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Dynamic Multisensory Integration: Somatosensory Speed
Trumps Visual Accuracy during Feedback Control
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Recent advances in movement neuroscience have consistently highlighted that the nervous system performs sophisticated feedback
control over very short time scales (�100 ms for upper limb). These observations raise the important question of how the nervous system
processes multiple sources of sensory feedback in such short time intervals, given that temporal delays across sensory systems such as
vision and proprioception differ by tens of milliseconds. Here we show that during feedback control, healthy humans use dynamic
estimates of hand motion that rely almost exclusively on limb afferent feedback even when visual information about limb motion is
available. We demonstrate that such reliance on the fastest sensory signal during movement is compatible with dynamic Bayesian
estimation. These results suggest that the nervous system considers not only sensory variances but also temporal delays to perform
optimal multisensory integration and feedback control in real-time.

Key words: decision making; motor control; multisensory integration; state estimation

Introduction
Our ability to make decisions about the present state of the world
depends on prior knowledge about the world as well as new in-
formation provided by various sensory modalities. In situations
where time has minimal impact, research has shown that humans
and animals combine or integrate sensory signals in a near-
optimal (Bayesian) manner (Gold and Shadlen, 2007; Körding,
2007; Angelaki et al., 2009; Fetsch et al., 2013). In other words, the
internal estimate of a variable (such as hand location) approaches

the best representation possible given the available sensory data
and priors acquired through development and learning (van
Beers et al., 1999; Ernst and Banks, 2002; Körding and Wolpert,
2004; Vaziri et al., 2006). Although the high resolution of the
fovea often provides vision with a dominant role (Welch and
Warren, 1980), this role can be flexibly adjusted in situations
where somatosensory feedback becomes more reliable (van Beers
et al., 2002; McGuire and Sabes, 2009; Tagliabue and McIntyre,
2014). Hence, minimizing estimation variance is a key aspect of
multisensory integration.

However, information on the state of the world can be de-
layed, impacting our ability to make decisions for the present.
This is particularly true for motor function as sensory transduc-
tion and conduction velocity from sensory organs to the CNS
leads to non-negligible delays. In this context, time becomes a
critical hindrance to multisensory integration, because different
sensory modalities are affected by distinct temporal delays. For
example, a transcortical pathway influences muscle responses to
mechanical perturbations in as little as 50 ms (Scott, 2012),
whereas vision can take �100 ms to influence upper-limb motor
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Significance Statement

Numerous studies have demonstrated that the nervous system combines redundant sensory signals according to their reliability.
Although very powerful, this model does not consider how temporal delays may impact sensory reliability, which is an important
issue for feedback control because different sensory systems are affected by different temporal delays. Here we show that the brain
considers not only sensory variability but also temporal delays when integrating vision and proprioception following mechanical
perturbations applied to the upper limb. Compatible with dynamic Bayesian estimation, our results unravel the importance of
proprioception for feedback control as a consequence of the shorter temporal delays associated with this sensory modality.
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control (Georgopoulos et al., 1983; Lamarre et al., 1983). Such a
difference between sensory delays is not negligible (Cameron et
al., 2014; Cluff et al., 2015), in particular when one considers the
ability of motor systems to generate task-specific feedback in �50
ms of a mechanical perturbation (Scott, 2012). In fact, the diver-
sity of sensory organs and their distribution over the whole body
suggests that combining asynchronous sensory signals is likely a
ubiquitous challenge for the brain.

To date, the question of how the nervous system performs
multisensory integration in real-time remains open. More specif-
ically, it remains unknown whether rapid multisensory integra-
tion is determined by the variance of each sensory signal or
inferred variables, as commonly reported for perception or
decision-making (Angelaki et al., 2009; Drugowitsch et al., 2014),
or whether the nervous system also considers differences in tem-
poral delays across sensory modalities when combining sensory
signals over short time intervals.

In theory, dynamic Bayesian estimation can be derived from a
Kalman filter, which optimally combines feedback and priors
computed from integrating the system dynamics with the known
control input (Kalman, 1960). To address the influence of feed-
back delays on multisensory integration, we first highlight that
this model makes predictions that significantly depart from the
usual static model, in which the weighting factors are entirely
determined by the variance of each sensory signal. We then pres-
ent a series of experiments combining visual tracking of the fin-
gertip motion with upper-limb responses to perturbations to
probe the mechanism underlying multisensory integration dur-
ing feedback control. A clear difficulty is that there is no instan-
taneous readout of internal estimates of hand motion during
movement, which motivated us to use the visual system as a way
to probe internal estimation of perturbation-related motion.

This approach confirms differences in time delays across sensory
modalities, and shows that multisensory integration following per-
turbations is well captured in a Kalman filter (implementing Bayes-
ian estimation for linear systems) considering the different sensory
delays associated with vision and limb afferent feedback. Altogether,
this study suggests that the nervous system considers not only sen-
sory variance but also temporal delays to perform optimal multisen-
sory integration during feedback control.

Materials and Methods
Participants
A total of 25 participants were tested in one or several experiments (12
females, between 19 and 33 years of age). Fifteen of them participated in
the main experiments presented below. Three of them participated in
Experiments 1 and 2. Four participants from Experiment 1 were also
involved in the first control experiment. The remaining 10 participants
were involved in the second control experiment. The experimental pro-
cedures were approved by the ethics committee at Queen’s University.

Main experiments
Participants were seated and an adjustable linkage was attached to their
arm (KINARM, BKIN Technologies; Scott, 1999; Singh and Scott, 2003).
The linkage supported the participants’ arm against gravity and allowed
motion in the horizontal plane. The visual targets were projected on a virtual
reality display and direct vision of the participants’ arm was blocked. The
initial joint configuration was 45° and 90° of shoulder and elbow angles,
respectively. In all cases, mechanical perturbations consisted in equal
amounts of shoulder and elbow torque, which generates pure elbow motion
for �150 ms following the perturbation (Crevecoeur and Scott, 2013).

Experiment 1. Mechanical perturbations of varying amplitude (step
torques, 20 ms buildup, �1, �1.5, and �2 Nm) were randomly inter-
leaved with visual perturbations. During visual perturbations, the cursor
followed a trajectory fitted to participants’ individual hand paths follow-

ing 1.5 Nm perturbations recorded during a practice set of 20 trials. The
fit was composed of two Gaussian functions fitted to x- and
y-coordinates of hand motion using least square procedure to approxi-
mate the bell-shaped profile of perturbation-related motion.

The time course of a trial was as follows. A visual target was presented
with a center dot and a circle around the dot (radii 0.6 and 2 cm, respec-
tively) at the fingertip location corresponding to the initial joint config-
uration. Participants (N � 8) were instructed to place their fingertip
(white cursor, radius 0.5 cm) in the center dot. After a random delay
uniformly distributed between 2 and 4 s following stabilization in the
center dot, either a mechanical perturbation was applied to the arm, or
the cursor was moved following the fitted hand trajectory. In the case of
mechanical perturbations, participants were instructed to counter the
load and return to the circular target within 800 ms. In addition, they
were asked to track their fingertip visually as accurately as possible. In the
case of visual perturbations, they were instructed to track the cursor. We
mentioned explicitly that upper limb motor corrections were needed
only when their hand was displaced away from the target. Hand motion
did not influence the cursor trajectory during the visual perturbations.

Possible cognitive factors related to the multiple aspects of the tasks
were assessed by comparing participants’ responses from the random
and blocked conditions, in which the perturbation type and associated
instruction were always the same. In the random condition, the proba-
bility of visual perturbations was 1/3 (80 visual perturbations for 160
mechanical perturbations). Perturbations of �1.5 Nm were twice as fre-
quent as the other perturbation magnitudes. Trials were separated in four
blocks of 60 trials. The blocked condition consisted of 60 mechanical
perturbations with visual feedback (�1.5 Nm), or 60 visual perturba-
tions. The ordering of conditions (randomized, visual blocked or me-
chanical blocked) was counterbalanced across participants. We chose a
rather slow perturbation buildup, because we were interested to generate
smooth hand motion and improve the resemblance between hand mo-
tion and the fitted hand trajectories displayed as visual perturbations.

Experiment 2. This experiment interleaved mechanical perturbations
with visual feedback (M and V, �1.5 Nm), mechanical perturbations of
the same amplitude but without visual feedback (M), and visual pertur-
bations fitted to the grand average of hand trajectories from Experiment
1 (V). The time course of a trial was identical as in the previous experi-
ments. In addition to countering the perturbation loads, participants
(N � 10) were instructed to track their fingertip as accurately as possible
(with or without visual feedback), or the cursor in the case of visual
perturbations. Equivalently, a non-ambiguous instruction (also given to
participants) was to track any motion of the fingertip or cursor. Partici-
pants performed three blocks of 60 trials. Each block consisted of 20
perturbations of each type randomly interleaved (M, M and V, or V; 10
per flexion/extension).

Control experiments
Control Experiment 1. The first control experiment was performed to
verify that the difference in SRT across visual and mechanical perturbations
was not due to artificial delay in the virtual reality display. There are known
delays between the real-time computer-generated cursor motion and the
actual display on the virtual reality monitor (40 ms). This delay was removed
from all SRTs following purely visual perturbations only. In addition, we
instructed participants (N � 4, also involved in Experiment 1) to track a
green LED attached to the robot linkage approximately at the location of the
fingertip, while allowing direct vision of the limb and of the LED. Thus,
participants had direct vision of a physical target and there was no virtual
reality display. Participants removed their arm from the linkage and the
robot applied a viscoelastic torque approaching critical damping following
the perturbation to reproduce smooth corrective movements.

As shown below, the difference between SRTs across mechanical and
visual perturbations was reproduced in this control experiment. How-
ever, it was not possible to perform the main experiments with this
approach mainly for two reasons. First, it is difficult to match the visual
stimulus precisely across mechanical and visual perturbations, as the
perturbation-related motion slightly differs across participants due to
individual differences in biomechanical properties. In contrast, it is easy
to fit the cursor trajectory to the actual movement for each participant
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without any constraint. The second and more important reason why we
used the computer display was that the visual perturbations in the con-
trol experiment had to be performed with the arm outside of the exoskel-
eton. Thus, it was not possible in this case to interleave visual and
mechanical perturbations. For these reasons, we use the computer dis-
play throughout the study, after correcting all SRT following visual per-
turbations for the monitor delay.

Control Experiment 2. The second control experiment was performed
to address whether switching off the hand-aligned cursor for the me-
chanical perturbations in Experiment 2 provided a cue to generate a
saccade toward the fingertip. To address this concern, we tested a differ-
ent group of 10 participants in a protocol similar to that of Experiment 2,
with the difference that the hand-aligned cursor remained attached to the
visual target in 50% of the mechanical perturbations trials. Participants
were instructed to track their fingertip as accurately as possible in all
cases. Participants first performed a practice set of 10 –20 trials, followed
by five blocks of 60 trials. Four of these blocks interleaved mechanical
perturbations with or without congruent motion of the hand-aligned
cursor (15 � flexion or extension � M or M and V), and the fifth block
consisted of 60 visual perturbation trials (30 � flexion or extension di-
rection). Visual perturbations were performed in a separate block to
avoid ambiguous instructions regarding the tracking of the cursor. The
ordering of blocks was counterbalanced across participants.

Apparatus and data collection
We sampled the shoulder and elbow angles at 1 kHz. The activity of the
major muscles spanning the elbow joint was collected during Experiment
1 to investigate whether the visual perturbation engaged a limb motor
response (brachioradialis, biceps, triceps lateralis, and triceps long).
Muscle activities were collected with standard surface electrodes attached
on the muscle belly after light abrasion of the skin (DE-2.1, Delsys).
Muscle recordings were digitally bandpass filtered (10 –500 Hz), recti-
fied, averaged across trials, and normalized to the activity evoked by a
constant load of 2 Nm applied to the elbow joint. Muscles activity was
averaged across trials and epochs following standard definitions: �50 to
0 ms for the pre-perturbation activity (Pre), 20 –50 ms for short-latency
(SL), 50 –100 ms for long-latency (LL), and 90 –180 ms for visuomotor
feedback (VM). We used these partially overlapping epochs to follow
previously defined LL or visuomotor time windows (Franklin and Wol-
pert, 2008; Pruszynski et al., 2011).

The intersection between gaze and the horizontal workspace was
sampled at 500 Hz with a head free tracking system (Eyelink 1000, SR
Research). Thus, eye movements were represented in Cartesian coordi-
nates. We extracted the onset [Saccadic Reaction Time (SRT)], the end-
point and the amplitude of the first saccade following the perturbation
using a threshold equal to 5% of peak saccade velocity. The first and last
samples above this threshold determine the saccade onset and end. The
two-dimensional variance of the saccade endpoint was computed as the
area of the variability ellipse in Cartesian coordinates. The variances
along the main and secondary axes of endpoint error as a function of the
saccade latency, and the slope of the relationship between these variables
were calculated based on singular value decomposition of their covariance
matrix (ie, orthogonal regression). The end of upper limb corrective move-
ments was estimated based on a threshold equal to 10% of the peak return-
hand velocity. The variability of fingertip location following perturbations
was computed with singular value decomposition of the covariance matrix
as for saccade endpoint errors. Comparisons of fingertip endpoint variance
throughout the movement was calculated for each perturbation direction
independently, and then averaged across directions.

Based on visual inspection, we selected only the trials in which there
was a response saccade following the perturbation. Trials without a sac-
cade, or with an eye blink around the perturbation onset, were removed
(�20% of trials on average across participants and experiments). After
removal of these trials, the average number of trials per condition was
72 � 16 in Experiment 1 (minimum across participants: 35) and 45 � 11
in Experiment 2 (minimum: 15). All trials were included in the analyses
of muscle response and upper-limb motor corrections.

Changes in saccade latencies from individual trials across conditions
were analyzed for each participant based on nonparametric K–S tests,

which allowed assessing the presence of significant differences without
making assumption about the underlying distribution. Single compari-
sons were performed with paired t tests. When more than one compari-
son is involved, we assessed the main effects across conditions based on
ANOVA using participants’ mean value for the variable of interest in
each condition. In all cases, we subtracted the participants’ overall mean
across conditions to account for idiosyncratic differences. Post hoc tests
were then performed with Bonferroni corrections to correct for multiple
comparisons. Finally, we performed a sliding t test to determine the
moment when visually guided movements of the upper limb exhibited
reduced variance in comparison with the condition where the fingertip
cursor was extinguished. Observe that the sliding t test is not protected
against multiple comparisons, and therefore likely provide early esti-
mates of the moment when significant differences arise.

Model
We consider a biomechanical model to formulate the problems of opti-
mal estimation and control in the presence of multiple sensory delays.
Such model is important because state estimation uses priors, or predic-
tions, that are dynamically updated based on internal knowledge of the
system dynamics and on the known control input. Thus, it is a natural
choice to use a biomechanical model that approximates limb mechanics.
In addition, the control model is also necessary to derive quantitative
predictions about motor corrections to external disturbances.

The model describes the angular motion of the forearm (inertia, I �
0.1 Kgm 2) rotating around the elbow joint. The physical model includes
a viscous torque opposing and proportional to the joint velocity with
damping factor G equal to 0.15 Nms/rad, corresponding to the linear
approximation of viscosity at the elbow joint in humans (Crevecoeur and
Scott, 2014). The equation of motion was coupled with a first order,
low-pass filter linking motor commands captured in the control input u,
with the controlled torque as a linear model of muscles dynamics. The
rise time of the muscle force in response to changes in control input was
� � 66 ms (Brown et al., 1999). Thus the state variables include the joint
angle (�), velocity (�̇) and muscle torque ( T). These variables were aug-
mented with the external torque (TE, not controllable) used to simulate
the external perturbation. Finally, the state vector was augmented with
the target coordinate that will be necessary for the control problem.

With these definitions, the continuous differential equation of the
system is as follows:

� I�̈ � � G�̇ � T � TE

�Ṫ � u � T
ṪE � 0

. (1)

Defining the target coordinate by ��, the vector representing the state of
the system is x � ��, �̇, T, TE, ��	T. This choice of state vector is moti-
vated by the fact that neural controls are closely related to joint torques;
however, considering other state variables, such as joint acceleration
would be equivalent to the present formulation. The dynamics of the
external torque from the point of view of the controller corresponds to
the assumption that it follows step functions 
ṪE � 0�. The continuous
differential equation above was transformed into a discrete time system by
using Euler integration with a time step of �t � 10 ms. The discrete time
system allows us adding additive and signal-dependent noise. The state-
space representation of the discrete-time control system is as follows:

xt�1 � Axt � But � �t � 	tCut, (2)

A � �
1 
t 0 0 0

0 1 �

tG

I


t

I


t

I
0

0 0 1 �

t

�
0 0

0 0 0 1 0
0 0 0 0 1

� , B � �
0
0

t

�
0
0

� .

�t is an additive multivariate Gaussian noise with zero-mean and known
covariance matrix, C is a scaling matrix and 	t is a zero mean and unit
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variance Gaussian noise (observe the last two rows of A and B correspond
to the non-controllable external torque and goal target).

To handle feedback delays explicitly, we must augment the system with
past states and let the controller observe the most delayed state. Using �tp

and �tv to designate the proprioceptive and visual delays in number of
sample times, the augmented state vector is as follows (superscript T
represents the transpose operator):

xt � �xt
T, xt�1

T , . . ., xt��tp

T , . . ., xt��tv

T 	T. (3)

With On and In representing zero and identity square matrices of size n,
respectively, n being the dimension of the initial state vector xt, the
observation matrix H is defined as follows:

H � � On, . . ., In, . . ., On

On, . . ., On, . . ., In
� , (4)

where the identity matrix in the first block-row corresponds to time
step t � �tp, and the identity matrix of the second block-row is at the
last block-index corresponding to time step t � �tv. Simulations
with proprioceptive or visual feedback only were performed by using
only the first or second block-row of the Matrix H, respectively. Let 
t

represent the additive noise composed of the proprioceptive and vi-
sual noise 

t

T � �
p,t
T , 
v,t

T 	�, the feedback equation can be written
as follows:

yt � Hxt � 
t. (5)

The covariance matrix of 
t, called �
, is a block-diagonal matrix defined
with the covariance matrices of proprioceptive (�p) and visual (�v) feed-
backs: �
 � daig[�p,�v]. Observe that Equation 5 is equivalent to the
following form:

yt � � xt��tp

xt��tv
� � � 
p,t


v,t
� . (6)

This feedback equation assumes that all components of the state vectors
are observable in each sensory modality, which must be justified. First,
the encoding of joint angle, velocity, and muscle torque is compatible
with muscle afferent feedback known to contain information about these
variables (Shadmehr and Wise, 2005). Regarding the visual system, po-
sition, and velocity may be directly measured from retinal images and
retinal slip. The assumption that visual system has access to torque sig-
nals is not directly compatible with the physiology. However, considering
partially observable states in the visual system yielded qualitatively sim-
ilar results, because the Kalman filter reconstructs all signals of the state
vector. Thus, the effects reported below are indeed due to differences in
temporal delays and not to differences in encoded state variables. As a
consequence, we kept the feedback signal as in Equation 6 for simplicity.

Dynamic Bayesian estimation is computed based on Kalman filtering,
which optimally weighs sensory feedback and priors while taking the
system dynamics and control input into account. The computation of the
prior corresponds to the motor prediction, which is the expected value of
the next state given the present estimate 
 x̂t� and control input (ut), and
is obtained by simulating the system dynamics over one time step:

x̂t�1
p � Ax̂t � But � �t, (7)

where variability in the prediction is captured in �t, which represents a
zero-mean Gaussian noise with covariance �INTERNAL that must be de-
fined (see below). Then, the estimated state can be expanded as follows by
taking the definition of yt into account (Eqs. 5, 6):

x̂t�1 � x̂t�1
p � KP
 yt,1 � x̂t��tp

p � � KV
 yt,2 � x̂t��tv

p �, (8)

where yt,1 and yt,2 are the block components of yt corresponding to visual
and proprioceptive signals, and the corresponding block components of
the Kalman gain matrix applied (�P and �v) must be computed. Equa-
tion 8 makes clearly apparent that the current feedback, yt is compared
with the prior at the corresponding time step for each sensory input,
which is a critical feature of dynamic state estimation. Recall that the
computation made by the Kalman filter are based on the assumption that

the system follows the dynamics described in Equations 1 and 2, includ-
ing the relationship between torque, velocity and position while assum-
ing a constant external torque 
ṪE � 0�. The consequence of assuming a
constant external torque is that the inferred temporal profile of a change
in this variable follows a step function.

The main limitation of system augmentation is that it requires know-
ing the temporal delays. As such, it is not designed to handle uncertainty
in these delays. However, assuming that temporal delays are known is a
common approach in theoretical neuroscience (Miall and Wolpert,
1996; Bhushan and Shadmehr, 1999; Izawa and Shadmehr, 2008), and
the interesting question of handling uncertain temporal delays is beyond
the scope of the present study. Despite this limitation, system augmen-
tation achieves optimal estimation of the delayed-feedback system in the
sense that, similar to standard Kalman filtering of non-delayed systems,
the posterior estimate is the projection on the true state onto the linear
space generated by the feedback observations (Anderson and Moore,
1979; Zhang and Xie, 2007). Thus, the optimal estimator obtained with
this technique is the solution of a well defined estimator design, and the
online compensation for temporal delays falls out of the block structure
of the augmented system.

The model definitions also allows us to compute the solution of the
control problem by using a standard extension of the linear quadratic
Gaussian control design that is iteratively optimized in parallel with the
sequence of Kalman gains. The cost-function to minimize is a quadratic
penalty on position error and control:

J
�, u� � �t�1

N

�t � ���2 � Rut

2, (9)

with R � 10 �4. This cost parameter was chosen to generate stereotyped
trajectories and has no influence on the estimation dynamics. The opti-
mal control policy is given by a linear control law of the form:

ut � Cx̂t. (10)

In agreement with the modeling of a postural control task, we used a time
horizon sufficiently long to ensure that the feedback gains ( C) had
reached stationary values. Details about the derivation of the optimal
feedback gains and Kalman gains can be found elsewhere (Todorov,
2005; Crevecoeur et al., 2011; Crevecoeur and Scott, 2013).

We now define the different noise parameters. Following standard
approaches, the covariance matrix of the additive noise was defined as
�� � �2 BBT, with � � 0.006, and the scaling of signal-dependent noise
was set to C � 0.4 � B (Todorov, 2005). For the sensory noise, we fixed
the covariance matrix of the proprioceptive noise to �p � 10�5 
 In,
where n is the dimension of the state vector and In is the identity
matrix of size n. The variance of the visual noise was defined to satisfy
�p � � 
 �v, and we varied � (Fig. 1 shows the results). The remaining
noise to be defined is the internal noise affecting the computation of the
prior estimate. We chose �INTERNAL � 0.8 
 10�6 at each time step,
which (following accumulation over time) generated internal priors with
covariance matrix similar to that of visual feedback. We verified that the
covariance matrices and the Kalman gains had reached steady state be-
fore extracting the numerical values reported in the analyses below. The
model predictions are therefore independent of the amount of time
elapsed since the beginning of the simulation.

Because the Kalman filter uses a model of expected sensory conse-
quences (using the matrix H; Wolpert et al., 1995), the vector yt is com-
pared with previous priors. Although the values of the noise parameters
impact the Kalman gains, the main features of dynamic estimation being
the dependency of the sensory delays on the weighting factors and the
comparisons of current feedback with priors at the corresponding time
step, do not depend on these noise parameters. Thus, the different noise
parameters do not impact the model predictions qualitatively. The pre-
diction of the static model relative to how the combination of vision and
proprioception should affect the SRT directly follow from considering a
linear combination of instantaneous feedback signals. Thus, when signals
depend on time as under dynamic conditions, static multisensory inte-
gration clearly become sensitive to differences in temporal delays across
sensory systems.
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Results
Model predictions: impact of temporal delays on optimal
state estimation
Dynamic multisensory integration is illustrated in Figure 1a,
which represents a feedback controller using the output of a state
estimator to generate motor commands (Todorov and Jordan,
2002). The impact of sensory delays on optimal state estimation is
illustrated schematically in Figure 1, b and c, showing that the
accumulation of noise over the delay period potentially makes
visual input less accurate for estimating the present state. Observe
that the increase in variance over the delay period is due to motor
noise, thus the variance of the present estimate given delayed
feedback increases at similar rate for the two sensory modalities.

The first main prediction of the model is the dependency of
sensory weight upon sensory delays. We illustrate this effect by
computing the variance of the estimated joint angle (or the pos-
terior) obtained with visual feedback, normalized to the variance
obtained without visual feedback. We then varied theoretically
the visual delay in a range including visual delays in humans (up
to 120 ms), as well as the ratio between the sensory noise covari-
ance matrices (Fig. 1d; �p and �tp were fixed, �tp � 50 ms).
Strikingly, for visual delays approaching �100 ms, the reduction
in posterior variance obtained in the combined condition when
both vision and proprioception are available was �10% of the
variance obtained with proprioception only, which is much
smaller than the reduction expected if the signals were combined
based on their variance only. Such modest variance reduction

occurred even when vision was five times more reliable than pro-
prioception (Fig. 1d, filled squares; �p � 5 � �v).

The second main prediction of the model is that feedback
responses to mechanical perturbations are similar with or with-
out vision (Fig. 1e, black and gray traces, respectively). The two
traces are superimposed for almost the entire corrective move-
ment, as a result of the similar estimation dynamics in these two
conditions (for these simulations, �p � 2.3 � �v). The main
reason why estimation dynamics is similar across these two con-
ditions is that the delayed sensory signals are compared with
previous priors, as a result of the estimator design (Eq. 8). Static
and dynamic models of multisensory integration shortly after the
perturbation (t*) are illustrated in Figure 1e. When sensory sig-
nals are directly combined based on their variance, the posterior
estimate is between visual and limb afferent feedbacks (Fig. 1e,
black dashed distribution). Thus, this model predicts that the
estimation from multiple sensory systems must be sensitive to the
temporal delays that affect them, due to the fact that this integra-
tion does not account for temporal differences across sensory
systems. In contrast, according to the dynamic model, the detec-
tion of a perturbation from limb afferent feedback generates a
similar correction of the estimated state (Fig. 1e, dashed red and
green distributions). Observe also that the dynamic estimates are
not aligned with the current (delayed) proprioceptive feedback,
but they are pushed toward the true state. This operation is a
property of the Kalman filter, which computes the present state
given the delayed sensory feedback under the assumption made
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about the system dynamics and external torque (TE; Eq. 1). Be-
cause the delay is taken into account (Eq. 3), the calculation made
by the Kalman filter effectively corresponds to integrating feed-
back about the perturbation over the delay period (Crevecoeur
and Scott, 2013; recall that the external torque and velocity
change ahead of the position as a result of the discrete dynamics).
As well, the theory captures the fact that these computations are
driven by sensory feedback because the control input just after
the perturbation is close to zero. Behavioral correlates of such
sensory extrapolation were reported previously (Bhushan and
Shadmehr, 1999; Crevecoeur and Scott, 2013).

Figure 2 further illustrate the dependency of the components
of the Kalman gain matrix on the difference in temporal delays
across sensory modalities for a fixed value of sensory variances
(�p � 2.3 � �v). Because the feedback signal is composed of two
state vectors, one can decompose the Kalman gain matrix into the
components applied to proprioceptive and visual feedbacks (�P

and �v, see Materials and Methods; Eq. 8). The figure focuses on
the gain of feedback about the joint angle for illustrative pur-
poses. The norm of the Kalman gain in Figure 2 shows the general
effect of temporal delays on the sensory weights across all com-
ponents of the state vector influencing the estimate of position,
and the gains corresponding to the other state variable follows
generally the same profile. When visual delays increase, �P be-
comes almost equal across conditions in which vision is available
or not (solid traces), leading to almost identical weighting of limb
afferent feedback with or without vision. In parallel, the weight of
visual feedback decreases when visual delays increase (bimodal,
dashed black).

The foregoing simulations emphasized experimentally test-
able differences between static and dynamic models of multisen-
sory integration. The difficulty was to extract participant’s
internal estimate of limb motion. To do so, it was necessary to
combine visual tracking with upper-limb feedback control to as-
sess how participants corrected their estimate of the hand loca-
tion just after the perturbation. The use of visual tracking was
motivated by previous work using visual tracking as a probe of
the online state estimator in the brain (Ariff et al., 2002). Because
the state estimation follows similar dynamics with or without
vision, the dynamic integration model predicts that SRTs and
estimation errors should be similar with or without vision, while
estimation variance should only display moderate reduction in
the case when both vision and proprioception are available (Fig.
1d). Further, similar estimation dynamics also imply similar

upper-limb corrective movements across conditions including or
not visual feedback. In contrast, if sensory weights are entirely
determined by their variance, the state estimation must be sensi-
tive to the different temporal delays, as a straightforward conse-
quence of the linear combination of these sensory signals.

Tracking hand motion: experimental results
Experiment 1
The purpose of the first experiment was to investigate whether
SRTs reflected temporal differences between visual and somato-
sensory feedback. Participants (N � 8) were instructed to track
the motion of the hand-aligned cursor while countering mechan-
ical loads applied to their arm (Fig. 3a, Mechanical and Visual).
We interleaved visual perturbations (Fig. 3a, Visual Only), dur-
ing which the cursor followed a trajectory similar to participants’
hand motion (see Materials and Methods). Matching the visual
information across perturbations allowed us identify the contri-
bution of limb afferent feedback to SRTs.

We found an important difference in SRT across visual and
mechanical perturbations. Saccades triggered by the combined
visual and mechanical perturbations occurred on average 54 � 24
ms earlier than following visual-only perturbations (Fig. 3b,c;
t(7) � 6.12, p � 0.001; Mechanical and Visual: 221 � 31 ms;
Visual Only: 275 � 31 ms; mean � SD across participants). The
distributions of SRT across perturbations were significantly dif-
ferent for all participants (Fig. 3c; K–S test, Di,j � 0.3, i and j � 56,
p � 0.05). The same difference was observed when the perturba-
tions were presented in a blocked fashion (difference in latency:
50 � 26 ms; t(7) � 5.31, p � 0.01), although we measured an
overall reduction in saccade latency of �16 ms in this condition
(Fig. 3d). On average, all participants exhibited a modulation of
the first saccade amplitude with the load magnitude (Fig. 3e;
one-way ANOVA on participants’ individual means: F(2,21) �
183, p � 10�10). Post hoc analyses performed with Bonferroni
correction confirmed that the paired differences across perturba-
tion loads were strongly significant. Hence, much like upper-
limb motor responses (Pruszynski et al., 2011), the oculomotor
system considered the magnitude of limb motion in saccade
generation.

The first control experiment was performed to address the
possibility that the virtual reality display affected SRTs follow-
ing visual perturbations. In this experiment, direct vision of
the limb and of an LED attached to the robot linkage was
provided, thereby removing any potential impact of the vir-
tual reality display (see Materials and Methods). SRTs de-
creased following both mechanical and visual perturbations,
but the difference across conditions was reproduced (K–S test
on SRT distributions: Di,j � 0.7; i and j � 30, p � 10 �8;
difference: 38 � 7 ms, mean � SD). The data from this control
experiment are reported in Figure 3d (orange crosses). This
control experiment revealed that the absolute SRTs were im-
pacted by the monitor display. However, our main findings
depend on the difference in SRTs across conditions.

Notably, we did not observe any consistent upper-limb
response to visual perturbations. Trials for which the fingertip
exited the initial target following the visual perturbations rep-
resented �5% across participants involved in Experiment 1,
and were paradoxically directed toward the cursor. We ana-
lyzed the activity of the major muscles spanning the elbow
joint and found virtually no change in muscle activity follow-
ing the visual perturbations (Fig. 4; see Materials and Methods
for definitions of the different response epochs). Muscle re-
sponses to mechanical perturbations started in the SL epoch,
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although did not reach significance (SL � Pre.: t(7) � 1.34, p �
0.22). This is expected as a consequence of low initial activity
and of the rather slow perturbation buildup of 20 ms. Robust
responses were observed in the long-latency and visuomotor
epochs following mechanical perturbations (paired t tests:
LL � Pre.: t(7) � 3.63, p � 0.008, VM � Pre.: t(8) � 4.04, p �
0.005). In contrast, the visual perturbation did not evoke any
significant response (for all comparisons: t(7) � 0.87, p � 0.1).
Recall that the visual and mechanical perturbations were ran-
domly interleaved, thus participants could not prepare dis-
tinct response strategies for each perturbation. The lack of
EMG response following visual perturbation is thus further
indicative that proprioception plays a central role in the gen-
eration of a motor response.

Turning back to visual tracking, we found that the
perturbation-related motion evoked very quick buildup of
smooth eye displacement before triggering the saccades. Fig-
ure 5a shows the buildup of eye velocity before the saccade,
averaged across trials and participants (mean � SEM; positive
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indicate target direction/velocity). The average velocity from
70 to 120 ms was significantly greater following mechanical
perturbations than the velocity in the same time window fol-
lowing the visual perturbations (Fig. 1a, gray rectangle; t(7) �
2.71, p � 0.025). This early buildup in eye motion toward the
target was clearly apparent when the gaze was aligned on the
saccade onset (Fig. 5b). The gaze coordinate and velocity just
before the saccade onset was clearly directed toward the fin-
gertip motion, and the velocity before the saccade onset was
significantly greater following mechanical perturbations than
following visual perturbations (t(7) � 4.3, p � 0.005). Recall
that saccades occurred on average later following the visual
perturbations, thus the stronger buildup of eye displacement
toward the fingertip evoked by the mechanical perturbations
occurred with smaller cursor eccentricity and retinal slip than
following the visual perturbations.

Because there was no clear buildup in eye velocity following
the visual perturbations, it was necessary to concentrate on the
saccadic responses to compare oculomotor tracking across the
different perturbation types. The difference between SRTs across
perturbations can be explained by the afferent delays from the
periphery to the CNS, and provides an estimate of internal sen-
sorimotor processing times of �150 ms for saccadic responses
computed as follows. We extracted the 10th percentile of the
distribution of SRTs for each participant to approach the mini-
mum reaction time, reflecting conduction delays and rapid inter-
nal processing. We reasoned that the 10th percentile would
provide reliable estimates in comparison with other metrics (eg,
distribution average or median), which includes trials affected by
factors such as reduced attention or fatigue. In the blocked con-
dition, the 10th percentile of SRT across participants was 180 �
25 ms, including afferent and efferent delays. Considering �20
ms of afferent delay from muscle spindles to primary somatosensory
area (S1), and another �20 ms of efferent delay between superior
colliculus and saccade onset (Sparks, 1978; Munoz and Wurtz,
1995), our data suggest that it takes �140 ms for limb afferent feed-
back to start generating saccadic responses (range across subjects
115–202 ms). For visual-only perturbations, the 10th percentile of
SRT was 226 � 28 ms, which after removing afferent and efferent
delays (�90–100 ms; Stanford et al., 2010) provides a similar esti-
mate of 126–136 ms for internal sensorimotor processing (range,
93–170 ms). Observe that these estimates were likely conservative
due to the virtual reality display (see Materials and Methods, Control

experiments; and Fig. 3d). These consider-
ations validate the use of SRTs to probe
participants’ estimates of hand motion fol-
lowing the perturbation, as it is compatible
with differences in sensorimotor delays
across sensory systems.

Experiment 2
Building on the results of Experiment 1,
the second experiment was designed to
test the predictions from static and dy-
namic Bayesian models more directly. We
used visual perturbations as in Experi-
ment 1 (Fig. 6a, V), and mechanical per-
turbations during which the fingertip-
aligned cursor was extinguished, so that
saccadic responses could only use limb af-
ferent feedback to estimate the location of
their fingertip (Fig. 6a, M). These two
perturbations were interleaved with per-
turbations providing combined mechani-

cal and visual information (Fig. 6a, M and V). We instructed
participants to follow the motion of their fingertip (for M and M
and V perturbations) or of the cursor (V). Equivalently, a non-
ambiguous instruction given to the participants was to track any
moving stimulus, fingertip, or cursor. We extracted saccade end-
points to characterize participants’ estimate of fingertip location.

The changes in latencies across perturbation types relative to
each participant’s overall mean were strongly significant
(F(2,27) � 22, p � 0.001). Post hoc tests with Bonferroni correc-
tions indicated that there was no increase in SRT when vision was
provided during a mechanical perturbation (Fig. 6b,d, M com-
pared with M and V; p � 0.1), and the latencies in these two cases
were significantly shorter than following visual-only perturba-
tions (p � 0.001). The similar SRTs following mechanical per-
turbations with or without vision is illustrated in Figure 6b (data
from one representative subject). Second, we found that the
norm of endpoint errors were statistically similar across the two
conditions involving a mechanical perturbation (Fig. 6c,d; post
hoc analysis with Bonferroni correction on the error across per-
turbation types, p � 0.1), whereas the error following visual per-
turbations was significantly smaller (M � V, p � 0.003; M and
V � V, p � 0.011). Finally, we observed a significant reduction of
estimation variance when vision was available, as measured from
the area of saccade endpoint dispersion for the combined esti-
mates (Fig. 6d, right; M � M and V, p � 0.034). Notably, the
endpoint variance in this case remained clearly greater than fol-
lowing visual-only perturbations (M and V�V: p � 0.013). The
variance of the saccade endpoint following combined perturba-
tion was also significantly greater than following visual perturba-
tions (p � 0.001). Qualitatively, the endpoint error and variance
displayed similar differences across perturbation types when the
analysis was performed on the trials with overlapping SRTs. To
observe this, we extracted for each participant the trials with SRT
between the interquartile range of all SRTs across the three per-
turbation types (25–75%), thereby discarding on average the
slowest responses to visual perturbation and the fastest responses
for the mechanical perturbations with or without vision. Thus,
the results in Figure 5d are not simply due to the comparison of
saccades having distinct latencies.

It was necessary to verify that this result was not confounded
by the fact that the stimulus was more variable in the case of
mechanical perturbations due to biological variability. On aver-
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age, the variability of the fingertip location
at 250 ms was 0.4 cm 2, or �3% of saccade
endpoint variance following purely me-
chanical perturbations. Thus, correcting
for the stimulus variability does not im-
pact the conclusions. The moderate vari-
ance reduction (Fig. 6d) confirms that
multisensory integration occurred within
the time window corresponding to inter-
nal processing, which we estimated above
to be �150 ms.

The dynamic model of multisensory
integration captures the similar SRTs,
endpoint error and the moderate variance
reduction observed across the two condi-
tions involving a mechanical perturbation
(Fig. 1). Simulations in Figure 1d gener-
ated less variance reduction than observed
experimentally (�30%), but a quantita-
tive match without altering the estimation
dynamics is possible by changing the
noise parameters. In fact, capturing the
observed reduction in the variance of sac-
cade endpoints without altering the esti-
mation latency cannot be reproduced by
combining signals directly according to
their variance. Indeed, considering static
multisensory integration and assuming a
flat prior, it is possible to compute that a
reduction of �30% of estimation variance
as observed experimentally corresponds
to a visual weighting of 0.3. Thus, if vision
and limb afferent feedback are combined
linearly, the observed reduction in sac-
cade endpoint variance implies that the
latency in the combined case be delayed
by 30% of the difference in SRT across
purely visual and purely mechanical trials.
We computed that 30% of the measured
differences between SRTs following me-
chanical and visual perturbations corre-
sponded to delaying SRTs by 9 � 8 ms in
the combined cases (Fig. 6d, black hori-
zontal line in saccade latency). Actual
changes in SRTs in this condition were
significantly smaller than �9 ms (t(9) �
4.5, p � 0.01), and in fact the measured
change in SRTs tended to be slightly neg-
ative (M and V and M � �4 � 7 ms).
Likewise, matching a near-zero difference
in SRT across mechanical perturbations
with a static combination of vision and proprioception suggests
that the visual weight was almost zero, which is incompatible with
the observed reduction in variance. The dependency of the vari-
ance reduction and saccade latency should also be observed when
considering a Gaussian prior over the state of the joint. Thus,
regardless of the prior, a direct combination of instantaneous
sensory signals cannot explain why estimation variance decreased
with vision without affecting the SRT. In contrast, this aspect is cap-
tured in the dynamic model.

We verified in the second control experiment that these results
were not confounded by the fact that switching off the cursor
provided a visual cue to trigger a saccade. The control experiment

was similar to Experiment 2, with the difference that the hand-
aligned cursor remained attached to the target for half of the
mechanical perturbation trials (Fig. 7a; see Materials and Meth-
ods). We observed in this control experiment that SRTs across
blocks decreased, which was indicative of the fact that partici-
pants needed some time to familiarize with the task (Fig. 7b).
Such habituation across blocks was not observed in the main
experiments. After habituation, we observed a similar behavior to
that of Experiment 2 (Fig. 7b). There were clear main effects of
the block number (two-way ANOVA: F(3,89) � 7.45, p � 0.0005)
and of the perturbation types (F(2,89) � 10.16, p � 0.0005). Post
hoc tests revealed that there was no statistical difference between
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SRTs following M or M and V perturbations across the last three
blocks for both perturbation types following mechanical pertur-
bations (Fig. 7b; paired comparisons with Bonferroni correc-
tions: p � 0.1), and the SRT following mechanical perturbations
(with or without vision) in these last three blocks were signifi-
cantly shorter than those observed following visual perturba-
tions (Fig. 7b; p � 0.005). There was no significant difference in
endpoint error across perturbations (one-way ANOVA: F(2,27) �
0.46, p � 0.1). The variance of saccade endpoint reproduced the
results of Experiment 2: we observed a significant reduction when
both proprioceptive and visual feedbacks were available (M and
V), and the endpoint variance in this case was clearly greater than
following visual perturbations (Fig. 7c; post hoc tests with Bonfer-
roni correction, *p � 0.05, **p � 0.01). In conclusion, this ex-
periment reveals that switching off the cursor in Experiment 2 did
not impact our results qualitatively.

The pattern of saccade endpoint error also revealed a modest
influence of vision on the saccades triggered following mechani-
cal perturbations (data from Experiment 2). A known signature
of the saccadic system is that saccades associated with longer
latencies are more accurate (Edelman and Keller, 1998; Blohm et
al., 2005). We observed a similar effect following visual perturba-
tions, as the relationship between the dispersion of endpoint er-
rors and SRTs exhibited a negative principal component on
average and relatively large aspect ratio indicative of small trial-
to-trial dispersion (Fig. 8a). There was a categorical difference
between this pattern and the latency-error relationship of sac-

cades triggered following mechanical per-
turbations (M, M and V). These saccades
presented a positively oriented principal
component on average, and a reduced as-
pect ratio that reflected greater intertrial
dispersion (Fig. 8b). This pattern was
identical regardless of whether visual
feedback was available. Thus, although vi-
sual information following mechanical
perturbations reduced the estimation
variance (Fig. 8d), the mechanism respon-
sible for triggering saccadic responses
following mechanical perturbations ap-
peared to rely predominantly on limb af-
ferent feedback.

Limited impact of vision during
feedback control
As a corollary of the fact that state estima-
tion is almost identical with or without vi-
sion, the dynamic model makes the
seemingly puzzling prediction that upper-
limb feedback responses should be mini-
mally influenced by vision (Fig. 1e). We
used data from Experiment 2 to address this
prediction (Fig. 9). On average, the maxi-
mum shoulder and elbow displacements, as
well as the joint reversal times, were statisti-
cally similar across perturbations with or
without visual feedback (Fig. 9a; for all com-
parisons: t(9) � 1.23, p � 0.25). The influ-
ence of vision became apparent near the end
of the corrective movement (�800 ms),
where we observed a reduction in variability
across trials (Fig. 9a,b, black arrow; paired
comparisons of endpoint variances: t(9) �

3.25, p � 0.01). We used a threshold of 10% of the peak return
velocity to estimate the movement end, and found that it occurred
shortly after the reduction in fingertip variance (gray arrow; 840 �
37 ms, mean � SD). Movement duration was statistically similar
across the two conditions (t(9) � 0.2, p � 0.8). This result shows that
vision mostly influenced fine control near the end of movement,
whereas motor corrections before this time appear primarily driven
by limb afferent feedback.

Again, this observation is compatible with dynamic state esti-
mation, which predicts similar estimation (Fig. 1c) and therefore
similar feedback response with or without vision. In the frame-
work of static multisensory integration, one expects to find
initially slower corrections, as the estimate of the perturbation-
related motion would be delayed by the visual information. In
addition, the variance reduction obtained by combining visual
and limb afferent feedback linearly should have impacted the
variability of hand trajectories across trials, because humans typ-
ically strive to limit variance in dimensions constrained by the
task (Todorov and Jordan, 2002). However, it was not until the
end of the reaching movement, and well beyond visual delays,
that the influence of vision on variability across trials became
apparent.

Alternative control hypotheses that do not assume the contin-
uous use of feedback to generate motor commands, such as pre-
planned triggered reactions or through adjustments of limb
mechanical impedance, are not compatible with the time-varying
profile of positional variance shown in Figure 9b. To summarize,
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the similarity in saccadic responses and upper-limb feedback cor-
rections to mechanical perturbations support the dynamic Bayes-
ian model, in which estimation dynamics is essentially similar
with or without vision due to the difference in temporal delays
across sensory modalities.

Discussion
An important challenge for real-time multisensory integration is
to handle distinct temporal delays across sensory modalities. We
combined standard upper-limb perturbations with visual track-
ing, and used participants’ feedback responses to address how
vision and proprioception contribute to dynamic estimation of
hand motion. Our approach is based on the fact that oculomotor
tracking can capture participants’ online estimate of hand mo-
tion (Ariff et al., 2002), and that state estimation underlies rapid
motor responses to mechanical perturbations (Crevecoeur and
Scott, 2013). Thus, the lower SRTs following mechanical pertur-

bations were expected, and the goal of Experiment 1 was to verify
that the paradigm was adequate for extracting the corresponding
differences in estimation latencies. These differences do not ap-
pear to be related to the instructions associated with each
perturbation type, as they were reproduced when participants
responded to the same perturbations presented in a blocked fash-
ion. Furthermore, Experiment 1 highlighted a rapid buildup of
smooth eye displacement associated with limb motion that likely
contributed to the saccade generation (Fig. 5), and also after the
detection of the perturbation (Fig. 6).

Our main finding is the similar estimation dynamics follow-
ing mechanical perturbations with or without vision, character-
ized by similar saccadic reaction times and estimation error (Fig.
6), similar integration of sensory inflow (Fig. 8), and similar
upper-limb motor corrections for almost the entire course of the
corrective movement (Fig. 9). We analyzed this behavior in light
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of two candidate models: the variance-dependent weighting of
vision and proprioception (Angelaki et al., 2009), and a dynamic
model considering limb dynamics and sensorimotor delays. Our
data clearly showed that the nervous system does not combine
sensory information about the perturbation as predicted by static
multisensory integration. In contrast, participants’ behavior was
well explained by the dynamic model in which multisensory in-
tegration depends not only on sensory noise, but also on feedback
delays. Due to the functional similarity between feedback re-
sponses to external perturbations and voluntary control in a
broad range of tasks (Scott et al., 2015), we expect that our con-
clusions may apply to real-time state estimation in general.

Of course, the importance of vision is not in question, as the
visual system is known to provide exquisite information to guide
movements. Previous work shows that visually guided move-
ments are rapidly updated following changes in the visual target
(Goodale et al., 1986; Prablanc and Martin, 1992; Day and Lyon,
2000), and online corrections for cursor or target jumps are mod-
ulated by the reliability of visual feedback (Körding and Wolpert,
2004; Izawa and Shadmehr, 2008). Studies have also documented
that visual perturbations evoke rapid and task-dependent motor
corrections during reaching (Franklin and Wolpert, 2008; Knill
et al., 2011; Oostwoud Wijdenes et al., 2011). Without question-
ing the importance of vision, our observation that the visual per-
turbations did not engage any motor response suggests that the
relationship between state estimation and visuomotor feedback
during reaching deserves further investigation.

Our model does not adequately address how the nervous sys-
tem should resolve conflicting cues as arise following a cursor
jump, because it assumes that the feedback signals are sampled
from the same process. Playing-back perturbation-related mo-
tion without any perturbation, we found that the inferred joint
displacement was �25% of the actual displacement, while the
evoked control response was reduced by 85% compared with
mechanical perturbations (simulations not shown). Thus, in
principle, comparing motor responses to visual or mechanical
perturbations during reaching may provide additional insight
into dynamic multisensory integration. In addition to the impor-
tance of vision for online control of reaching, vision also enables
anticipation of predictable events, such as when catching a ball
for which predicting the time of impact improves stabilization of
the limb (Lacquaniti and Maioli, 1989). Here our data suggest
that when dealing with unpredictable events, such as external
disturbances, vision plays a secondary role to proprioceptive
feedback.

Our model explains well participants’ behavior following me-
chanical perturbations, but leaves unexplained the fact that esti-
mation variance following purely visual perturbations was
smaller than in the combined case (Figs. 6d, 7d). In theory, the
property that a combined estimate is better than any unimodal
estimate remains true for dynamic models. Thus, the fact that the
estimation variance was lower following purely visual perturba-
tions suggests that the visual process was not fully contributing
following the mechanical perturbations. Indeed, it is possible that
computations performed in pathways specific to the visual sys-
tem (Munoz and Everling, 2004) are not fully engaged when
tracking limb motion. Interestingly, separate neural mechanisms
underlying visual processing of body or target motion were also
suggested to account for specific modulation of visuomotor
feedback during reaching (Reichenbach et al., 2014). In all, a key
general finding is that proprioception plays a major role during
control, and we suggest that it is due to the shorter temporal delay
associated with this sensory modality.

Intuitively, proprioception always provides newer informa-
tion about limb motion, and therefore this sensory modality
contributes the most during movement. Dynamic estimation
converges to the well documented variance-dependent weighting
of distinct sensory signals when sensory delays are ignored. How-
ever, it is important to realize that such integration may become
problematic during movement, as temporal delays as short as
tens of milliseconds can no longer be ignored (Crevecoeur and
Scott, 2013, 2014). The dynamic model that we propose does not
directly capture how the most reliable signal dominates again
under static conditions without re-weighting sensory signals
while assuming no difference in temporal delays, because the
dynamics estimator optimally handles sensorimotor noise in ad-
dition to external disturbances. Although developing a general
theory capturing context-dependent weighting is beyond the
scope of this study, it is conceivable that the neural mechanisms
underlying multisensory integration differ across posture and
movement tasks in a way that parallels the known differences in
control (Brown et al., 2003).

Dynamic Bayesian models may have important implications
for understanding decisional strategies when sensory evidence
changes over time. In general, drift-diffusion models are often
used to describe how sensory evidence accumulates toward a
decision bound (Gold and Shadlen, 2007). Although very pow-
erful, the drift-diffusion model fails to capture some aspects of
decisions made in the presence of time-varying evidence for the
rewarded choice (Cisek et al., 2009; Drugowitsch et al., 2014;
Thura and Cisek, 2014). For instance, in a body-heading discrim-
ination task combining vestibular and visual cues, Drugowitsch
et al. (2014) emphasized the dominance of vestibular signals ob-
served when reaction times were under the participants’ control.
More precisely, behavioral discrimination thresholds of heading
direction appeared dominated by the vestibular signals (Drugow-
itsch et al., 2014, their Fig. 2), which, similar to our study, con-
trasted with the hypothesis of static weighting of visual and
vestibular sensory feedback. These results were explained by con-
sidering a model that computes an optimal posterior estimate of
the heading direction based on velocity and acceleration signals
conveyed in the visual and vestibular systems, respectively. Al-
though this study demonstrated that time-varying properties of
the stimulus are a determinant factor of cue combination, it did
not address the possible impact of a difference in temporal delays
across the two sensory systems. Here we suggest a direct parallel
between the observations made by Drugowitsch et al. (2014) and
the present study, because both studies emphasize a dominance
of faster sensory cues (proprioception or vestibular) over the
more accurate, but slower visual feedback. The dominance of the
faster sensory signal can be explained by the presence of a dy-
namic state estimator, without assuming differences in state vari-
ables encoded in each sensory system.

In our view, the (time-varying) drift-diffusion model suffers
from the fact that the decision variable is not directly linked to the
online control of behavior. This limitation questions drift-
diffusion models for multisensory integration during movement,
given the known interaction between decision-making and mo-
tor control, and the fast time scales at which these neural pro-
cesses are engaged (Cisek, 2012; Wolpert and Landy, 2012; Scott
et al., 2015). In contrast, dynamic Bayesian estimation provides
parsimonious account for the dominance of faster sensory sig-
nals, and directly bridges decision-making with motor control.
Indeed, the estimated state can be used as a decision variable,
relative to which decision bounds can be defined. Because the
estimated state converges gradually toward the variable of inter-
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est at a rate determined by the different noise parameters, this
model also captures the speed-accuracy tradeoff resulting from
the accumulation of sensory evidence.

This interpretation is qualitatively consistent with recent the-
ories of decision-making based on a multiplicative interaction
between the available sensory evidence and the urgency to ac-
quire the reward (Cisek et al., 2009). In our study, oculomotor
responses likely reflected a rapid estimation based on the infor-
mation about body motion available shortly after the perturba-
tion. From a control perspective, the urgency to correctly
estimate body motion following a perturbation is obvious, given
the extremely detrimental impact of temporal delays on control
performance (Miall and Wolpert, 1996; Crevecoeur and Scott,
2014). Altogether, we suggest that dynamic Bayesian estimation
may provide a common framework to interpret decision-
making, rapid motor decisions (Nashed et al., 2014), and multi-
sensory integration in an unsteady world.
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