioral responses, mice were always allowed to respond within 3 s
after stimulus onset. If the mice failed to respond, they received a time-
out period. Finally, if mice performed consistently and significantly
above chance during the previous phase (n � 12 of 21 animals, duration
of the phase: 8 –10 weeks), they were trained for 2 more weeks on the
microscope setup, especially to habituate them to the auditory noise of
the two-photon calcium imaging setup.

Craniotomy and dye injection. On the day of the imaging experiment,
buprenorphine (0.05 mg/kg) was injected subcutaneously before induc-
tion of isoflurane anesthesia (4.0% induction, 0.8% maintenance during
intrinsic signal imaging, 1.5%–2.5% maintenance during surgical proce-
dures). After induction, the animal was placed in a custom-built head-
bar holder. Intrinsic signal imaging was performed to localize the precise
location of the visual stimulus’ receptive field location in V1, after remov-
ing the cover glass, silicon elastomer, and layer of glue covering the skull
in the cranial window. We then performed a small (1.5–2 mm) craniot-
omy above the localized portion of V1. The dura was kept wet with ACSF
(NaCl 125 mM, KCl 5.0 mM, MgSO4 � 7 H2O 2.0 mM, NaH2PO4 2.0 mM,
CaCl2 � 2 H2O 2.5 mM, glucose 10 mM) buffered with HEPES (10 mM,
adjusted to pH 7.4). Multicell bolus loading with OGB and sulforhod-
amine 101 (SR101) was then performed 230 –270 �m below the dura as
previously described (Stosiek et al., 2003; Montijn et al., 2015). After
injection of the dyes, the dura was covered with agarose (1.5% in ACSF)
and sealed with a circular cover glass, which was fixed to the skull by
cyanoacrylate glue. Animals were allowed to recover for at least 90 min
before starting the imaging session. Of the 12 mice that learned the task,
we excluded 2 animals due to insufficient imaging quality.

Visual stimulation. Visual stimuli were delivered via a 15-inch TFT
screen (60 Hz refresh rate) positioned 16 cm from the mouse’s eye.
Stimuli were generated in MATLAB (The MathWorks) using the Psych-
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Toolbox extension (Brainard, 1997; Pelli, 1997). Stimuli consisted of
sequences of square-wave drifting gratings along eight different direc-
tions; stimuli were presented to a single eye in randomized order. During
calcium imaging, visual stimuli were presented for maximally 3 s and
were terminated at the onset of the first licking response. Stimuli were
alternated by an intertrial interval of variable, random duration (between
10 and 12 s) during which an isoluminant gray screen was presented.
Drifting gratings (diameter: 60 retinal degrees, spatial frequency: 0.05
cycles/degree, temporal frequency: 1 Hz) were presented within a circu-
lar cosine-ramped window to prevent edge effects at the border of the
circular window. A field-programmable gate array (FPGA, OpalKelly
XEM6001) was used to synchronize microscope, behavioral setup, and
visual stimulus presentation computer.

Calcium imaging recordings and final task parameters. We performed
dual-channel two-photon imaging recordings (filtered between 500 and
550 nm for OGB fluorescence and between 565 and 605 nm for SR101
fluorescence; see Fig. 1B) (Montijn et al., 2014) using a modified Leica
SP5 confocal system with a Spectra-Physics Mai-Tai HP laser (set at a
wavelength of 810 nm to simultaneously excite OGB and SR101). Images
were acquired from cortical layer 2/3 (140 –170 �m depth from the pia
mater) at a sampling frequency of 25.4 Hz via a resonant scanner and had
a 512 � 512 pixel frame size. During data acquisition, mice performed
the behavioral task described above. Stimulus parameters were equal to
those described above. The contrast of the drifting grating was varied
across the 0%–100% range (specific values: 0%, 0.5%, 2%, 8%, 32%, and
100%) to elicit a wide range of hit/miss ratios. Responses to all contrasts,
except 0% contrast probe trials, were rewarded. To avoid overtraining
and associated habitual or automated responses (Balleine and Dickinson,
1998), we did not overtly train animals to reach a very high detection
performance (i.e., high hit rates and low miss rates). The order of pre-
sentation of a complete set of visual stimuli (48 trials: 6 contrasts times 8
directions) was randomized independently in each repetition block. We
tested for statistically significant stimulus detection performance by cal-
culating the binomial 2.5th-97.5th percentile intervals (95% CI) of re-
sponse proportion to the two probe trial types (100% and 0% contrast
stimuli) using the Clopper-Pearson (CP) method. Of the 10 animals used
in the imaging experiments, one was rejected because of insufficient
discriminability between the two types of probe trials (i.e., overlapping
CIs). Another was rejected because of high variability in neural responses
resulting from brain movement. Eight animals thus contributed data for
all subsequent analyses. Each stimulus type (unique orientation � con-
trast) was repeated between 6 and 16 times. For most analyses, we used
spontaneous as well as stimulus-driven neuronal activity (see Figs.
1234-5, 8A–D). For all trial-based analyses, we aimed to prevent con-
founds from having higher signal-to-noise ratios for miss than hit trials.
Therefore, for each trial, we always analyzed the neuronal response dur-
ing the 2 s period after stimulus onset (see Figs. 7, 8 E, F, 9A–D), except for
additional control analyses (i.e., see Fig. 9E–K ), and when analyzing
cluster sequence similarity (see Fig. 6). For analyses as a function of
stimulus contrast, we averaged across all orientations (n � 4), so that
each contrast was presented 24 – 64 times (see Fig. 7). During most re-
cordings, the mouse’s eye was monitored with a near-infrared light-
sensitive camera (JAI CV-A50IR-C Monochrome 1/2 inch IT CCD
Camera) with a large-aperture narrow-field lens (50 mm EFL, f/2.8).
Images were acquired at 25 Hz, and pupil tracking was performed offline
using custom-written MATLAB scripts. When trials where the mice were
blinking or making saccades at any point during stimulus presentation
(10.2 � 4.6% of trials, mean � SD) were removed, this did not qualita-
tively affect the results (see also Montijn et al., 2015).

Data preprocessing. Small x-y drifts were corrected offline with an im-
age registration algorithm (Guizar-Sicairos et al., 2008). Regions of in-
terest (neurons, astrocytes, and blood vessels) were determined using a
custom-made semiautomated MATLAB software separately on each rep-
etition block (available at http://github.com/JorritMontijn/Preprocess-
ing_Toolbox). dF/F0 values were computed for each region of interest as
previously described (Montijn et al., 2014). For each image frame i, a
single dFi/F0i value was obtained for each neuron (regions of interest) by
calculating the baseline fluorescence F0i (computed as the mean of the
lowest 50% fluorescence in a 30 s window around frame i) and the dFi

value (computed as the difference between the neuron fluorescence in
frame i and F0i) (Montijn et al., 2014). We simultaneously recorded on
average 92.6 neurons per imaging session (range: 68 –130; SD: 19.0). To
avoid any bias due to the selective inclusion of neurons, we did not
specifically select only orientation-tuned neurons, but we instead ana-
lyzed data from all identified neurons. Unless specified otherwise, all
analyses were based on across-animal meta statistics using one data point
per animal (n � 8). All multiple-comparison t test p values were adjusted
by the Benjamini and Hochberg False Discovery Rate (FDR) correction
procedure. A value of p � 0.05 was considered significant.

Activation event (AE) detection. To be able to analyze temporal prop-
erties of neuronal population activity, we detected AEs in the dF/F0 data,
thereby reducing the continually varying fluorescence levels to point
events. To detect AEs, we used a previously published algorithm that fits
exponential decay functions to dF/F0 traces (Greenberg et al., 2008).
Detailed information can be found in the original publication, but in
short, we performed the following steps per neuron. First, we marked all
time points i (i.e., acquisition frames) that could potentially show AEs
when they fulfilled all of the following requirements:

dF/F0i � 6% (1)

dF/F0i � dF/F0i�1 � 2% (2)

dF/F0i � dF/F0i�2 � 0.8% (3)

dF/F0i�1 � dF/F0i�1 � �3% (4)

Finally, we fitted exponential decay functions to the dF/F0 traces that
started at the detected onset frames for potential AEs. To avoid overfit-
ting fluorescence noise, we removed all events that showed an insuffi-
cient amplitude (maximal dF/F0 � 10%). An AE was detected whenever:

F � Y/�Y� � 10% (5)

Here, F is the vector of single-cell dF/F0 responses at and after frame i, Y is an
exponential kernel, and * is the convolution operator as follows:

F � 	dF/F0i, dF/F0i�1, . . . , dF/F0i�17
 (6)

Y � 	e�0�dt/�, e�1�dt/�, . . . , e�17�dt/�
 (7)

The variables for the exponential kernel were dt � 39.4 ms (frame acqui-
sition duration at 25.4 Hz) and � � 500 ms (Greenberg et al., 2008). All
frames fulfilling Equation 5 were marked as time points where AEs were
detected.

Decoding of stimulus orientation. To validate the quality of AE detec-
tion, we performed an orientation decoding procedure on the dF/F0 data
as well as on the AE data (Greenberg et al., 2008) for a verification of the
AE detection algorithm, including simultaneous electrophysiological
spike recordings. A similar version of the leave-one-out cross-validated
template matching decoding procedure we used has been described in
detail previously (Montijn et al., 2014). In short, it calculates the Euclid-
ian distance d in SDs of neuronal population response from any trial t’s
population activity rt to the templates r� obtained for the different stim-
ulus orientations �, and then selects as decoded orientation the class with
the smallest distance as follows:

d�r�, rt� �
rt � ��

��
(8)

Here, each element in r�, rt, ��, and �� corresponds to a single neuron,
and the whole vector represents the entire neuronal population. Both the
subtraction and division operations are performed element-wise. ��.�� rep-
resents the vector norm. The template response r� for stimulus orienta-
tion � consists of the mean �� and SD �� of neural activity (in number of
AEs) for all neurons. For a given rt of trial t, the decoded orientation is
therefore the orientation � that yields the smallest distance d between the
template response (r�) and the actual neural response during that trial
(rt). For the calculation of template responses, trials of all non-zero con-
trasts (0.5% up to 100%) and behavioral responses (hits and misses) are
lumped together, explaining the relatively modest absolute accuracy (see
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Fig. 2B). Splitting datasets per stimulus contrast yielded insufficient rep-
etitions per orientation to reliably estimate template responses (results
not shown). Although previous studies have shown a tight correspon-
dence between detected AEs and single spikes (e.g., Greenberg et al.,
2008), it should be stressed that we do not claim such a strong one-to-one
relationship here. The aim of the procedure used here is to transform
dF/F0 data into point events, and a precise estimate of the number of
spikes occurring during a given calcium imaging frame is therefore not
required to interpret our results.

PEs and clustering. To study ensemble-related neuronal activation pat-
terns, we first grouped all AEs into PEs and isolated events (IEs). PEs were
defined as epochs of at least 78.8 ms (two acquisition frames) with no
enforced upper limit, where periods of nonactivity were never longer
than 39.4 ms (i.e., the interval between subsequent frame acquisitions).
Therefore, in every calcium imaging frame during these epochs, at least
one neuron had to be active. If during such epochs less than three cells
were participating, the constituent AEs were marked as IEs instead. All
remaining epochs were defined as PEs (Figs. 2E, 3A).

To further specify different types of PEs, we detected groups of neu-
rons that were repeatedly active in a similar configuration, so we con-
structed a hierarchical dendrogram of all PEs based on their participating
neurons using Ward’s method clustering (Fig. 3 B, C) (Ward, 1963). To
detect the optimal number of clusters, we calculated the mean silhouette
distance between clusters based on the Ward dendrogram, for a number
of clusters ranging from 2 up to 100 (Fig. 3D) (Rousseeuw, 1987). We
next smoothed the resulting silhouette distance curve with a Gaussian
kernel of SD 1.0 and defined the optimal number of clusters as the peak
(local maximum) silhouette distance with the largest troughs on either
side.

Core neurons and definition of recurring clusters (i.e., assemblies). Using
the above method to define an optimal number of clusters, we reclustered
all PEs using Ward’s method and checked for each resulting cluster
whether (1) it was not the rest group, and (2) it had more than one core
neuron member. The rest group was defined as the cluster with the lowest
within-cluster correlation of neuronal members participating in its con-
stituent PEs (Fig. 3E). The rest group’s PEs were marked as nonrecurring
PEs (NPEs). A neuron was defined as being a core neuron of a cluster
when it participated in more of the cluster’s occurrences (i.e., its PEs)
than would be expected by chance (Fig. 3F ). For each cluster, the chance
level participation was calculated with 1000 iterations of random resam-
pling of PEs: each iteration, as many PEs were randomly selected as there
were instances of the cluster’s occurrence. We calculated the 99th per-
centile of a neuron’s participation in a cluster across these 1000 iterations
(Fig. 3F, right, black error bars). A neuron was defined as being a core
neuron when its true participation rate in a cluster was higher than the
upper 99th percentile of the random reshuffling (Fig. 3F, green bars). PEs
were defined as recurring when at least more than one neuron was a core
neuron of the PE’s cluster, and the within-cluster correlation was higher
than the rest group (i.e., cluster with lowest within-group correlation)
(Fig. 3G,H ). The PEs of these clusters were marked as recurring PEs
(RPEs), and the clusters are referred to as “recurring clusters” (or “as-
semblies”). If only a single neuron was a core neuron, the cluster’s con-
stituent PEs were marked as single core-neuron PEs (SPEs). Because of
the ambiguity of whether this last group of clusters represented a recur-
ring configuration or not, they were not further analyzed when compar-
ing recurring (RPEs) and NPEs (see, e.g., Figs. 4, 5, 7). When all clusters
or PEs were analyzed regardless of recurrence characteristics, also SPEs
were included (see, e.g., Figs. 6, 8, 9).

As the number of neurons is an important factor that could influence
the results, we reperformed several analyses with the requirement of at
least four (instead of three) neurons being active for an event to qualify as
a PE. Increasing the required cell density to at least four neurons per PE
reduces the number of PEs by 37.8%, a significant reduction in the size of
the datasets. Because of this reduction, we found that the effect sizes were
often reduced, but the direction of the effects was maintained without
exception. For example, the cluster sequence similarity (the same analysis
as presented in Fig. 6) was still significantly correlated with stimulus
detection (hit vs miss, p � 0.028), and the reduction in latency variability
within PEs showed a trend in the same direction as before (lower vari-

ability during hits than misses), but this effect was statistically no longer
significant ( p � 0.063). Together with our other results that show ro-
bustness to variation in most of the parameters of how the effects are
quantified (e.g., time window, see Fig. 9; number of required neurons as
shown in Table 1) and the consistency of temporal sequences when cal-
culated differently (compare Fig. 8F with Fig. 9 B, E), we conclude that
the results we present in the manuscript are robust, albeit dependent on
a particular cell density. This can be likely ascribed to a reduction in
statistical power with higher minimum cell density.

Spatial grouping and orientation selectivity analysis. We hypothesized
that temporally coactive neurons might be more anatomically grouped.
To study this, we calculated the mean distance between pairs of neurons
within real recurring clusters, and compared this with what would be
expected if neurons were participating in the same recurring cluster ran-
domly across the field of view. We ran 1000 iterations per cluster c where
we randomly picked a number of neurons n from the pool of neurons
that were a core neuron of any cluster, where n is the number of core
neurons of cluster c. We calculated the mean pairwise anatomical dis-
tance between all randomly selected neurons per iteration. This shuffling
procedure therefore yielded a vector dshuffled of 1000 mean pairwise dis-
tances that we used to calculate the mean and SD of a randomly assigned
cluster of neurons. We transformed the actual mean pairwise distance d
into a z-score normalized distance dz based on the mean �shuffled and SD
�shuffled from the random distribution for each cluster c as follows:

dz �
d � �shuffled

�shuffled
(9)

The index dz therefore indicates the anatomical grouping of the core
neurons of a cluster of coactive neurons relative to what would be ex-
pected by chance. A negative value indicates more anatomical grouping
(i.e., the core neurons are closer together), and a positive value indicates
less grouping (see Fig. 4B).

Similar to the analysis described above, where we studied the anatom-
ical grouping of clusters, we also investigated the orientation tuning of
these clusters of coactive neurons. We calculated the orientation selectiv-
ity index (OSI) of clusters and of neurons as follows:

OSI � (Apref � Aorth)/(Apref 	 Aorth) (10)

Here, Apref is the mean number of AEs during trials of the preferred
stimulus orientation, and Aorth of the orientation orthogonal to the pre-
ferred orientation (separated by 90 degrees). In addition to using OSI, we
also investigated the common orientation tuning within recurring clus-
ters by calculating whether core neurons shared a more similar preferred
orientation than expected by chance. We performed both analyses with a
shuffle-control as described above for anatomical grouping. Instead of
taking the pairwise anatomical distance between somata, we took the
recurring cluster’s OSI (OSIc), or the pairwise angular difference in pre-
ferred orientation of the core neurons (�c). All other steps were identical
(see above), which yielded for each cluster an index OSIz, a normalized

Table 1. t test p values for anatomical grouping, mean OSI, and mean difference in
preferred orientation (dPO) as a function of different numbers of core neurons
required for inclusion of the clustera

No. of core neurons
required for
inclusion

Mean distance
between core
neurons; p value

Mean OSI of
clusters;
p value

Mean dPO of core
neurons per cluster;
p value

No. of recurring
clusters

2 (original) 0.004** 0.309; ns 0.246; ns 71
3 0.019* 0.402; ns 0.852; ns 53
4 0.022* 0.418; ns 0.709; ns 36
5 0.050; ns 0.258; ns 0.428; ns 31
6 0.046* 0.123; ns 0.616; ns 23
7 0.028* 0.107; ns 0.433; ns 19
8 0.057; ns 0.352; ns 0.936; ns 16
9 0.183; ns 0.066; ns 0.756; ns 11

10 0.183; ns 0.066; ns 0.756; ns 11
aOnly anatomical grouping was significant for a range of minimum core members; OSI and dPO were not.

**, p � 0.005; *, p � 0.05.
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metric of OSI, or �z, a normalized metric of the mean difference in
preferred orientation relative to chance as follows:

OSIz �
OSIc � �shuffled

�shuffled
(11)

�z �
�c � �shuffled

�shuffled
(12)

Positive values of OSIz and �z indicate that the recurring cluster is more
orientation tuned and that the cluster’s core neurons have a more dis-
similar preferred orientation, respectively (see Fig. 4C,D). To calculate
the presence of clusters during hit and miss trials shown in Figure 6F, we
used the same z-scoring procedure, except that we calculated the ratio of
trials in which a cluster was present (separately for hit and miss trials),
relative to the expected distribution of trial presence ratios.

Temporal interactions of occurrence probability. We investigated
whether the occurrence of a particular cluster’s PE would influence the
occurrence probability of PEs from that same cluster as well as from other
clusters (see Fig. 5). To do so, we aligned for each PE belonging to a
particular cluster all PEs from that same cluster over a window of �60 to
60 s around the time of the PE’s occurrence. We summed the number of
PEs at each time bin (size: 39.4 ms; 1/25.4 Hz) and divided by the overall
probability of a PE from that cluster occurring at a single time bin. This
way, we obtained a normalized occurrence probability for each cluster as,
for example, shown in Figure 5A. We repeated this procedure for PEs
from all other clusters (see Fig. 5A, blue trace). To quantify statistical
significance, we calculated a FDR-corrected p value using a one-sample t
test versus 100% chance level at each time bin, pooling the occurrence
probabilities over all clusters from all animals (Fig. 5D). A similar proce-
dure was performed as function of time after stimulus onset, by aligning
the occurrence of PEs to stimulus onset, rather than the time of occur-
rence of the cluster’s PEs (Fig. 5 B, C, E, F ). For these stimulus-related
analyses, a bin was defined as being significantly above chance when the
mean occurrence probability across recurring clusters was higher than
the mean plus 2 SDs (i.e., 
 � 0.05). The results were similar for a
threshold of 3 SDs (i.e., 
 � 0.003), and when the duration of PEs was
artificially set to a single frame duration (39.4 ms).

Cluster sequence similarity. We analyzed whether clusters occurred in
specific sequences during certain trial types, by calculating a cluster se-
quence similarity for same orientation trials versus different orientation
trials, as well as for miss trials versus hit trials. We defined this similarity
as follows. First, we considered only the order of clusters by itself: that is,
a trial where cluster 1 was present for 1000 ms, followed by 100 ms of no
PEs (denoted by “0”) and cluster 2 for 80 ms, has a similarity of 1 with a
trial where cluster 1 was present for 120 ms, followed by 800 ms of silence
and cluster 2 for 800 ms. Mathematically, this entails that when v � [1, 1,
0, 0, 2] and w � [1, 0, 2, 2, 0], then vNw, as both vectors reduce to [1, 2]
after the removal of silent periods (i.e., “0”) and durations are ignored.
For reduced vectors that correspond to the sequential presence of clusters
during a trial, the cluster sequence similarity 
 between two trials t and u
with their corresponding vectors v and w, is defined as follows:


t,u �
�i�1

n
��viwi

�

n
(13)

Here, � corresponds to the Kronecker �: that is, it is 1 when vi � wi, and
0 when vi � wi. n represents the number of cluster occurrences in which-
ever vector of v and w has the least number of elements (i being a single
element). 
 therefore has a maximum value of 1, when v and w have the
same elements at the same locations, and 
 has a minimum value of 0,
when the elements in v do not have the same value at the same position in
w. For example, a trial with a reduced cluster sequence of [4, 3, 2, 1] will
have a similarity of 0 with a trial where the reduced cluster sequence was
[1, 2, 3, 4].

Dependence of recurring cluster properties on contrast. To ensure iden-
tical sampling durations per trial, our standard procedure was to take all
PEs from stimulus onset until 2 s after onset for all stimulus-related
analyses that were based on PEs. Per contrast, we split all trials into hits

and misses (FAs) and correct rejections (CRs) for 0% contrast, respec-
tively. For each RPE, we calculated its size (number of participating
neurons), duration (number of consecutive frames where at least one
neuron was active), and number of AEs per second. Per recorded popu-
lation of neurons, we averaged these three properties, as well as the num-
ber of occurrences, across all trials of a given type (response type �
contrast). This yielded two contrast-dependent curves (hit/FA and miss/
CR) for each property. To compare these curves to a baseline level, we
also calculated these properties during the 2 s window preceding stimu-
lus onset. The graphs in Figure 7 show these curves as the mean � SEM
across animals.

Temporal sequence analysis. We hypothesized that stimulus detection
might be correlated with the sequential pattern of neuronal activation
within a PE. To study this phenomenon, we based our analysis on a
previously published procedure that has been applied to somatosensory
and auditory cortex (Luczak et al., 2007, 2013). Because each neuron n
could be active multiple times per PE p, we first calculated the neuron’s
average activation time t�p,n over all AEs during that PE. Next, for each
neuron in each PE, we calculated the neuron’s latency in milliseconds L
to the center of mass �p (i.e., mean) of the PE’s constituent AEs (see Fig.
8A). To better compare the ordering across PEs with different durations,
we normalized the latency by the SD �p of AEs of all neurons (all lumped)
within that PE as follows:

Lp,n �
t�p,n � �p

�p
(14)

The matrix L therefore contains the normalized latencies of all neurons
and PEs. We asked whether temporal locations of neuronal activity in
PEs were consistent across clusters. We investigated this by calculating
the mean latency L�n for each neuron across all PEs and compared this
value with the mean latency l�c,n per neuron within all PEs that were
grouped within each cluster c. The consistency values r plotted in Figure
8B are Pearson correlations of each cluster’s neuronal latency vector l�c

(each element being a single neuron) with the overall neuronal latency
vector L� calculated across all PEs as follows:

r � corr�L� , l�c� (15)

We assessed the statistical significance of these values by comparing them
with consistency values obtained from a random shuffling procedure we
reiterated 1000 times. Each iteration, we randomly shuffled the times of
occurrence of all AEs from all neurons and reassigned these shuffled AE
times to all neurons. This way, each neuron keeps the same number of
AEs, and the mean population activity is not altered, as all AEs occur at
the same points in time. However, the neuronal identities that belong to
the AEs are now completely random. Therefore, the temporal structure
of the population response is preserved, but the temporal structure of
AEs per neuron is destroyed. For each iteration, we recalculated the
temporal sequence consistencies (Eq. 15), and the shuffled values plotted
in Figure 8C show the mean � 95% CI. The boxplots in Figure 8D show
the distribution of mean consistency values across animals (n � 8).

To study whether temporal sequence consistency was correlated with
stimulus detection, we selected from the latency matrix L the subset of
PEs that occurred during either hit trials or during miss trials (see Fig.
8E). For each individual PE, we calculated the Pearson correlation of
latencies with the overall latency calculated across all PEs, similar to
Equation 15, except for l� being a vector of latencies during a single PE.
This yielded a consistency value (Pearson’s r) for every PE that occurred
during a hit or miss trial (for two example PEs during miss trials and two
example PEs during hit trials, see Fig. 8E). The mean sequence consis-
tency was then statistically quantified by comparing the means across
animals between hits and misses (see Fig. 8F ).

The difference in single-trial sequence consistency between hits and
misses was significant. However, considering the importance of this dif-
ference, we additionally examined this result using an alternative ap-
proach. Again, we selected the same subset of PEs during either hit trials
or during miss trials as above, but now calculated the variability in la-
tency v for each neuron across PEs and averaged across neurons, rather
than the mean consistency in latency of each PE as follows:
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v �
�n�1

N
sn

N
(16)

Here, sn is the variability (i.e., SD) in latency across PEs for neuron n, and
N is the number of neurons. For this calculation, we discarded all neu-
rons that participated in less than five PEs during hits or during misses
(20.12 � 5.67% of neurons were discarded, mean � SEM across ani-
mals). The variability in latency values in Figure 8B is shown as mean �
SEM across animals.

We also compared the interaction between stimulus detection, se-
quence consistency, and orientation decoding accuracy. We split all trials
into hits and misses, or split all trials into the highest and lowest 50%
sequence consistency trials and compared the decoding accuracy be-
tween these two groups for both ways of splitting the data (see Fig. 9C,D;
for more information on the decoding procedure, see Eq. 8).

Results
We investigated which temporal characteristics of neuronal pop-
ulation activity in mouse primary visual cortex (V1) correlate
with the detection of visual stimuli (Fig. 1). To this end, we re-
corded two-photon calcium imaging data of L2/L3 neurons
(range: 68 –130; mean � SD: 92.6 � 19.0 per mouse) in V1 of
mice that were trained to perform a go/no-go stimulus detection
task (Fig. 1A,B,D). During imaging, animals were awake, head-
fixed and indicated by licking whether a square-wave drifting
grating was presented. Stimulus duration was delimited by the
onset of the first licking response. If licking did not occur within
3.0 s of stimulus onset, the trial was scored as “no response”;
therefore, no licks occurred during presentation of the stimulus.
To acquire a sufficient range of hit/miss ratios, we presented test

stimuli with different luminance contrasts: 0.5%, 2%, 8%, and
32%. These test trials were interleaved with 0% no-contrast and
100% full-contrast probe trials to estimate the animals’ ratio of
FAs and omissions. For all analyses, we discarded trials where
animals responded within 150 ms after stimulus onset (0.3%–
3.5% of trials per animal) because such fast responses may be
ascribed to spontaneous licking.

To quantify behavioral performance during execution of the
task, we calculated the 2.5–97.5th percentile intervals (hence-
forth, 95% CIs) of response proportions to the two types of probe
trials: no-contrast and full-contrast stimuli. All eight animals
showed a significantly above-chance visual detection of square-
wave drifting gratings during the acquisition of neural data (Fig.
1C) (nonoverlapping CP 95% CIs). Moreover, behavioral re-
sponse proportions increased with higher stimulus contrasts
(Fig. 1E) (group-level linear regression analysis, p � 1.07 �
10�7) and mean reaction times decreased (Fig. 1F) (p � 0.004)
(Montijn et al., 2015).

Detection of AEs in calcium data
To study temporal properties of neuronal population activity, we
transformed our calcium imaging data of single cells from con-
tinuous dF/F0 signals to point events of neuronal activation
(AEs). As the fluorescent somatic Ca 2� signal is strongly corre-
lated with action potential firing, these point events can be allo-
cated to acquisition frames where a neuron was likely firing one
or more spikes (Stosiek et al., 2003; Kerr et al., 2005; Greenberg et
al., 2008). To detect these AEs, we used a previously published
procedure (Greenberg et al., 2008). In short (for more detailed

Figure 1. Mice perform a go/no-go stimulus detection task during in vivo calcium imaging of V1 populations. A, Task schematic showing a single trial. In each trial, one of a combination of eight
different directions and six contrasts was presented. Two of these contrasts were probe trials: a 0% contrast isoluminant gray blank screen was used to infer the FA rate, and a 100% full contrast
stimulus was used to infer the lapse rate. The order of presentation of stimulus contrast and direction was randomized per block of 48 trials (6 � 8). At the first licking response during visual
presentation, the stimulus was turned off and mice received a reward (sugar water). B, Schematic of the behavioral setup with example recording field of view. The mouse’s pupil was monitored,
and licking responses and running on a treadmill were recorded. C, The eight animals included in this study showed statistically significant stimulus detection during calcium imaging, quantified by
nonoverlapping 2.5–97.5th CP percentile CIs (95% CI) ( p � 0.05) of behavioral response proportions for 0% (red) and 100% (green) contrast probe trials. D, Example of simultaneously recorded
licking responses and traces of neurons labeled in B. Blue or green ticks and gray shaded areas in the top row represent licking and reward presentation, respectively. Vertical colored bars represent
stimulus presentations; width, color, and saturation represent duration, orientation, and contrast respectively. E, F, Mice showed higher behavioral response proportions (linear regression analysis,
***p � 1.07 � 10 �7; E) and faster reaction times (**p � 0.004; F ) with higher stimulus contrasts. Figure elements adapted from Montijn et al. (2015).
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information, see Materials and Methods), this procedure finds
the best fit of a summation of exponential decay functions to the
dF/F0 trace of a neuron (Fig. 2A–D). We used an information
theoretical approach to verify that a similar amount of informa-
tion on stimulus orientations was present before and after AE
detection. We used a cross-validated orientation decoding algo-
rithm (see Materials and Methods) to decode orientation from
both the dF/F0 data and the AE detections and found no differ-
ence in decoding performance (Fig. 2D) (paired t test across an-
imals, n � 8, p � 0.739). This shows that the information content
on stimulus orientation was equally large for the raw dF/F0 signal
and AE detected signals. Considering that AE detection repre-
sents a significant data reduction compared with dF/F0 signals,
this suggests that this detection removed mostly noise, while
most of the neural signal was preserved. Moreover, the mean
neural activity across trials and neurons was highly correlated
between the two quantification methods (dF/F0 and AEs; Pear-
son correlation, mean � SEM across n � 8 animals: r � 0.78 �
0.016, t test vs 0, p � 4.0 � 10�10) (Fig. 2B,C). For the remainder
of the manuscript, we will analyze the temporal behavior of AEs,
in particular in relation to the temporal co-occurrence of the
activity of multiple neurons (i.e., PEs), stimulus detection, and
sequential activation patterns.

Defining PEs and recurring assemblies
Assemblies are often defined as groups of neurons that are
repeatedly temporally coactive within a short time window
(König et al., 1995; Harris, 2005; Miller et al., 2014). We in-
vestigated some of the fundamental properties of recurring
population activity and studied whether the recurrence of spe-
cific neuronal configurations was correlated with the detec-
tion of visual stimuli. To identify such assemblies, we started
by grouping all AEs into PEs. In short, a PE was defined as the
epoch during which AEs (of any neuron) were continuously

present (i.e., cessation of activity in the population was never
�39.4 ms, the interval between subsequent calcium imaging
frame acquisitions). All AEs occurring during this period were
grouped as belonging to the same PE. AEs that occurred in
temporal isolation, or during PEs where fewer than three neu-
rons were active, were discarded and marked as IEs (Figs. 2E,
33A; see Materials and Methods).

After grouping the data into PEs and discarding all AEs occur-
ring outside PEs, we obtained thousands of PEs per animal
(mean � SEM across animals, number of PEs: 3920 � 527; PEs
per second: 1.01 � 0.21; trials with at least one PE: 80.1 � 4.4%;
N � 8 mice). To detect groups of neurons that were repeatedly
temporally coactive, we performed a Ward-method clustering
procedure of PEs based on the similarity of their constituent
neuronal members, and defined the optimal number of clusters
using an analysis of silhouette distance (Ward, 1963; Rousseeuw,
1987) (Fig. 3B–D). The optimal number of clusters per animal
was 14.9 � 3.1 (mean � SEM across animals; also hereafter un-
less noted otherwise). Next, we calculated for each cluster its
consistency (i.e., mean Pearson correlation between all PEs as-
signed to a given cluster) and defined the clustering procedure’s
rest group with the lowest mean correlation as nonrecurring PEs
(NPEs, events per second: 0.28 � 0.09) (Fig. 3E). To define which
neurons were “core neurons” of a cluster, we calculated which
cells were present in significantly more PEs than expected by
chance (Fig. 3F,G; see Materials and Methods). All clusters that
had more than one core neuron, and were not the rest group,
were defined as recurring assemblies (Fig. 3H). We marked all
PEs in such recurring clusters as RPEs (events per second: 0.57 �
0.13). The number of recurring clusters per animal was 8.88 �
1.95 (mean � SEM across animals). PEs assigned to a cluster that
had only one core neuron were marked as single core-neuron PEs
(SPEs, events per second: 0.16 � 0.02). The time the recorded V1
populations spent in different types of PEs, as a percentage of

Figure 2. Schematic explaining and validating the procedure of detecting AEs and PEs in calcium imaging data. A, For each neuron, we detected putative spiking events with a previously
published procedure (Greenberg et al., 2008), which is based on finding a summation of exponential decay functions that minimizes the error with the fluorescent dF/F0 calcium signal. B, C, Example
dataset of one animal before (B) and after (C) AE detection. Mean neural responses per trial (x-axis) and neuron (y-axis) in dF/F0 are similar to those in number of AEs (element-wise Pearson
correlation, mean � SEM across animals: r � 0.78 � 0.016). D, A cross-validated orientation decoder performs equally well on raw dF/F0 signals as on AE-detected signals, which represent a
drastically data-reduced version of the original signal (paired t test across animals, n � 8, p � 0.739, not significant). Equal decoding performance, despite severe data reduction, shows that the
amount of stimulus information in the neural signal is not affected by the AE detection procedure. E, Flowchart summarizing the data analysis steps as follows: EI, Calcium-imaging data are acquired
and preprocessed. EII, AEs are detected in each neuron’s dF/F0 trace. EIII, AEs that are temporally concurrent are grouped into PEs. EIV, All PEs are clustered based on which neurons are participating.
EV, Clustering yields three types of PEs: those that show a recurring configuration of neurons (RPEs), those that do not (NPEs), and those that show a recurring configuration but have only one core
neuron (SPEs). n.s., Not significant.
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total recording time, was 15.9 � 4.3% for PEs, 10.0 � 2.9% for
RPEs, 3.9 � 1.4% for NPEs, and 2.1 � 0.3% for SPEs. RPEs,
NPEs, and SPEs add up to the total number of PEs. In Figures 4
and 5, we analyzed only RPEs; in Figure 7, RPEs and NPEs; and in
Figures 6, 8, and 9, all PEs (RPEs, NPEs, and SPEs). Mean PE
duration was 146.9 � 7.8 ms, and the number of participating
neurons was 6.1 � 0.6 (6.7 � 0.5%).

Members of recurring clusters are anatomically grouped, but
not similarly tuned
Having defined which neurons are core neurons of recurring
clusters; and when they occur, we addressed whether these
clusters’ core neurons are anatomically grouped, and share the
same orientation preference. For each recurring cluster, we
computed the mean pairwise distance in microns between its
neuronal core neurons. We compared this to a distribution of
expected random mean distances, given the anatomical posi-
tions of the neurons. This distribution was obtained by shuf-
fling neuronal identities within the subset of neurons that
were a core neuron of any cluster, and recomputing for each
iteration the mean pairwise distance of a similarly sized group
of neurons (Fig. 4A). The distribution was then used to z-score
normalize the cluster’s mean pairwise distance (Eq. 9). We
repeated this procedure for all recurring clusters of all animals
and tested whether the overall z-scored distances were differ-
ent from 0 (t test vs 0, n � 71 assemblies, mean � �0.431 �,
p � 0.004; Fig. 4B). The distribution was significantly skewed

toward negative values, showing that core neurons of recur-
ring clusters are anatomically grouped.

Next, we asked whether core neurons of recurring clusters
were coactive because they shared a similar orientation pref-
erence. An analysis of the orientation selectivity index (Eq. 10)
of recurring clusters and all recorded neurons showed that
these clusters were on average less orientation-tuned than sin-
gle neurons (two-sample t test of neuronal OSI, n � 891, mean
OSI � 0.451) versus recurring cluster OSI (n � 71, mean
OSI � 0.373, p � 0.009). Analyzing the OSIs of recurring
clusters relative to a shuffle control where we randomized each
cluster’s core neurons showed a comparable result. When us-
ing a similar procedure as described above for investigating
anatomical grouping (see Materials and Methods), we found
that the recurring cluster OSIs were not significantly different
than expected if their core neurons were selected randomly (t
test vs 0, n � 71 recurring clusters, mean � �0.127 �, p �
0.309, not significant; Fig. 4C). We corroborated these results
by calculating the similarity of orientation preference of core
neurons. This analysis revealed that core neurons of a recur-
ring cluster were not more similarly tuned than chance (t test
vs 0, n � 71 recurring clusters, mean � �0.157 �, p � 0.246,
not significant; Fig. 4D). Combining the results from these
analyses, we conclude that the grouping of core neurons in
recurring assemblies (i.e., recurring clusters) appears to be
more related to these neurons being anatomically close to each
other than to them preferring similar stimulus features. These

Figure 3. Grouping of AEs into PEs and subsequent Ward-method cluster analysis allow the determination of recurring neuronal clusters. A–H, The procedure in one example animal. A, AEs were
grouped into PEs (dots of same color), which were initially defined as epochs where periods of nonactivity were never �39.4 ms (the duration of one acquisition frame). PEs were subsequently
discarded if they were �78.8 ms (two acquisition frames) or when fewer than three neurons participated. Discarded events (i.e., IEs, gray dots) were not used for further analysis. B, To determine
the similarity in neuronal configuration between PEs, each PE was transformed into a Boolean vector, where each element represents a single neuron, and “True” indicated whether the neuron
participated in that event. Colored PEs refer to the same events as those shown in A. Gray PEs represent additional example events. C, A Ward-method clustering procedure on PE membership vectors
yielded a hierarchical dendrogram, where short distances between events indicate a high similarity in the configuration of participating neurons. D, A silhouette distance analysis for different
numbers of clusters provided an estimate of the optimal number of different configurations of neurons, which in this example animal was 11. E, The correlation matrix of similarity in neuronal
members between all PEs, grouped by cluster, shows a higher within-cluster correlation than between-cluster correlation. In this animal, cluster 10 is the “rest group” of NPEs (i.e., the cluster with
lowest within-group correlation). F, For each cluster (panel shows cluster 2 as example), we calculated which neurons were “core neurons” using a shuffling procedure that randomizes an AE’s
neuronal identity and estimates the chance level participation of all neurons in the cluster. Black error bars indicate mean � 3 SDs. Significant core neurons (i.e., neurons with a participation above
the 99th chance percentile) are shown in green (also marked by *) and nonsignificant neurons in red (right). G, Matrix showing core neurons for all 11 clusters. Black represents the neuron is a core
neuron. White represents it is not. Neurons could be core members of multiple clusters. H, Clusters were defined as “recurring” when the cluster had at least two core neurons and did not have the
lowest within-group correlation of all clusters in a single session. Green bar represents the cluster fulfills these requirements. Red bar represents it does not.
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effects appeared to be robust to the min-
imum number of core neurons required
to define a cluster as “recurring,” as sim-
ilar results were obtained with mini-
mum core neuron numbers of up to
seven: anatomical grouping was pre-
dominantly present, and orientation
tuning effects were consistently absent
(Table 1).

PE occurrence is independent of prior
events at the timescale of seconds
Assembly occurrence in brain regions
other than the visual cortex, such as
hippocampus, has been associated with
replay of past events and other memory-
related phenomena (Wilson and Mc-
Naughton, 1994; Nádasdy et al., 1999; Lee
and Wilson, 2002; Girardeau et al., 2009;
Lansink et al., 2009), and it has been sug-
gested that similar mechanisms may oper-
ate in rodent V1 (Xu et al., 2012). We
therefore investigated whether the occur-
rence probability of a cluster’s PEs was re-
lated to prior and/or future occurrences
(Fig. 5A), and whether there was an in-
crease of recurrence probability following
stimulus presentation and hit responses
(Fig. 5B,C). First, we calculated for each
recurring cluster from all animals the self-
recurrence probability as well as the non–
self-recurrence probability as a function
of time (Fig. 5D, red and blue traces, re-
spectively). Although a short-term in-
crease in self- or other-cluster occurrence
probability was present around the occur-
rence of a PE (5–10 s), there was no long-
term memory component: the occurrence
of a PE has no effect on the probability of occurrence of other PEs
after 5–10 s (Fig. 5D; FDR-corrected one-sample t test of normal-
ized occurrence probability vs 100%, n � 71 clusters, p � 0.05
only between �2.1 and 2.3 s after PE occurrence for same-cluster
PEs, and between �4.8 and 6.7 s for other-cluster PEs). This
suggests that there are periods of several seconds within which the
probability of a PE is higher than baseline, but longer time-scale
interactions in occurrence of RPEs and NPEs were not observable
in our dataset. We next investigated the probability of occurrence
of PEs as a function of time after stimulus onset and found a
stimulus induced, but nearly memoryless behavior: stimulus on-
set significantly enhanced the probability of a PE occurring, but a
couple of seconds after stimulus onset this probability was back
to chance level (Fig. 5E; occurrence probability �2 SDs above
chance, n � 71 clusters, p � 0.05 only between 0.2 and 2.9 s after
stimulus onset). A similar analysis centered at the first licking
response during a hit trial showed a comparable result (Fig. 5F;
p � 0.05 between �0.7 and 1.1 after hit response), and these
effects were still present when PE durations were artificially set to
a single frame duration (39.4 ms) (Fig. 5G–I). We therefore con-
clude that PE occurrences in L2/L3 of mouse V1 do not show
experience-dependent replay-like features and show no evidence
of a memory-component that persists longer than several sec-
onds. However, these effects all pertain to timescales shorter than
several hours and that long-term effects (e.g., learning across

days) may very well exist and interact with the creation of recur-
ring events and their occurrence probability (Xu et al., 2012).

Sequences of clusters are more similar during stimulus
detection trials than nondetection trials
Having established that long timescale interactions in the occur-
rence probabilities of clusters did not appear to be present, we
next addressed whether short timescale interactions between
clusters may be functionally relevant. It has been reported before
that particular sequences in states of activity in gustatory cortex
can be used to distinguish different olfactory stimuli (Jones et al.,
2007). We therefore analyzed whether clusters occurred in se-
quences specific for the presented orientation, or whether they
distinguish miss trials versus hit trials (see Materials and Meth-
ods). Because probe trials (0% and 100% contrast) would dilute
hit/miss differences, we included only test contrasts (0.5%, 2%,
8%, and 32%) and discarded probe trials for this analysis. We
calculated a measure of sequence similarity between two trials,
based on the order of cluster occurrence (Fig. 6A). We did not
find that different stimulus orientations evoked different se-
quences of clusters (Fig. 6B,D; t test across animals, N � 8, p �
0.885), but cluster sequences did appear to be more consistent
during the detection of visual stimuli (i.e., hits) than when stimuli
were not detected (i.e., misses) (Fig. 6C,E; p � 0.002). Using a
procedure where we shuffled the identities of clusters to estimate
the chance level of sequence similarities, we found that, during hit

Figure 4. Anatomical proximity between neurons increases the probability of forming a recurring cluster, regardless of orien-
tation tuning. A, Example field of view (average across frames) for one example animal, showing all neurons (green blobs) that
were a core neuron in at least one cluster (white circles) and neurons that were a core neuron in the example cluster 2 (red circles).
B, Core neurons’ somata were spatially widespread across the recording plane but showed a significant tendency to be more
spatially localized than chance (one-sample t test of normalized distances vs 0, n � 71 recurring clusters from 8 animals total, p �
0.004). C, Recurring clusters were not more orientation selective than chance (one-sample t test of OSI normalized to chance, n �
71, p � 0.309, not significant). D, This low orientation tuning for recurring clusters can be explained by the observation that core
neurons of the same recurring cluster do not share a similar orientation preference. Core neurons were not more similarly tuned
than expected from randomly combining neurons regardless of their orientation preference (one-sample t test of normalized
difference in preferred orientation, n � 71, p � 0.246, not significant).
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trials, sequences were more similar than expected by chance (hits:
t test, N � 8 animals, real vs shuffled: p � 5.7 � 10�5), but no
such effect was observable for miss trials (misses: real vs shuffled,
p � 0.202). Importantly, this sequence effect was present without
individual clusters preferentially occurring during hit or miss
trials, as the distribution of the presence of clusters during hit and
miss trials was not significantly different (Fig. 6F; t test of means,
hit vs miss, p � 0.079; F test of variance, hit vs miss, p � 0.106).
Moreover, this effect was not correlated with licking behavior
itself, as a separate analysis of FAs and CRs showed no difference
in sequence similarity (t test, FAs vs CRs, p � 0.329). This sug-
gests that sequences of clusters are more similar when stimuli are
detected, above and beyond individual clusters being correlated
with either hit trials or miss trials.

PEs are stereotyped, but neither the identity nor occurrence
frequency of clusters is correlated with detection
While assemblies in L2/L3 of mouse V1 do not appear to be
involved in coding for grating orientation, they do appear to play
a role in the visual detection of stimuli. We hypothesized that not
only the sequence in which a cluster occurred might be relevant
for stimulus detection, but that also the underlying properties
(such as the duration, number of participating neurons, or level
of neuronal activity) of recurring and NPEs may change between
hits and misses. For the following analyses, we therefore split all
trials into hits and misses (0.5%–100% contrast), and into CRs
and FAs (0% contrast). We selected all PEs that occurred during
the first 2 s after stimulus onset and split them into PEs of recur-
ring clusters (RPEs) and PEs of nonrecurring clusters (NPEs).

Figure 5. The occurrence of PEs is independent of prior occurrences at timescales longer than several seconds. A, Example occurrence probability of PEs of cluster 2 (red) and other clusters (blue)
as a function of time after a cluster 2 PE, normalized to chance occurrence (100%). A small peak of increased PE probability for both cluster 2 and other clusters can be seen several seconds around
the occurrence of a cluster PE. B, Example occurrence probability of cluster 2 PEs as a function of time around stimulus onset. An increased probability of cluster 2 PEs can be seen immediately
following stimulus onset. C, Similar analysis as in B, but now centered on the first licking response during hit trials. D, Quantification as in A, now showing mean � SEM across all clusters of
occurrence probabilities. Increased probability of occurrence is fairly symmetrical around time of occurrence (t�0 s) and extends for only several seconds backward as well as forward (FDR-corrected
one-sample t test vs 100%, n � 71 clusters, p � 0.05 between �2.1 and 2.3 s for same-cluster PEs, and between �4.8 and 6.7 s for other-cluster PEs). E, Quantification of B, showing mean � SEM
across all clusters of occurrence probabilities as in B. Stimulus onset increases occurrence probability of PEs for several seconds, but occurrence probability quickly returns to chance level with no
obvious long-term (�3 s) memory component (probability �2 SDs above baseline, gray shaded area; n � 71 clusters, p � 0.05 between 0.2 and 2.9 s after stimulus onset). F, Quantification of C,
using same conventions as in E. Occurrence probability of RPEs is enhanced for approximately 1 s around the licking response during hit trials (probability �2 SDs above baseline, p � 0.05 between
�0.7 and 1.1 s after hit response). G–I, Same as D–F, but now the duration of each PE is artificially set to one acquisition frame (39.4 ms). This control analysis shows that the short timescale
temporal correlations in A–F are not due to the relatively long durations of PEs.
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For each contrast and response type, we calculated the number of
RPEs and NPEs, their mean duration, the number of participat-
ing neurons per second, and the number of AEs per second (Fig.
7). Perhaps surprisingly, none of these properties differed be-
tween hits and misses or between FAs and CRs (for all four prop-
erties: FDR-paired t tests across animals, n � 8, hit vs miss, or FA
vs CR, for each contrast, p � 0.05; not significant). Moreover,
only the number of NPEs increased as a function of contrast
(FDR-corrected paired t tests across animals, contrast occur-
rences vs baseline, 2 s period preceding stimulus onset, occur-
rences; FAs and hits: 0%, p � 0.744; 0.5%, p � 0.184; 2%, p �
0.038; 8%, p � 0.014; 32%, p � 0.0011; 100%, p � 0.0007; CRs
and misses: 0%, p � 0.895; 0.5%, p � 0.352; 2%, p � 0.045; 8%,
p � 0.045; 32%, p � 0.036; 100%, p � 0.045). All other compar-
isons versus baseline were nonsignificant (p � 0.05). Moreover,
although we observed a wide range of hit/miss occurrence ratios
across recurring clusters, the overall distribution was not signifi-
cantly different from chance (permutation test, n � 71 clusters,
p � 0.552, not significant). We therefore conclude that PEs in
general occur in a relatively stereotyped manner; all PEs are ap-
proximately equally long, of the same size (in neurons), show the
same number of AEs per second, and these properties are not
related to the behavioral detection of visual stimuli.

Neurons in mouse V1 show a preferred temporal position
in PEs
Previous studies investigating stereotyped population AEs (or
“packets”) in sensory cortex have mostly been performed in au-
ditory and somatosensory areas (Luczak et al., 2007, 2013, 2015;
but see also Carrillo-Reid et al., 2015). We therefore analyzed our
data to check whether temporal sequences that characterize these
packets may be present in visual cortex. In short (see also Mate-
rials and Methods), we calculated, for each PE in the entire data-
set, the center of mass in time of its AEs. For each neuron, we then
calculated the mean latency in milliseconds of its AEs to the PE’s
center of mass (Fig. 8A). Next, we computed for each cluster the
average AE latency per neuron (Fig. 8B), and correlated this
within-cluster ordering with the ordering obtained when com-
puted across the entire dataset (Fig. 8C, blue points). We per-
formed a shuffling control to correct for potential biases in our
analysis of sequence consistency (i.e., the Pearson correlation
with the mean overall sequence). Per shuffle iteration, the neu-
ronal identity of all AEs was randomized; therefore, the temporal
structure of the population response remains intact, but the tim-
ing per neuron is random (see Materials and Methods). As ex-
pected, these shuffled distributions yielded consistency values
close to 0 (Fig. 8C). Comparing the consistency of neuronal acti-

Figure 6. Clusters occur in more similar sequences during trials where the stimulus is detected than during trials where it remains undetected. A, Cluster occurrences during four example trials,
including also nonrecurring clusters (i.e., cluster 10). Trials 2 and 100 show a sequence similarity of 1.0, whereas the other combinations of trials show a similarity of 0.0. B, Cluster sequence similarity
for this example animal is not higher for trials with the same stimulus orientation (diagonal entries) than for trials with different orientation (off-diagonal entries), showing that stimulus orientation
is not encoded in the sequence of cluster occurrences (all t tests between sequence similarities based on stimulus orientation, p � 0.05; not significant). C, Same example animal as in B, showing
a higher cluster sequence similarity between hit trials than between miss trials ( p � 1.04 � 10 �28, n � 9702 hit trial pairs, n � 26,406 miss trial pairs). Black bars represent baseline (shuffled)
similarity values expected by chance. D, Across animals, we found no evidence for stimulus orientation being encoded by sequences of clusters (same orientation trial pairs: t test of real vs shuffled,
p � 0.330; different orientation trial pairs: t test of real vs shuffled, p � 0.384; t test of same vs different orientation trial pairs: p � 0.885; n � 8 animals). E, Cluster sequence similarity is higher
between hit trials than between miss trials (t test, p � 0.002), and sequence similarity between hit trials is higher than expected by chance (hits: t test of real vs shuffled: p � 5.7 � 10 �5), but not
for miss trials (misses: t test of real vs shuffled, p � 0.202). F, The enhanced sequence similarity for hit trials cannot be explained by particular clusters occurring preferentially during hit or miss trials:
the distribution of cluster presence during trials, normalized to chance, is not different for hits and misses in terms of mean and variance; hits (mean ��0.433, SD � 2.140) versus misses (mean �
�0.890, SD � 1.843), t test, p � 0.079; F test, p � 0.106; n � 119 clusters (including nonrecurring clusters). ***, p � 0.001. n.s., Not significant.
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vation sequences across animals (n � 8 animals, one mean con-
sistency value per animal), we found that RPEs (mean � SEM,
r � 0.505 � 0.06, t test vs 0, n � 8, p � 5.37 � 10�5), but also
NPEs and SPEs (mean � SEM, r � 0.497 � 0.05, p � 1.71 �
10�5), showed significant temporal sequence consistencies (dif-
ference between RPEs and NPEs/SPEs, p � 0.924, not significant)
(Fig. 8D). Nonrecurring clusters (and to a lesser degree also re-
curring clusters) show varying neuronal members with each oc-
currence. The reported temporal consistency should therefore
not be taken as an indication of a fixed neuronal sequence, but
rather as an indication that each neuron shows a consistent la-
tency with respect to the center of mass of a PE, regardless of the
identity of other neurons participating in the event. We therefore
conclude that, even with the relatively modest temporal resolu-
tion of calcium imaging (25.4 Hz), neurons have a clear preferred
temporal position within PEs. However, this does not rule out the
possibility of finding different effects, or an even stronger tempo-
ral structure in population activity, when an analysis at shorter
timescales would have been possible. Considering that neurons
show a consistent temporal latency, and core neurons of recur-
ring clusters tend to be anatomically grouped, we hypothesized
that these phenomena might represent aspects of traveling waves
of neuronal activity. We therefore investigated whether, for pairs
of neurons, there was a correlation of the difference in latency
with the anatomical distance between somata. We found no such
consistent effect across animals (t test of Pearson correlations
across animals, n � 8; r � 0.006 � 0.019, mean � SEM,
p � 0.751, not significant), suggesting that anatomical grouping
and preferred temporal positions of neuronal activation are likely
not related to traveling waves.

Temporal position of activation is more reliable during
stimulus detection
We hypothesized that the temporal order of neuronal activation
within PEs might be more important for visual stimulus detec-
tion than the features of PEs examined above, such as their rate of
occurrence, duration, size, and number of AEs. We therefore
investigated the consistency of neuronal sequences in PEs during
miss and hit trials. As before, we included only test contrasts
(0.5%, 2%, 8%, and 32%) and discarded probe trials for this
analysis. To ensure equal durations of time windows, we consid-
ered only PEs that occurred during the first 2 s after stimulus
onset. Given our previous results that PE properties changed little
as a function of contrast or orientation, we pooled the data over
all orientations and contrasts. For each PE that occurred during a
miss or hit trial, we calculated its consistency with the overall
sequence (i.e., Pearson correlation of neuronal latencies; Fig. 8E;
see Materials and Methods). We observed a consistent effect
across animals (n � 8), where neuronal population activity dur-
ing hits showed a more consistent temporal sequence than during
misses (Fig. 8F) (paired t test, hit vs miss sequence consistency,
n � 8 animals, p � 0.022).

Given the potential importance of this result, we examined
this difference using an additional, alternative analysis of tempo-
ral sequence stability. We investigated the variability of neuronal
AE latencies in PEs during miss and hit trials. As before, we cal-
culated AE latencies during single PEs that occurred during miss
and hit trials and normalized all latency values by the duration of
the PE (Fig. 9A). Next, we calculated the variability of the pre-
ferred temporal position of each neuron across PEs and found
that this “jitter” was lower during hits than misses (Fig. 9B)

Figure 7. Several parameters of recurring and NPEs show no correlation with stimulus detection, and all PEs are stereotyped. A–D, Number of RPEs per trial (A), duration per RPE (B), number of
neurons participating per second during RPEs (C), and number of AEs per second during RPEs (D), as a function of stimulus contrast, were identical when the animals made a response (green, Hit/FA)
compared with when they made no response (red, Miss/CR) (FDR-corrected paired t tests, n � 8 animals, 6 tests per property, p � 0.05 for all comparisons, not significant). Moreover, these
properties were not different during spontaneous PEs (Baseline, i.e., occurrences during 2 s preceding stimulus onset) compared with stimulus-evoked PEs (FDR-corrected paired t tests, n � 8
animals, p � 0.05 for all comparisons, not significant). E–H, Same as in A–D, but for NPEs. As for recurring events, there was no correlation of NPE properties with stimulus detection (FDR-corrected
paired t tests, n � 8 animals, 6 tests per property, p � 0.05 for all comparisons, not significant). Interestingly, the number of NPEs did show a dependence on stimulus contrast (FDR-corrected paired
t tests, stimulus-driven occurrences vs baseline, hits/FAs: 0%, p � 0.744; 0.5%, p � 0.184; 2%, p � 0.038; 8%, p � 0.014; 32%, p � 0.0011; 100%, p � 0.0007; misses/correct rejections: 0%,
p � 0.895; 0.5%, p � 0.352; 2%, p � 0.045; 8%, p � 0.045; 32%, p � 0.036; 100%, p � 0.045), but several properties of NPEs did not (f-h, FDR-corrected paired t tests, n � 8 animals, p � 0.05
for all comparisons, not significant). These results show that some basic properties of PEs are statistically stereotyped and are not related to stimulus detection. *, p � 0.05; **, p � 0.005; ***, p �
0.001 n.s., Not significant.
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(paired t test, hit vs miss variability in latency, n � 8 animals, p �
0.035). We therefore conclude, after having shown the same ef-
fect with two different analyses, that a neuron’s activity within a
PE is more temporally consistent during the detection of visual
stimuli.

Orientation coding and sequence consistency
are uncorrelated
It has been reported that neuronal population representations of
stimulus features are more accurate during the detection of stim-
uli (Montijn et al., 2015; Yang et al., 2016). To investigate whether
temporal sequence consistency was also correlated with an en-
hanced orientation decoding accuracy, we decoded stimulus ori-
entation as before for each trial (Fig. 2D; see Materials and
Methods), and split all trials into hits or misses (Fig. 9C), or into
trials belonging to the lowest 50% and highest 50% of sequence
consistency (Fig. 9D). Interestingly, although both sequence con-
sistency (Figs. 8F, 9B) and decoding accuracy were correlated
with stimulus detection (Fig. 9C; paired t test, n � 8 animals, p �
0.026), decoding accuracy was not correlated with sequence con-
sistency (Fig. 9D, p � 0.660, not significant). This suggests that
population code accuracy and temporal sequence consistency are
two separate neural phenomena independently correlated with
the detection of visual stimuli.

Finally, we addressed the potential concern that our 2-s-long
analysis window was excessively long. We therefore repeated the
analyses of sequence variability, stimulus orientation decoding,

and their interaction, but now with a 1 s analysis window. As this
entails a significant reduction in amount of data, we expected it
would be more difficult to detect small differences due to de-
creased statistical power. Indeed, the sequence variability effect
was now bordering on significance (Fig. 9E; paired t test, n � 8
animals, p � 0.050). On the one hand, converging evidence (Figs.
8F, 9B) shows that sequence consistency is correlated with stim-
ulus detection regardless of the specifics of the underlying analy-
sis, but on the other hand our results also suggest that this
correlation is fairly subtle and only reaches statistical significance
when working with large datasets (Fig. 9E). Supporting our previous
results, we found that with a 1 s analysis window stimulus orienta-
tion decoding was significantly higher for hit than miss trials (Fig. 9F;
paired t test, n � 8 animals, p � 0.004), and as before there was no
correlation between sequence consistency and orientation decoding
performance (Fig. 9G; paired t test, n � 8 animals, p � 0.990). To
further query the reliability of these results, we also performed the
same analyses as above with a variable analysis window. Now, the
duration of the window was delimited by the licking response during
hit trials, and miss trial durations were randomly assigned from the
distribution of hit trial durations. This analysis showed that our re-
sults were robust to changes in the specific size of the analysis win-
dow, as the variability in latency was lower for hits than misses (p �
0.045; Fig. 9I), decoding accuracy higher (p � 0.008; Fig. 9J), and
latency variability and decoding accuracy were not correlated on a
trial-by-trial basis (Fig. 9K).

Figure 8. Neurons show consistent, preferred temporal locations of activity within recurring and NPEs, and this temporal positioning is more precise during stimulus detection. A, For
each PE (panel shows an example event), we calculated the mean activation latency (in milliseconds) per neuron to the center of mass of the event. B, Example sequences of activation
for all clusters averaged across the cluster’s PEs, ordered by position in the overall sequence. C, Quantification of B, showing that, across all clusters, including both recurring and
nonrecurring events, the temporal sequence of activation is consistent, and significantly more so than expected by chance (permutation test vs 0, n � 11, for all clusters, p � 0.001). D,
Mean across animals (n � 8) of sequence consistency was significantly �0, for both recurring clusters (mean consistency � SEM, r � 0.505 � 0.06, t test vs 0, n � 8, p � 5.37 � 10 �5)
and nonrecurring clusters (mean � SEM, r � 0.497 � 0.05, p � 1.71 � 10 �5). The difference in consistency between recurring and nonrecurring events was not significant (paired
t test, n � 8, p � 0.924, not significant). This suggests that the preferred temporal position of a neuron’s activation is not related to the specific configuration of active neurons but is
rather a universal property of all PEs. E, F, Single PE, rather than cluster-based sequence analyses. E, Four example PEs during stimulus presentation of test contrasts (0.5%–32%),
showing correlation values with the overall sequence. The displayed events were chosen to illustrate the difference between high and low sequence consistency and are therefore not
representative of the actual hit/miss effect size. F, Quantification of average single-trial sequence consistency during misses (red), hits (green), and preceding stimulus presentation
(gray), showing that population sequences of neuronal activity are more temporally consistent when the visual stimulus is behaviorally reported (paired t test of miss vs hit consistency,
n � 8 animals, p � 0.022). Colored error bars and gray baseline indicate mean � SEM across animals. *, p � 0.05; **, p � 10 �4 n.s., Not significant.
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Discussion
Our data show that V1 population activity of mice performing a
stimulus detection task is characterized by the presence of recur-
ring, coactive groups of neurons (i.e., recurring clusters, or as-
semblies), intermixed with other configurations of coactive
neurons. These recurring clusters are most likely formed through
processes dependent on anatomical proximity of neuronal mem-
bers rather than their stimulus selectivity. Our results further

suggest that these events do not show experience-dependent
replay-like behavior, but leaves open a potential role in short-
term or iconic-like memory. Together, our results suggest that
neural processing of information related to detection behavior
depends more on the accuracy of temporal positioning of the
activation by individual neurons, and on the sequence in which
these clusters of neurons are active, than on the simple activation
of particular neurons or configurations of neurons.

Figure 9. Temporal sequence consistency and orientation decoding accuracy correlate with the detection of stimuli, but not with each other. A, Four example neurons, showing the distribution
of latencies across miss trials (red; left) and hit trials (green; right). B–G, The variability is calculated by taking the SD of latencies across PEs per neuron, and averaging across neurons. B,
Quantification of the variability in latency across animals (n �8) shows that the temporal sequence of neuronal activation is less variable during the detection of a stimulus (hit) than when it remains
unreported (miss) (paired t test, n � 8, p � 0.035), confirming the results shown in Figure 8F. C, Decoding of stimulus orientation shows that neuronal population activity represents stimulus
orientation more accurately when it is behaviorally reported (miss vs hit decoding accuracy, paired t test, n � 8 animals, p � 0.026). D, Sequence consistency and decoding accuracy are not
correlated across trials, suggesting they represent two neural phenomena that independently correlate with stimulus detection (paired t test, p � 0.660, not significant). E–G, Same as B–D, but
with a shorter analysis window of 1 s after stimulus onset. A shorter analysis window leads to the latency variability correlate of stimulus detection showing borderline significance (E, paired t test,
n � 8 animals, p � 0.050) but does not influence the correlation of decoding accuracy with stimulus detection (F, p � 0.004) or the lack of interaction between the two (G, p � 0.990). H,
Sliding-window (1 s) orientation decoding, centered on stimulus offset. Shortly after stimulus offset, orientation decoding performance returns to chance level (25%, horizontal dotted line). I–K,
Same as B–D, but now for analysis windows that are delimited by the licking response for hit trials, and by random assignment of hit-trial durations for miss trials. The results are quantitatively and
qualitatively similar to taking a 2 s window, showing that the specific parameters of the time windows chosen do not strongly affect the results (hit vs miss t tests; I: latency variability, p � 0.045;
J: stimulus decoding accuracy, p � 0.008; K: correlation between orientation decoding and sequence consistency, p � 0.739). *, p � 0.05; **, p � 0.01 n.s., Not significant.
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Potential confounds
A potential confound of our trial-related results is the use of the
fixed 2 s window in our analyses, as the onset of licking responses
varies. We therefore also performed some important trial-related
analyses with windows of 1 s, and with lick-delimited windows.
These analyses mostly reproduced our previous findings (Fig.
9E–K), but the correlation between stimulus detection and V1
temporal sequence consistency was occasionally of modest effect
size (e.g., Fig. 9E) and likely reaches statistical significance only
when averaging over large datasets. One explanation for this
modest effect size is that the definition of a PE we use in our
analyses cannot disentangle sequences that might be overlapping
in time, and could have occasionally grouped multiple PEs into a
single PE.

A second caveat could be that the use of two-photon calcium
imaging is ill suited to investigate temporal properties of neuronal
population activity. Although the low temporal resolution of cal-
cium imaging (39.4 ms, or 25.4 Hz) is suboptimal, the technique
offers the advantage of recording large populations of unambigu-
ously isolated neurons simultaneously, with accurate micro-
anatomical location. Especially when studying population-related
phenomena, having a sufficient number of well-isolated neurons is
essential. We note, however, that other assembly characteristics and
temporal aspects of population activity might have been uncovered
if a high temporal resolution had been available. The choice for two-
photon calcium imaging was therefore a trade-off of temporal accu-
racy in favor of robust population sizes. Moreover, we used the
synthetic indicator OGB rather than GCaMP6f, as OGB has faster
dynamics and therefore allows a more temporally precise estimate of
spiking activity (J. L. Chen et al., 2013). This diminishes, but does not
negate, the fact that our relatively low temporal resolution may have
added uncertainty when estimating the temporal position of a neu-
ron’s activity within a PE. The fact that we find significant effects
despite this uncertainty suggests that the underlying neural phe-
nomena are robust.

Furthermore, the statistically significant, but modest behav-
ioral performance of our animals could present a potential con-
found. Relatively mild water restriction applied during training
led to a detection performance at the 100% probe trials that is
lower compared with other studies using similar tasks (Glickfeld
et al., 2013). This could mean that the observed differences be-
tween hit and miss trials are diluted, as the animal may have in
fact detected the stimulus in a significant fraction of “miss” trials.
As we have also discussed previously in more detail, this would
mean that the effect sizes we report in the current study are likely
lower than when the behavioral performance had been high
(Montijn et al., 2015).

Relation to other studies investigating assembly activity in
visual cortex
Previous studies have reported that neuronal population activity
in passively stimulated mouse visual cortex is characterized by the
presence of recurring ensembles of neurons (Miller et al., 2014;
Carrillo-Reid et al., 2015). It has also been reported by the Yuste
laboratory that population activity patterns show consistent se-
quential activity of neurons within ensemble events (Carrillo-
Reid et al., 2015). We confirm these observations using a
paradigm where the animals are actively involved in a visual de-
tection task. Moreover, we report the novel findings that cluster
sequence and within-cluster sequence precision are correlated
with stimulus detection, and that V1 PEs have stereotyped char-
acteristics, such as duration and number of participating neu-
rons. However, we also note differences with the aforementioned

studies. First, it has been suggested that particular scenes in a
natural movie can recruit specific ensembles (Miller et al., 2014;
Carrillo-Reid et al., 2015), but in our data we do not find any
specific orientation tuning of recurring assemblies (Fig. 4C,D).
This could be due to ensembles not being directly related to pro-
cessing orientation, a different computational definition of as-
semblies, the use of a paradigm that involved behavioral stimulus
detection, but not orientation discrimination, or a lack of power
in our study. In our behavioral task, the orientation of stimuli was
behaviorally irrelevant to the mice, which may explain why we
did not find any involvement of clusters in orientation-based
neural responses. This could also explain why Jones et al. (2007)
found a correlation of cortical state sequences with different ol-
factory stimuli, whereas we found a correlation with stimulus
detection, but not stimulus orientation. Perhaps a correlation
between stimulus identity and cluster sequences in sensory cortex
only appears when stimuli are behaviorally relevant.

Alternatively, a lack of power seems unlikely to explain the
difference in results, as we do find a highly significant anatomical
grouping of a cluster’s core neurons (Fig. 4A,B) that was not
reported previously (Miller et al., 2014; Carrillo-Reid et al.,
2015). Notably, while Yuste et al. (Carrillo-Reid et al., 2015)
found a significant correlation between certain stimuli and the
presence of particular ensembles, these authors mention that
their ensembles regularly contain neurons with broad orientation
tuning. This suggests that their ensembles might be correlated
with certain stimuli because of the underlying noise correlation
structure of their members in response to those stimuli. It has
been reported that noise correlations between pairs of neurons
are weaker with longer intersomatic distances (Hansen et al.,
2012; Montijn et al., 2014; Goltstein et al., 2015), which may help
explain why cluster core members tend be anatomically grouped.
The results from our study and the aforementioned authors may
therefore be more complementary than contradictory.

Hypothesized function of temporal cluster sequences and
rate codes
Our data show that recurring clusters are present in L2/L3 pop-
ulations of mouse V1, but the presence of such assemblies per se
does not seem to serve a particular function in the context of
visual detection. Instead, we found that neurons show a preferred
temporal position across all PEs and that the precision of this
temporal positioning, as well as the sequence of clusters, appears
behaviorally relevant for the detection of stimuli. Together, these
observations fit well within the framework of the packet-
communication hypothesis as described previously using electro-
physiology (Luczak et al., 2007, 2013, 2015; Junek et al., 2010).
The hypothesized function of these packets is to gate the flow of
information; every event represents a “read-out” of that cortical
population by its postsynaptic targets (Luczak et al., 2013). Our
current results show that a similar mechanism may exist in visual
cortex (Figs. 678-9) (Carrillo-Reid et al., 2015). However, one
could ask how the relative unimportance of the identities of neu-
rons participating in PEs may be reconciled with a transfer of
specific stimulus information. One explanation may be that the
function of PEs is to provide a general level of subthreshold de-
polarization in postsynaptic populations (i.e., to evoke an “up-
state” of several tens to hundreds of milliseconds), during which
neurons with specific stimulus tuning can more easily cause ac-
tion potential generation in postsynaptic neurons. This would
explain why the specific configuration of active neurons is not
important, as well as why such PEs are relatively long (often �100
ms) (Luczak et al., 2007, 2013). Inconsistent temporal sequences
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might then reflect suboptimal presynaptic driving of postsynap-
tic up-states and would explain why sequence consistency is cor-
related with stimulus detection. Moreover, our observation that
core neurons of recurring clusters are anatomically grouped sug-
gests that the generation of these postsynaptic up-states may be
local in retinotopic space. Finally, our finding on cluster sequence
order suggests that V1 assembly behavior related to stimulus de-
tection cannot be simply explained by enhanced excitability. If
distinct neuronal clusters in V1 differentially project to specific
postsynaptic subpopulations in downstream areas, particular
cluster sequences may regulate assembly behavior and network
dynamics in V1’s projection targets.

In conclusion, our data suggest that recurring assemblies are
present in layer 2/3 of primary visual cortex in mice performing a
stimulus detection task. V1 response patterns appear to be char-
acterized by stereotyped events of activity in a packet-like man-
ner, as previously described in other cortical regions of passively
stimulated animals (Luczak et al., 2015). Rather than assembly
presence per se being involved in stimulus detection, we found
that the sequential activation of clusters, as well as the precision of
temporal positioning of neuronal responses within population
AEs, is correlated with visual detection.
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