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The mammalian retina contains three
classes of photoreceptors that convert light
information into electrical signals: rods,
cones, and intrinsically photosensitive reti-
nal ganglion cells (ipRGCs). These photore-
ceptors are capable of responding to a wide
range of light intensities, which can subdi-
vided into scotopic (<9.5 log photons cm ~>
s 1), mesopic (between 9.5 and 12 log pho-
tons cm > s~ '), and photopic (>12 log
photons cm ™% s ') light intensities. Rods
primarily mediate vision in dim, scotopic
lighting conditions, and cones primarily
mediate vision in photopic lighting condi-
tions, whereas both rods and cones mediate
mesopic vision. ipPRGC-mediated behav-
iors, such as circadian photoentrainment
and the pupillary light reflex, function pri-
marily in photopic lighting conditions.
Photoreceptors contain photopigments
composed of a light-sensing chromophore
(11-cis-retinal), and an opsin protein, which
is a 7 transmembrane G-protein-coupled
receptor. 11-cis-retinal is isomerized to all-
trans retinal in response to light, and this
activates the opsin, triggering a cellular re-
sponse. Subsequent regeneration of 11-cis-
retinal through a process called the visual
retinoid cycle is required for photoreceptors
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to continue responding to light. Chro-
mophore regeneration in rod photorecep-
tors relies solely on a tissue adjacent to the
rod and cone layer of the retina called the
retinal pigment epithelium (RPE). Cone
photoreceptors rely both on the RPE and
Miiller glia, which traverse the entire depth
of the retina. However, chromophore re-
generation in ipRGCs is still not well
understood.

ipRGCs express an opsin called mel-
anopsin, which closely resembles inverte-
brate opsins despite its vertebrate origins.
Invertebrate opsins are bistable, which
means they can convert all-trans retinal
back to 11-cis-retinal autonomously when
exposed to long-wavelength light. For this
reason, researchers predicted that melanop-
sin was also a bistable photopigment. In-
deed, melanopsin has been shown to be
bistable when expressed in heterologous
systems (Melyan et al., 2005; Panda et al.,
2005; Qiu et al., 2005). Furthermore, circa-
dian photoentrainment and the pupillary
light reflex, both of which are melanopsin-
driven visual behaviors, have been demon-
strated to be independent of the RPE,
consistent with the hypothesis that mel-
anopsin can regenerate chromophore au-
tonomously (Doyle et al., 2006; Tu et al.,
2006). However, ipRGCs have also been
shown to regenerate 11-cis-retinal and po-
tentiate their light responses in the dark,
which cannot be explained by a model in
which chromophore regeneration is accom-
plished solely by exposure to long-wave-
length light (Wong et al., 2005; Walker et al.,
2008). These observations led to the hy-

pothesis that ipRGCs also partially rely on
the visual retinoid cycle for chromophore
regeneration. To date, there have been no
clear demonstrations of this, but in a recent
study in The Journal of Neuroscience, Zhao et
al. (2016) explore a novel mechanism by
which ipRGCs use the visual retinoid cycle
for chromophore regeneration.

Zhao et al. (2016) first examined
whether the RPE plays a role in melanopsin
chromophore regeneration. To test this,
they used an in vitro rat eyecup preparation,
which allowed them to record the spike out-
put of ipRGCs using multielectrode arrays
(MEAs) either in the presence (i.e., with the
RPE attached to the retina) or absence (i.e.,
with RPE function pharmacologically in-
hibited or the RPE physically removed) of
functional RPE. First, the authors showed
that detaching the RPE from the retina
abolished the sustained, melanopsin-based
firing of ipRGC:s in response to a 1 h back-
ground light stimulus. The authors then ap-
plied drugs that perturb the visual retinoid
cycle to RPE-attached retinas. Specifically,
they used sodium iodate, which poisons
RPE cells (Sorsby, 1941) and 13-cis-retinoic
acid and a-phenyl-N-tert-butylnitrone
(Sieving et al., 2001; Mandal et al,, 2011),
both of which are visual retinoid cycle inhib-
itors. They found that melanopsin-based
sustained firing of ipRGCs was abolished in
the presence of these drugs at low photopic
(12.6 log photons cm ~*s ') and high pho-
topic (14.6 log photons cm ™% s ') light in-
tensities. These results suggest that the
deficit in sustained firing in ipRGCs resulted
from the absence of RPE and not from me-
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chanical damage that occurred when re-
moving the RPE, and thus indicate that the
RPE may play a role in chromophore regen-
eration in ipRGCs.

Next, the authors investigated whether
this RPE-dependent deficit in sustained
firing had behavioral consequences. To
address this, the authors examined whe-
ther acutely perturbing the visual retinoid
cycle affects the pupillary light reflex,
which is a visual behavior primarily medi-
ated by ipRGCs (Lucas et al., 2003; Giiler
et al., 2008; Hatori et al., 2008). Similar
experiments were done previously by Tu
et al. (2006) in which the visual retinoid
cycle was acutely inhibited by administra-
tion of all-trans retinylamide. Tu et al.
(2006) demonstrated that pupillary light
reflex was not affected in these experi-
ments at light intensities between 10
and 14 log photons cm ~>s ', which sug-
gested that ipRGCs do not rely on the vi-
sual retinoid cycle for chromophore
regeneration. Zhao et al. (2016) injected a
mixture of synaptic blockers into the eyes
of the animals to isolate melanopsin-
mediated pupillary light reflex and also
injected animals with 13-cis-retinoic acid
to acutely inhibit the retinoid cycle. Con-
sistent with Tu et al. (2006), the authors
found that, at 13.9 log photons cm 2L
peak pupil constriction and sustained pu-
pil constriction were not significantly
altered in animals treated with 13-cis-
retinoic acid. However, at a light intensity
brighter than those tested by Tu et al.
(2006) (15.6 log photons cm %5~ !), sus-
tained pupil constriction was significantly
reduced. These results suggest that the
ipRGCs that mediate the pupillary light
reflex only rely on the visual retinoid cycle
in high photopic lighting conditions.

There is a discrepancy between the in
vitro and behavioral results mentioned
above. The authors demonstrated a deficit
in sustained firing of ipRGCs in the presence
of 13-cis-retinoic acid at intensities as low as
12.6 log photons cm ™~ *s ~ ', but not in sus-
tained pupillary light reflex at even brighter
light intensities (13.9 log photons ¢cm 2
s "). The most likely explanation for this is
that the spikes detected in MEA recordings
do not arise solely from M1 ipRGCs, the
ipRGC subtype that mediates the pupillary
light reflex (Giiler et al., 2008; Chen et al.,
2011). ipRGCs are comprised of at least 5
subtypes (termed M1-M5) with distinct
physiological and morphological properties
(for review, see Schmidt et al., 2011), so it is
likely that the majority of cells that the au-
thors recorded with MEAs were non-M1
ipRGCs (M2-M5). In support of this, the
peak firing rates that the authors record in

ipRGCs are >40 Hz, which is significantly
higher than previously reported maximal
firing rates of M1 ipRGCs (Schmidt and Ko-
fuji, 2009; Hu et al., 2013; Walch et al,,
2015). This suggests that perhaps non-M1
ipRGCs rely more heavily on the RPE
for chromophore regeneration than M1
ipRGCs. Future work should focus on how
different ipRGC subtypes rely on the visual
retinoid cycle.

An important question that still re-
mains is as follows: how are retinoids
from the RPE transported to ipRGCs? The
RPE is far away from the ganglion cell
layer of the retina, which would make it
impossible for direct transport of chro-
mophore between the RPE and ipRGCs.
The authors hypothesized that Miiller glia
are responsible because they span the en-
tire depth of the retina. To test this, they
treated RPE-attached retinas with DL-2-
aminoadipic acid, which is a toxin specific
for Miiller glia (Pedersen and Karlsen,
1979), and found that melanopsin-driven
sustained firing of ipRGCs was abolished
but could be partially restored with appli-
cation of 9-cis-retinal. These results sug-
gest that Miiller glia are required for
RPE-dependent chromophore regenera-
tion in ipRGCs. In cone photoreceptors,
Miiller glia have been shown to support
the visual retinoid cycle through two
mechanisms. Wang and Kefalov (2009)
demonstrated that Miller glia provide 11-
cis-retinol to cone photoreceptors, which
cone photoreceptors can convert to 11-
cis-retinal. This was demonstrated by
showing that application of 11-cis-retinol
restored photosensitivity of bleached cone
photoreceptors. If ipRGCs also relied on
Miiller glia through a similar mechanism,
then application of 11-cis-retinol should
also restore sustained firing in ipRGCs.
However, when Zhao et al. (2016) applied
9-cis-retinol (an analog of 11-cis-retinol)
to RPE-detached retinas, they did not ob-
serve any restoration of sustained firing in
ipRGCs. Xue et al. (2015) showed that
Miiller glia can also directly transport 11-
cis-retinal from the RPE to cone photore-
ceptors using a protein called cellular
retinaldehyde-binding protein. It is possi-
ble that Miiller glia also use cellular
retinaldehyde-binding protein to trans-
port 11-cis-retinal to ipRGCs, but this was
not tested by Zhao et al. (2016). There-
fore, the mechanism by which Miiller glia
participate in chromophore regeneration
in ipRGCs still remains a question for fu-
ture studies.

Together, these results suggest that, in
low photopic conditions and for short du-
rations, melanopsin does not rely on the
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visual retinoid cycle. But in high photopic
conditions, melanopsin relies on the
RPE and Miiller glia for 11-cis-retinal.
ipRGC dependence on Miiller glia for
chromophore regeneration has been postu-
lated previously, and this study by Zhao et
al. (2016) clearly demonstrates such
an influence. This study warrants future
work investigating the molecular mecha-
nisms of Miiller glia transport of 11-cis-
retinal and the importance of this cycle for
other ipRGC-mediated behaviors.
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