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Systems/Circuits

Orientation Selectivity from Very Sparse LGN Inputs in a
Comprehensive Model of Macaque V1 Cortex

Logan Chariker,' Robert Shapley,” and Lai-Sang Young'~

!Courant Institute of Mathematical Sciences, and 2Center for Neural Science, New York University, New York, New York 10003

A new computational model of the primary visual cortex (V1) of the macaque monkey was constructed to reconcile the visual functions
of V1 with anatomical data on its LGN input, the extreme sparseness of which presented serious challenges to theoretically sound
explanations of cortical function. We demonstrate that, even with such sparse input, it is possible to produce robust orientation selec-
tivity, as well as continuity in the orientation map. We went beyond that to find plausible dynamic regimes of our new model that emulate
simultaneously experimental data for a wide range of V1 phenomena, beginning with orientation selectivity but also including diversity
in neuronal responses, bimodal distributions of the modulation ratio (the simple/complex classification), and dynamic signatures, such

as gamma-band oscillations. Intracortical interactions play a major role in all aspects of the visual functions of the model.
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ignificance Statement

We present the first realistic model that has captured the sparseness of magnocellular LGN inputs to the macaque primary visual
cortex and successfully derived orientation selectivity from them. Three implications are (1) even in input layers to the visual
cortex, the system is less feedforward and more dominated by intracortical signals than previously thought, (2) interactions
among cortical neurons in local populations produce dynamics not explained by single neurons, and (3) such dynamics are
important for function. Our model also shows that a comprehensive picture is necessary to explain function, because different
visual properties are related. This study points to the need for paradigm shifts in neuroscience modeling: greater emphasis on
population dynamics and, where possible, a move toward data-driven, comprehensive models.
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Introduction
Orientation selectivity (OS) is one of the most salient character-
istics of the primary visual cortex (V1) of the macaque monkey.
Hubel and Wiesel (1962) proposed a theory for OS framed in
terms of feedforward convergence of LGN cells with receptive
fields (RFs) aligned in visual space. We were compelled to revisit
their ideas in the light of experimental findings about the extreme
sparseness of LGN input to V1.

We focus on V1 layer 4Ca because orientation selectivity and
spatial frequency (SF) selectivity are already observable in this
cortical input layer (Livingstone and Hubel, 1984; Ringach et al.,
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2002; Zhu et al., 2010). Layer 4Ca receives input from the mag-
nocellular LGN layers (Chatterjee and Callaway, 2003). Accord-
ing to anatomical evidence (see Results), the magnocellular LGN
input to V1is very sparse (Connolly and Van Essen, 1984; Silveira
and Perry, 1991; Angelucci and Sainsbury, 2006). Layer 4Ca in
each V1 hypercolumn (Lund et al., 2003) receives only ~10 direct
magnocellular inputs, and a total of 30 LGN inputs altogether
counting up direct and ramifying axons from neighboring hyper-
columns. These 30 LGN inputs are driving ~3000 excitatory (E)
and 1000 inhibitory (I) cortical neurons.

The anatomical data cited above lead to the following geomet-
ric/combinatorial questions. In a patch of 10-20 LGN cells,
one-half ON, one-half OFF, is it possible to fit two or three ap-
proximately parallel receptive field subregions, as in the Hubel—
Wiesel picture, each driven by ON (or OFF) LGN cells, with
distances between the subregions that would support the correct
spatial frequency preference of the V1 neuron? And, would
model cortical neurons acquire the ability to discern many orien-
tations around the clock, as observed in real V1 (Obermayer and
Blasdel, 1993), from the same set of sparse inputs?

The new computational model of layer 4Cc that we have con-
structed answers both of these questions in the affirmative. Ori-
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Materials and Methods

We will discuss in separate sections the general
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there are on average ~10 LGN cells (5 ON and
5 OFF) that project to each hypercolumn
(HC); see Results, Input patterns of LGN to V1.
In the model, we started modeling the LGN
with a (regular) triangular lattice on the plane,
which we identified with visual space. Assum-

Figure 1.

entation selectivity is passed to cortex, with a great deal of help
from recurrent cortical interactions. As shown in Results, our
model exhibits the full range of orientation and spatial frequency
selectivity found in V1. It takes weakly tuned inputs from sparse
LGN afferents, and, via recurrent inhibitory and excitatory syn-
aptic interaction, sharpens them and smoothes out the discrete
set of orientations from LGN into a continuous map.

Our model goes far beyond accounting for OS and orientation
maps. It shows that many V1 functions are linked. These include,
in addition to OS, the bimodal distribution of modulation ratio
(MR) that is an index of the simple/complex classification (see
Fig. 4; Skottun et al., 1991), the wide diversity in selectivity and
neuronal response magnitudes (see Figs. 6, 8; Ringach et al,,
2002), as well as the emergence of gamma rhythms when driven
by optimal gratings (see Fig. 9; Volgushev et al., 2002; Kayser and
Konig, 2004).

Our analysis shows that dynamic interactions among cortical
neurons are the single most important factor that binds together
these different functions of V1. Recurrent excitation, indirect
suppression, and the competition and balancing between the ex-
citatory and inhibitory populations shape neuronal responses to
stimuli. These interactions give rise to many emergent phenom-
ena, i.e., phenomena that cannot be predicted from the behaviors
of single neurons alone.

We propose that the model presented here can serve as a start-
ing point in the creation of a larger dynamic picture, one that
connects anatomical structures, dynamics, and cortical func-
tions, and extends to the rest of cerebral cortex.

LGN input and corticocortical coupling of E and | cells. A, Receptive field centers of M retinal ganglion cells or
magnocellular LGN cells in the locations of their projections to V1 cortex. ON cells are indicated by white, and OFF cells by black,
against a gray background. The ganglion cell density is from the study by Silveira and Perry (1991). The square drawn in the center
corresponds to the retinal region that projects to a single hypercolumn (HC). B, The nine HCs of the model with the intended
orientation map drawn in. (—E, Connectivity examples: presynaptic E input (red) to an E cell (black dot; C); presynaptic E inputs
(red) to an | cell (D); and presynaptic | inputs (blue) to an E (or I) cell (E). The square in each plot represents an HC.

ing that the centers of the receptive fields of ON
LGN cells correspond to points in this lattice,
we placed the OFF cells at the barycenters of the
triangles defined by the ON lattice. Lattice
spacing was chosen so that neighboring ON
(or, respectively, OFF) cells are ~0.125° apart,
resulting in 10 cells/HC. We then perturbed
randomly and independently each lattice point
to match the retinal mosaics of M retinal gan-
glion cells.

Figure 1A shows the distribution of recep-
tive field centers of ON and OFF LGN cells in
the lattice, together with the scale of one HC in visual space. Determining
plausible input patterns of LGN cells to cortex based on anatomical and
physiological data is a major part of the present modeling effort. Our
choices of LGN input patterns are reported in Results.

Layer 4Ca. We modeled nine HCs of 4Ca arranged in three ocular
dominance columns (Fig. 1B). Each HC measures 0.5 X 0.5 mm* and is
divided into regions where cells are intended to have similar orientation
preferences, following the pinwheel pattern of orientation selectivity seen
in experiments (Obermayer and Blasdel, 1993). Following Beaulieu et al.
(1992), we used cell densities of ~4000 neurons/HC, three-quarters of
which are E cells and the rest are I cells. The I neurons are assumed to be
a homogeneous population of local-circuit basket cells, a reasonable ap-
proximation for layer 4Ca (Defelipe et al., 1999). E and I neurons are
uniformly distributed in the model cortex.

The probability of connection among model cells is dependent on
distance and cell types (E or I), while the strength of connection is inde-
pendent of distance. This approach is based on intracellular data (Oswald
and Reyes, 2008) and is more realistic than all-to-all coupling with syn-
aptic strength decreasing with distance, as was done in some previous
large-scale models of V1 (McLaughlin et al., 2000; Tao et al., 2004, 2006).
As discussed in Results (see Fig. 6), the observed diversity in OS and other
cortical properties depended on the probabilistic connectivity used here.
For presynaptic E neurons, connection probabilities are given by Gauss-
ians with SD = 200/\/2 um; and for presynaptic I cells, SD = 125/1/2
pm (Fitzpatrick et al., 1985; Yoshioka et al., 1994). Peak connection
probability among E cells is ~15% on average (i.e., we scaled the Gauss-
ian describing the spatial dependence of connection probability to have a
peak 0f0.15). According to Holmgren et al. (2003) and Oswald and Reyes
(2008), I cell connections are much denser (from 50% to 100%); we set
the peak connection probabilities for E—1,1 —E, and I — I to be 60%

I —>E,|l
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(Fig. 1C, D, E). The consequences of all these choices can be seen in Figure
1C-E, which shows examples of the spatial extent of E-E, E-I, I-E, and
I-I couplings in the model. As can be observed in Figure 1, the spatial
reach of E neurons is larger than that of I neurons, while the E-E coupling
is the sparsest.

The numbers of connections and cell densities imply that, on average,
an E cell has ~200 E cells and ~100 I cells presynaptic to it, while an I cell
has, on average, ~750 E cells and ~100 I cells presynaptic to it (Fig.
1C-E). These are mean values; the actual numbers of presynaptic inputs
fluctuate from cell to cell. Connectivity between each specific pair of
neurons was determined first by a coin flip (with a suitable probability of
“yes”). Outliers in the distributions of presynaptic neurons were then
discarded to prevent, for example, domination by cells with too many
presynaptic E neurons (Fig. 1C-E).

Observe that the numbers of presynaptic neurons computed from cell
densities and connection probabilities are in the hundreds, not tens of
thousands (as in the continuum limit of van Vreeswijk and Sompolinsky,
1996); each presynaptic cortical cell makes multiple synaptic connections
on its target neuron (Martin, 1988).

Outputs from layer 6. Layer 4Ca receives substantial feedback primar-
ily from layer 6 (L6) (Callaway, 1998), the effects of which are incorpo-
rated in the model. L6 receives input from multiple layers of V1 as well as
LGN (Callaway, 1998; Sincich and Horton, 2005), and its neuronal pop-
ulation is known to be very diverse (Wiser and Callaway, 1996); con-
structing a detailed model of its dynamics would present formidable
challenges. For our purposes, however, it is sufficient to model only the
outputs of the subpopulation of L6 that project to 4Ca. We modeled
these outputs as a collection of spike trains, one for each L6 neuron.

From the cell density of L6 (Beaulieu et al., 1992) and the small fraction
of E cells that project to layer 4Ca (Wiser and Callaway, 1996), we esti-
mated that ~300 L6 neurons/HC have ascending axons that terminate in
4Ca. The axonal spreads are large (Wiser and Callaway, 1996); in the
model, we assumed that most (approximately five-sixths) of the synaptic
contacts of a layer 6 cell occur in a disk of radius ~180 wm, while the rest
can extend as far as ~360 wm. In the absence of experimental guidance
on connection probabilities between L6 and 4Ca neurons, we assumed
that they are similar to those within 4Ce; this gives, for example, an
average of ~50 presynaptic L6 neurons, represented by a corresponding
number of spike trains, for each E cell in 4Ca.

Spontaneous spiking of L6 neurons was modeled as Poissonian, at
0.5-10 spikes/s (Ringach et al., 2002). L6 spike trains were tuned for
orientation (Ringach et al., 2002). Specifically, if f; ., represents the
mean firing rate of an L6 neuron when driven by its optimally oriented
grating pattern at full contrast, we scaled this number down to approxi-
mately 0.25* f, .. for the response to an orthogonal grating. Also incor-
porated in the model are the facts that (1) a majority of L6 neurons are
complex (Ringach et al., 2002), and (2) there is partial synchronization in
the gamma band of frequencies for nearby L6 neurons (Xing et al., 2012).

Equations of neuronal dynamics

Dynamics of LGN cells. Following the study by Lin et al. (2012), we mod-
eled the dynamics of individual LGN cells by the integrate-and-fire equa-
tion, as follows:

V() = =cV() + T77(8) + Spoise D 1,0 5:8(t — 1),

where V is membrane potential; ¢ = 100 is the leak rate (¢ is in seconds);
I'" and I~ are deterministic currents entering ON and OFF LGN cells,
respectively; S, ;.. is the coupling coefficient of a Poisson-timed noise
termy s; is = with equal probability; and ¢, are the arrival times of the
Poissonian noise inputs. When V reaches a threshold V.., ~1, the
potential is reset to 0, and a spike is sent to all postsynaptic cells in 4Ca.
For a sinusoidal grating drifting in the direction u (unit vector) with
temporal frequency w, the current I(t, x) into an LGN cell, the center of
whose RF corresponds to location x in visual space is given by the
following:

I (t,%) = Io(1 + eC([ul) sin(p(t,x))),
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where I, = 100 (as in the study by Lin et al., 2012), & is contrast, C(|u|) is
a function encoding the dependence of firing rate on the spatial fre-
quency of the grating (modeled as a standard difference-of-Gaussians, as
in the study by Zhu et al., 2010), and p(t,x) = wt + <x,wu> gives the
phase at location x (where <x,wu> is the inner product). Constants are
chosen so that the background (bg) firing rate of an LGN cell is ~20
spikes/s, and, when driven by a grating at full contrast, the peak firing rate
is ~100 spikes/s (Hawken et al., 1996). When driven, this LGN model
produces firing patterns significantly closer to those of real LGN cells
(Reich et al., 1997; Lin et al., 2012) than Poisson models. The more
realistic LGN model excited V1 cells more effectively than Poisson drive
(Lin et al., 2012).

Dynamics of cortical cells in layer 4Ca.. Consider a model neuron, 1, of
type o = E or I. To model the time evolution of its membrane potential,
we used normalized voltage units where resting potential V.., = 0, and
spike threshold V,;, = 1. The membrane potential of the nth neuron v" is
driven toward the normalized spike firing threshold V,;, = 1 by the fol-
lowing leaky integrate-and-fire (LIF) equation:

dv'ldt = —gg V" — gg(t)(v" — Vi) — gD — V),

where v" is in normalized units, time ¢ is in seconds, the leakage conduc-
tance gy . is set to 50/s for o =E and 1.33 * 50/s for o =I (Beierlein et al.,
2003). Here g;(t) and g} (¢) are the E and I conductances of neuron » at
time f; their time evolutions are described below. Finally V. and V; are the
E and I reversal potentials, which in normalized coordinates are 14/3 and
—2/3 respectively. When v" reaches V;,, a spike is fired, and v" is reset to
0, where it is held for a refractory period = 2 ms. The biophysical con-
stants above are textbook (Koch, 1999).

The evolution of g/(#), the I conductance of neuron #, is given by the
following:

gi(t) = S”’E,- e Pm(r:)Ek — 1.0 Goaralt — 1)

where S is the synaptic weight, or the constant describing the change in
I conductance in neuron # upon receiving synaptic input from an inhib-
itory neuron. Synaptic weights vary by ~10% from neuron to neuron;
for simplicity, we write only their mean, which we assume depends only
on the type o of neuron 7, hence the notation S°!. The first summation in
the equation for gj'(¢) is over P, ; (n), defined to be the set of all  neurons
inlayer 4Ca that synapse on neuron . The second summation is over the
spikes fired by neuron i. Specifically, £ is the time of the kth spike in
neuron i. Ggapa (s) describes the time course of I conductance for a
neuron when a spike is fired by a presynaptic I neuron at time s = 0.

The E conductance gj; (t) is the sum of four synaptic conductances: (I),
coming from LGN; (II), from layer 4Cey; (III), layer 6; and (IV), neuro-
modulatory influences from the rest of the brain or body. We discuss
each of these terms separately. First:

D:= S‘T’LGNE,- c pLGN(")Ek ~ 100 Ganpalt — t)

Asabove, 7N is the synaptic weight from an LGN spike for a postsyn-

aptic cell of type @, P; ;\ (1) is the set of LGN cells presynaptic to neuron
n, and G ppa () is the conductance time course for AMPA. Likewise:

(Im:= SU'EZi e Pm‘E(n)zk — 10 105 Ganpalt — 1)

+ p% Gavoa(t — 1)}

The meanings of the terms are analogous to that given before: P, 5 (1)
denotes the set of E neurons in layer 4Ca that synapse on neuron 7, and
p4 and pg; denote the fractions of synaptic input received by AMPA and
NMDA receptors in a postsynaptic neuron of type o. The feedback term
(III) is identical to (II), except that P, p(n) is replaced by P, (), the set
of E neurons in layer 6 that synapse on neuron 7, and S°% is replaced by
S¢ £ a different number. Finally, the term (IV), in which we have lumped
the influence of multiple modulatory substances, to be thought of as
mostly but not limited to acetylcholine, is modeled approximately (in the
absence of more precise information) as follows:

(IV) L= SamePoisson, To GAMPA(t - tk)~
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Substituting g;/gr ~ 3 based on experimen-

tal data (Borg-Graham et al.,, 1998), W ~ 4
(Swadlow, 1988), X ~ 1/2 (see Materials and
Methods, Model Layout, above), and Y ~ 2/3
(a guess based on the results of the study by
Binzegger et al., 2009), we obtain Z ~ 2.25. In
the model, we used S¥ = 2 * SFE,

Then we fixed the relation between S and
S, for example, by setting S” to be uniformly

150

10 100
Q —
Q c
Ky 3
& .

5 50

0 0

0.2 0.3 0.4 0.5 0 10
SIE /S EE

Figure2.

Here “amb” is shorthand for “ambient.” The summation is over Poisson
pulses, of size S and at rate r,, occurring at times f,. The times of
occurrence of ambient pulses are independent from neuron to neuron.

The functions G s, Ganvpar and Gpipa are similar to those used by
Tao etal. (2004), with rise times of a few milliseconds; and decay times of
~5ms for Ggpga, ~3 ms for G,y pa» and ~80 ms for Gy pa. Following
the study by Stratford et al. (1996), we further assumed that each E-to-E
spike carries a synaptic failure rate of up to 20%.

We remark that even after all the parameters have been fixed, one
cannot solve for the quantities # (= the arrival times of spikes) in the
equations above explicitly. A neuron spikes when its membrane potential
reaches a certain threshold that is largely determined by the net effect of
the spiking activities of its presynaptic E and I neurons, which themselves
are influenced by neurons presynaptic to them. In particular, firing rates
cannot be expressed in terms of the parameters above. We choose param-
eters aiming to hit a target distribution of firing rates; that is the best we
can do. As simple as the form of the LIF equations may appear, the
interactions among neurons are complicated, and it is these interactions
that shape collective behavior.

Parameter determination

Parameters were set systematically based as much as possible on experi-
mental data. First, we fixed those constants for which there is some
biological guidance, such as the ratios of AMPA to NMDA in E synapses.
We set pﬁ =0.8, p,E\, =0.2, pﬁ = 0.67,and pIN = 0.33, as NMDA is known
to be more prevalent in I neurons (Lisman et al., 2008). We set S LLGN —
2.1*SEE GLLGN = 3+ gFE SGEE =0.5* SEE (Stratford et al., 1996; Beierlein
etal.,2003), and assumed a synaptic failure rate up to 50% for L6 neurons
(Stratford et al., 1996). As the mean firing rate of the particular subpop-
ulation of L6 that project to 4Ca is not known, we set fg ... at ~40
spikes/s, well within the range of the entire L6 population.

The choice of $*™ = 0.01 was arbitrary, the only known constraint
being that $*™" should be small (acetylcholine is known to be delivered in
very small pulses; Disney et al., 2012). There was less guidance for the
ambient neuromodulatory rates 7' and 1, except that the neuromodu-
lation alone should not cause spiking in layer 4Ce (Soma et al., 2012). We
used 14, 1 ~ 250/s. The choices of the neuromodulatory rates have little
effect on orientation selectivity

Determining S™%, S*., S™, and S™, We set SF = 0.028, a justification being
that starting from a reasonable membrane potential and conductance, it
takes 1020 excitatory pulses in quick succession to drive a cell across thresh-
old if we use an S value between 0.02 and 0.03 (Stratford et al., 1996).

Once S¥F was fixed, we used the following experimental guidance to set
S¥I. We may express the ratio of I conductance to E conductance as
follows:

SlgE=W*X*Y*Z,

where W = (firing rate of I neurons in 4Ca)/(firing rate of E neurons in
4Ca); X = (no. of presynaptic I neurons in 4Ca)/(no. of presynaptic E
neuronsin4Ca); Y = correction of W* X to include sources of E currents
from outside of 4Ca; and Z = S¥!/SFE.

sp/sec

Determination of S/, 4, Dependence of background firing rates on S/, The target mean background firing rate
forE cellsis 2.5— 4 spikes/s (dashed lines), so the S/SE ratio needs to be 0.3— 0.32. Note that in this window, | firing rates are three
to four times the E firing rates. B, Distribution of the bg firing rates of the population of E neurons with S%/5% = 0.3.

distributed between 0.65 * S and 0.85 * S*..
Our rationale for taking S” to be smaller than
S is that, in addition to the usual chemical
synapses, some pairs of I neurons are known to
be electrically coupled (Gibson et al., 2005),
and electrical coupling means that the I neu-
rons excite rather than suppress one another.

Of the four synaptic weight constants S,
the most sensitive is $'%; more than the other
S$*Y weight constants, a small change in S’ can have a large effect on the
behavior of the system. This is in part due to the large numbers of pre-
synaptic E neurons to I cells (Fig. 1D). For this reason, we located a
suitable value of S through parameter exploration. With all $*¥ weight
constants fixed, except for %, we determined S™ guided by the bg firing
rates for E neurons. More precisely, we found that, without exception,
the mean bg E firing rate decreases monotonically as SZ/S is increased
(Fig. 2). This dependence is expected, and it allows one to choose the
value of S"/S*F that gives the mean bg firing rates of E neurons that one
requires to emulate experimental mean bg firing rate data at 3—4 spikes/s.

We do not claim to have performed an exhaustive search for all
parameters (which is not feasible given the dimensionality of param-
eter space), but have found, through numerical exploration, that
there is considerable flexibility in the sense of producing viable model
outputs provided that excitation and inhibition in the model are well
balanced. Below, we give three examples of how this E/I balancing is
accomplished in the procedure above, as well as the properties that are
affected. None of the parameter variations below has significant ef-
fects on OS, diversity, and dynamic linkage to function, as discussed
in Results.

Example 1: varying S We have explored varying S = ¢ for cin
the range (1.6, 2.8). Using the parameter determination procedure (Fig.
2) for S™/S*E, we find a larger S™ value for smaller ¢ values and a smaller
S' value for larger ¢ values, so that the total inhibitory capability of the
system remains approximately constant. What changes is the I cell firing
rate: a larger ¢ value leads to lowered I cell firing, as can be expected since
each I cell spike is more powerful.

Example 2: increasing S™. If S” increases, our procedure for determin-
ing S™ (Fig. 2) gives a larger S value to compensate for the extra inhi-
bition to I neurons. A side effect of increased S™ is that I cell voltages sit
lower on average (i.e., the membrane is more hyperpolarized), and I cell
spiking becomes a little less synchronized when driven.

Example 3: varying the amount of ambient drive. Varying ambient input
spike rates 4 and 7/ by similar amounts has little effect, except that too
low an ambient drive causes the system to become more synchronized
than is realistic in background. Favoring ambient E or I over the other is
balanced by the procedure for selecting S, as indicated before.

Trimming variation and introducing “egalitarian” redistributions. E
neurons that receive significantly more excitatory input may fire more,
silencing other E neurons via recurrent inhibition. Such competition is
part of the dynamic picture, but in too extreme a form, it makes the
model unrealistic. For this reason, we had to trim down the variability in
the number of presynaptic E neurons for E cells, as explained in Materials
and Methods, Model Layout. It turns out that we will also have to intro-
duce variability for a different reason: to compensate neurons that do not
receive adequate feedforward input. This is discussed in Results, Input
patterns of LGN to V1.

Monocular versus binocular simulations. In model simulations, both
eyes were assumed to be open when the visual stimuli were presented.
Because much of the experimental data used for validation was obtained
with one eye occluded, we also simulated monocular stimulus presenta-

30 40

* SEE
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tion, and the results (data not shown) are very similar to the binocular
case.

Summary of parameter values used in the simulations in

this article

Leakage conductance, excitatory neurons, gx = 50/s; leakage conduc-
tance, inhibitory neurons, gJR = 66/s; coupling weight LGN — E cells,
SELEN = 0,059; coupling weight LGN — I cells, S =N = 0.084; coupling
weight cortical E — E, S¥¥ = 0.028; coupling weight cortical E—1, S =
0.0095; coupling weight cortical I — E, S¥ = 0.056; coupling weight
cortical I — I, S = uniformly distributed in (0.036, 0.048); coupling
weight layer 6 — E, S = 0.014; coupling weight layer 6 — I, S =
0.0047; coupling weight ambient, S amb — () 01; ambient firing rate, 1’2 =
r} = 250/s; AMPA fraction of E conductance, pf; = 0.8; NMDA fraction
of E conductance, pk = 0.2; AMPA fraction of I conductance, p}, = 0.67;
NMDA fraction of I conductance, pf\, = 0.33; and peak-driven firing rate
in layer 6, fy .. ~ 40/s.

Results

Input patterns of LGN to V1

Calculation of sparse LGN magnocellular input to V1 cortex

layer 4Ca

An important new feature of our model is that it takes into ac-
count the very sparse LGN input to macaque V1. That the LGN
input is extremely sparse can be gleaned from known anatomical
data. According to Silveira and Perry (1991), the M retinal gan-
glion cell density at 5° eccentricity is 3500/mm?. If we take the
conversion factor of [200 wm (on the retina)]/[degree of visual
angle] for the Java monkey Macaca fascicularis (Silveira and
Perry, 1991), then M cell density = 140 M ganglion cells/deg” at
5° eccentricity. The cortical magnification factor in M. fascicularis
V1 at 5° eccentricity is ~2 mm/deg (Xing et al., 2009). Therefore,
one hypercolumn in V1 cortex (0.5 X 0.5 mm) at 5° eccentricity
corresponds to approximately (0.25°)* = 1/16 deg®. Then the
number of M ganglion cells that provide direct input to one
hypercolumn would be 1/16 * 140, or approximately nine cells.
We round that number off to 10. A similar calculation can be
performed with the macaque LGN data from the study by Con-
nolly and Van Essen (1984). They provide an estimate of the
magnocellular LGN density at 5° of ~160/deg?, which is in close
agreement with the M retinal ganglion cell density estimate by
Silveira and Perry (1991) of 140/deg?. This yields the estimate of
10 magnocellular LGN cells providing direct LGN input to each
hypercolumn. The data from the study by Connelly and Van
Essen (1984) indicate that a similar estimate would apply also at
10° eccentricity. The concordance of data between the studies by
Silveira and Perry (1991) and Connelly and Van Essen (1984)
suggests that within the central 10° of the visual field the same
number of M retinal ganglion cells and magnocellular cells rep-
resent the same region of visual space.

With approximately 10 M retinal ganglion cells and a corre-
sponding number of magnocellular LGN cells providing direct
input to each HC, branching of magnocellular axons from neigh-
boring HCs (Blasdel and Lund, 1983; Lund et al., 1993; Angelucci
and Sainsbury, 2006) provides another 20 or so LGN inputs to
each HC, making a total of no more than 30 thalamic inputs that
drive the 4000 neurons in the HC of the model. Furthermore,
Angelucci and Sainsbury (2006) reported that in layer 4Ca, a
region 300 um in diameter is contacted by no more than 11 LGN
cells, and they proposed that the numbers of LGN inputs to cor-
tical cells are likely much smaller. Their estimate is consistent
with the numbers above, as well as the RF profiles obtained by
Yehetal. (2009) (and C. 1. Yeh, D. Xing, P. E. Williams, and R. M.
Shapley, unpublished observations).
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Given the sparseness of LGN input to V1, it is a challenge for
any model to generate the full repertoire of the visual functions of
V1. Our model met this challenge with a specific set of LGN input
patterns, which were designed to be as consistent as possible with
anatomical and physiological data. This is discussed in the Num-
bers and templates section below. We also found that the distri-
bution of the MR and SF preferences of V1 neurons are strong
constraints on the choice of LGN input patterns. This is discussed
in the Modulation ratios and nLGN section below.

Numbers and templates
Following the optical imaging data from the study by Obermayer

and Blasdel (1993), we sought to assign to each neuron in a des-
ignated orientation domain in layer 4C« (Fig. 1B) a configura-
tion of LGN cells that has the potential to produce two or three
ON/OFF subregions aligned in the direction specified. This task
has the following constraints: (1) each ON (or OFF) subregion
cannot be represented by more than one row of LGN cells, or the
number of LGN inputs would be too large, contradicting the
findings of the study by Angelucci and Sainsbury (2006); (2) for
the same reason, each row cannot exceed two to three LGN cells;
(3) because the peak response of V1 is to drifting gratings with SF
at 2.5-3 c/d (cycles/deg) (De Valois et al., 1982), rows of LGN
cells corresponding to adjacent subregions should be separated
by three-sixteenths to one-quarter degree [in particular, choos-
ing ON/OFF pairs that are nearest neighbors, as proposed by
Ringach (2007) and Paik and Ringach (2011), would lead to a
quite different SF preference]; and (4) because of the limited
reach of LGN axonal terminal trees (Angelucci and Sainsbury,
2006), a V1 neuron cannot be connected to LGN cells that have
direct projections that are >450 wm away.

Permitting each cortical E cell to have 0—6 LGN inputs, ar-
ranged in two or three rows of one to three cells each, we found
that constraints (1)—(4) above can be met by the LGN lattice in
Figure 1A, but that there is only a small number of viable config-
urations. Some example LGN templates are shown in Figure 3. As
shown in Figure 1B, we divided each HC into six distinct orien-
tation domains, and stipulated that within each domain neurons
received LGN inputs favoring one of the orientations of 0°, 30°,
60°, 90°, 120°, or 150°, with 0° taken to be vertical. Because the
lattice we used has a threefold rotational symmetry, it is sufficient
to enumerate two sets of admissible templates, one preferring, for
example, horizontal and the other 30° from horizontal. Rotating
these two sets of templates by 60° and 120°, one obtains templates
for the other four orientations.

We used the following algorithm for assigning to each cortical
neuron a set of afferent LGN cells: first pick the number of LGN
inputs (nLGN) randomly according to a distribution the deter-
mination of which we postpone to the Modulation ratios and
nLGN section below. Then, from the list of templates in the in-
tended orientation of the cortical neuron and nLGN (Fig. 3), pick
atemplate at random, with equal probability of picking templates
with opposite polarity. Finally, go to the LGN sheet for the cor-
responding eye, and select a configuration of LGN cells matching
this template, making sure that it projects to a location in cortex
within 400-500 wm of the cortical neuron in question.

Cells near the border of two orientation domains have positive
probabilities of being assigned templates with either orientation.
These probabilities are determined by a narrow Gaussian function:
at 10 um from the boundary, the probability of picking the “wrong”
template is 0.38; at 30 wm away, the probability drops to 0.01.

As for I cells, it does not matter a great deal whether one uses
oriented or unoriented (or scrambled) LGN inputs. We have tried
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Vertical-preferring templates

Figure 3.
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Horizontal-preferring templates

LGN — V1 connectivity. A, Templates of LGN-V1 cell connections for excitatory cells in a vertical-preferring patch. All viable configurations of ON (white) and OFF (black) LGN cells are

enumerated, ordered by increasing numbers of cells in the configuration (nLGN). B, Templates for cells in a patch that prefers Horizontal orientation, ordered similarly. The model used templates for

0°,30°,60°,90°, 120°, and 150°, obtained by rotating the two sets of templates shown.

both, and the results of model simulations were similar. In both
cases, the I cells showed a significantly higher circular variance (Circ-
Var) than E cells (see Results, Tuning and orientation-specific re-
sponses of model neurons), and the rest of the model was not
substantially affected. In the simulations shown in this article, we
used unoriented I cells, with nLGN ranging from zero to eight, its
distribution given by a Gaussian with mean = 3, SD = 2.

Modulation ratios and nLGN
We found that getting the model to match the distribution of the
MR across the V1 population was a strong constraint on
the number of LGN inputs (nLGN) and, therefore, on the alloca-
tion of LGN templates. The MR of the responses of a cortical cell
has been taken to indicate the degree to which the cell sums its
inputs linearly (De Valois et al., 1982; Skottun et al., 1991). Many
experimentalists have measured MR and reported its diversity in
V1 (Ringach et al., 2002). Here MR is defined to be F,/F,, where
F, is the amplitude of the fundamental frequency of the response
of the cell when it is driven periodically, and F, is the mean.
Specifically, MR = 0 corresponds to a cycle average that is con-
stant over time; a sine wave function with amplitude equal to its
average yieldsan MR = 1,and MR = 2 corresponds in practice to all
spikes being concentrated in a single bin in each cycle average histo-
gram. Following the studies by De Valois et al. (1982) and Skottun et
al. (1991), we call amodel cell “complex” if its MR is <1 when driven
by its optimal grating at full contrast, and “simple” when MR is >1.
It is commonly thought—and receptive field mappings ap-
pear to support the hypothesis—that complex cells correspond to

those V1 neurons with either no or few LGN inputs. In our
model, such cells tend to be suppressed by cells with larger num-
bers of LGN afferents if nothing is done to boost their firing rates,
yet it is an empirical fact that when driven, complex cells have
firing rates that are higher than average [Ringach et al., 2002;
http://www.ringachlab.net/lab/Data.html (the Ringach labora-
tory web site)]. This suggests that some boosting is necessary. We
will return to this point later, preferring to first proceed to our
main observation about the dependence of MR on nLGN.

With the firing rates of low nLGN cells adequately boosted
(through increased connectivity or synaptic weights), we found
that there is a strong correlation between the nLGN of a V1 cell
and its MR. To illustrate this point, we presented the model with
a battery of 64 gratings in eight different orientations, each with
eight different SF values. In these model simulations of cortical
responses, as for all of the other results of simulations in this
article, the responses of the model were obtained for 20 s of visual
stimulation. The MR of a cell was taken to be its MR for the
grating to which it had the strongest response. When cells in the
center HC of our model were divided according to nLGN and
histograms of MR in each category were plotted, we observed a
steady upward drift in MR as nLGN was increased. This phenom-
enon appears to be robust: it is independent of specific choices of
parameters that affect mean firing rates (within a reasonable
range) or of the allocation of nLGN among cells in the model.

Experimental results (Ringach et al., 2002; M. J. Hawken, un-
published observations) show that in layer 4Ca of the macaque
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Figure4.  Number of LGN inputs (nLGN) and modulation ratio (MR) distributions. Allocation
of nLGN inputs used in the model, chosen to produce a bimodal MR distribution that emulates
data. Top seven panels, Histograms of MR in the central HC plotted in a vertical column sepa-
rately for neurons with nLGN = 0, 1, ..., 6. Bottom, Sum of the seven histograms yields the
bimodal distribution of MR for all cells in the central HC.

V1 cortex, the distribution of the MR is bimodal, with ~30% of
the cells being complex. To carve out a bimodal distribution
emulating data on relative incidence of simple/complex cells, we
found it necessary to use nLGN distributions that approximately
reflect these percentages, that is, to give approximately one-third
of cortical cells zero to two LGN inputs, and approximately two-
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thirds of them, four to six LGN inputs. Using this as a guide, we
located a range of nLGN distributions that emulate data, with
some emulating data better than others.

The allocation of nLGN used in the model simulations pre-
sented is shown in Figure 4. Here complex cells correspond
mostly to V1 cells with two LGN cells with ON-OFF pairs ran-
domly oriented and positioned as close to one another as possi-
ble. We chose to give two LGN inputs to cells that would likely
turn out to be complex because of the results of Hoffman and
Stone (1971), Tanaka (1983), and Hirsch et al. (2003), who sug-
gested that some complex cells have LGN inputs. However, oth-
ers have reported no direct input of LGN to complex cells
(Alonso et al., 2001). To find out whether or not it mattered that
complex cells received nLGN = 2 or 0, we also ran model simu-
lations in which complex cells corresponded primarily to cells
with nLGN = 0, and those simulations worked as well as the
nLGN allocation scenario reported here.

We now return to the issue of firing rates. Other things being
equal, driven firing rates in our model increase with increasing
nLGN. This is reasonable, as V1 is a high-gain system and sensi-
tivity to additional external drive is a hallmark of such systems.
From the empirical fact that complex cells fire at a higher rate, we
infer that some corrective mechanism is present. One possibility
is that, via some form of homeostasis, neurons with less LGN
input receive more excitation from other sources. We imple-
mented this in the model: E neurons with fewer LGN inputs were
given higher cortical input, from within 4Ca and L6. The idea of
compensating a cell for low LGN inputs with higher cortical in-
put was borrowed from the study by Tao et al. (2004), but, unlike
the model in Tao et al. (2004), all of the neurons in our model
receive most of their excitatory synaptic current from other cor-
tical cells; therefore, the boosts of low nLGN cells are fractionally
much smaller.

Specifically, the following enhancements in cortical inputs
were used. Within layer 4Ce, peak connectivity (as expressed in
the number of presynaptic E neurons) ranged from 13% to 18%,
with lower corticocortical connectivity for cells with higher
nLGN. Furthermore, V1 cells with zero to two LGN inputs had
about twice as many presynaptic inputs from layer 6 as cells with
five to six LGN inputs. Through exploration of many simula-
tions, we found that the cortical enhancement of complex cells
could be redistributed between 4Ca and L6, or between the
amount of connectivity and synaptic weights, S*“ and S;*, as long
as they produced the same combined enhancement of the firing
rate.

The collection of templates in Figure 3 and the nLGN distri-
bution in Figure 4 complete our model description.

Tuning and orientation-specific responses of model neurons
Now comes the test: does our model perform like a real V1 cor-
tex? To test the model, we used as visual stimuli sine gratings of
high contrast, drifting at a rate of 4 Hz, which is similar to stimuli
used in many experimental studies of V1 function. The model
data shown in Figures 5, 6, 7, 8, 9, and 10 are collected from the
central HC (Fig. 1B, shading) to avoid boundary effects.

Effectiveness of sparse LGN coding

In the Introduction, we raised the issue of whether so few LGN
inputs to a V1 HC can confer OS on V1 neurons. Indeed, there is
reason for concern: from Results, Input patterns of LGN to V1
(Fig. 4), the number of LGN inputs to a cortical neuron is, on
average, ~4 compared with ~200 presynaptic E neurons from
layer 4Ca, and 30-50 presynaptic E neurons from L6. Even with
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SELEN — 2 % GPF and driven LGN firing
rates approximately three times that of
cortical neurons, the fraction of input cur-
rents to a 4Ca neuron that is feedforward
is small—in fact the simulations indicate
that the excitatory drive from LGN is
<20% of the total in simple cells, and
<10% in complex cells.

Nevertheless, the model produces
model E cells with the range of properties
expected from experimental data. Figure 5
shows the OS properties of example neu-
rons from the model. The color maps
in Figure 5A show the responses of five
representative model E cells from a
horizontal-preferring patch. Their re-
sponses, measured in terms of peak firing
rates, are to an orientation X SF matrix of
gratings (De Valois et al., 1982), with ori-
entation plotted on the vertical axis and
SF on the horizontal axis. The eight orien-
tations range between 0° and 180° evenly
spaced, and the eight SF values range from
0.5 to 16 ¢/d. In the middle and right col-
umns are the tuning curves and cycle av-
erage firing rate distributions of the same
neurons.

The five E neurons shown in Figure 5
have peak firing rates ranging from 20 to
80 spikes/s, and they have quite varied
tuning curves and profiles of cycle aver-
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Orientation tuning curves of two representative model E cells and their synaptic inputs. The orientation tuning of the peak of the averaged response is plotted vs orientation. Top row,

Asimple E cell; bottom row, a complex E cell. Both cells are drawn from the same vertical-preferring patch of model 4Ccx. Tuning curve, Orientation tuning of the spike rates of the cells (the E cells
have CircVar ~0.5); LGN, LGN input current as a function of orientation angle; nLGN = 5 for the simple cell and nLGN = 0 for the complex cell (i.e., the complex cellillustrated here receives zero LGN
input current). The three panels on the right show input currents from various sources as functions of orientation. E, Recurrent cortical excitatory current; FB, cortical feedback excitatory current (from
layer 6); 1, cortical inhibitory current. Note that the inhibitory current is plotted as positive in magnitude, but its sign is opposite to that of the excitatory currents.

ages. If one compares these tuning curves to those of real V1
neurons (Ringach et al., 2002), one finds that model E cells have
as much OS as in real cortex, with the same diversity: some of the
model neurons are highly selective, while others have broad tun-
ing curves.

Figure 5B demonstrates that model I cells are less selective for
orientation than E cells. Though they show some selectivity, the
five representative model I cells produce <ori, SF> response
surfaces that are markedly less peaked than those of E cells
(Nowak et al., 2008).

The model allows us to analyze OS across the population.
Next, we present model population statistics, collected from the
central HC of our nine-HC model cortex (Fig. 1B).

Firing rates

To demonstrate that the model emulates V1, we present in Figure
6A the peak firing rates of model neurons when driven by their
preferred gratings (from among the 64 used for the simulations
depicted in Fig. 5). The distributions in Figure 6A, which show
complex E cells firing more than simple E cells (D. Ringach, R. M.
Shapley, and M. J. Hawken, unpublished observations), and I
firing rates three to five times those of E firing rates (Swadlow,
1988; Cardin et al., 2007), are consistent with data.

We also call attention to the wide range of firing rates seen in
Figure 6A. The diversity of neuronal responses resembles what is
found in V1 (Ringach et al., 2002) and is an emergent property in
the model, meaning it is a property that was not programmed
into the equations governing the dynamics of individual neurons
(see Materials and Methods, Equations of neuronal dynamics)
but occurs as a result of interactions among neurons. Analysis
revealed the source of the observed diversity as caused by the fact
that small random biases in connectivities and synaptic weights
are magnified through neuronal interactions, exaggerating—
through recurrent inhibition—the dominance of neurons that
receive slightly more E input or slightly less I input. Competition
among neurons drives much of the dynamics in this model, and
we propose that the same may be true in the real cortex, as indi-
cated by the data from the study by Monier et al. (2003).

Circular variance
Circular variance (CircVar) is a widely used measure of OS (Mar-
dia, 1972; Batschelet, 1981; Ringach et al., 2002). CircVar = 1 for

nonselective neurons, and CircVar = 0 for perfectly selective
neurons. As one can see in Figure 6B, the mean CircVar for E
neurons is between 0.6 and 0.7, which is in agreement with data.
Equally if not more striking are the spreads of the distributions of
CircVar in the model. They show great diversity: some neurons
are very broadly tuned, while others are quite sharply tuned. Such
diversity is also characteristic of real V1: both mean and variance
are consistent with experimental data (Ringach et al., 2002; Zhu
etal., 2010). As with firing rates, diversity in CircVar in the model
is due in part to the probabilistic connectivity between cortical
cells (Fig. 1C,D).

Model I cells have some but significantly less OS (higher Circ-
Var) than E cells, which is also consistent with available data
(Nowak et al., 2008). Among the reasons why I cells in the model
are less tuned than E cells even though they receive excitatory
input from a comparable region of the HC (Fig. 1C,D) may be (1)
that I cells receive unoriented LGN inputs, and (2) suppression of
responses to the orthogonal-to-preferred orientation has a stron-
ger effect on E cells than on I cells because S is smaller than S,

Least tuned of all are LGN input currents to cortical cells, with
a CircVar of ~0.8—0.9; this is discussed in more detail in con-
junction with Figure 7.

Bandwidth is another measure of OS that is widely used (De
Valois et al., 1982). We calculated bandwidth distributions for
model neurons (simulation results not shown) and found very
good agreement quantitatively, both in mean values and in the
variance, with experimental data (De Valois et al., 1982; Ringach
etal., 2002).

SF preferences

Histograms of SF preferences are shown in Figure 6C. As is con-
sistent with data (De Valois et al., 1982), the overall preferred SF
is 2-3 c/d. This property is effectively built into the model by the
spatial frequency tuning function for LGN cells (Materials and
Methods, Equations of neuronal dynamics; Zhu et al., 2010) and
the distances between ON and OFF subregions in the LGN tem-
plates (Figs. 1, 3). Model complex cells prefer a slightly higher SF
due to the geometry of their LGN afferents: tightly packed two
LGN cells respond better to slightly higher SF (see Results, Input
patterns of LGN to V1). This model result also is consistent with
data from the study by De Valois et al. (1982).
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Continuity of orientation maps. A, Patch-averaged peak firing rates for E cells as a function of spatial frequency and orientation. The first five panels are for patches preferring 0°,22.5°,

45°,67.5°, and 90°; the sixth panel is located at the pinwheel center. The sizes and locations of these patches in the central HC are indicated (right). The grid square of each color map denotes a
grating with specified orientation and SF; its color corresponds to peak rates averaged over all E cells in the patch. B, The seven panels show distributions of orientation preferences for patch neurons

in seven wedges in the central HC corresponding, in an ideal orientation map, to regions preferring 30°, 35°, 40°, ... .,

60°, respectively (see main text and inset for detail). The histograms depict

responses to 12 gratings 5° apart between 0° and 180°. The red vertical line in each plot denotes the hoped for average orientation preference. C, Plot of average visual angle preference as a function

of angle around the pinwheel center.

Sources of input currents to a cortical cell

Having established that our model neurons enjoy OS, we now
analyze the model to understand how it came about. Figure 7
displays the tuning curves of spike rates and currents that go
into two typical cortical neurons, one simple E cell and one
complex E cell that were chosen to have approximately the
same moderate amount of OS (CircVar ~0.5). The top row of
Figure 7 shows information for the simple cell. Its orientation-
tuning curve for peak spike rate is plotted in the leftmost panel
of Figure 7. The graph labeled “LGN” shows its summed LGN
input current at the peak of the cycle-averaged response. LGN
current is only weakly OS, which is consistent with the statis-
tics in Figure 6. Weak OS of LGN input in our model is not
surprising: given that the RF subregions in our LGN templates
are so short and so far apart (Fig. 3), an LGN configuration of,
say, 3-ON, 2-OFF responds to gratings of many different ori-
entations. The improvement in OS is caused by a combination

of the strong effect of tuned recurrent excitation from neigh-
boring E cells (Fig. 7, panel labeled “E”) that have spike rate-
tuning curves like the tuning curve displayed on the left, and
the effect of recurrent inhibition (Fig. 7, panel labeled “I”),
which tends to suppress responses at nonpreferred orienta-
tions (Zhu et al., 2010; Xing et al., 2011). OS is further en-
hanced by cortical dynamics, by the temporal synchronization
of recurrent excitation (Fig. 9). In addition, feedback from L6
(Fig. 7, “FB”) slightly augments OS.

The bottom row in Figure 7 shows the corresponding plots for
a complex cortical neuron with nLGN = 0 and low MR. We have
chosen such a cell to illustrate the point that, even with no direct
LGN input, a cell can acquire OS from neighboring cells via cor-
ticocortical interactions. One can observe in this case the strong,
tuned, recurrent excitatory drive from neighboring E cells (Fig. 7,
panel labeled “E”). We point out that ours is the only realistic
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model of the visual cortex that provides a robust mechanism for
OS in complex cells. Complex cells in the Tao et al. (2004, 2006)
and Zhu et al. (2010) models did not have much OS, and in those
of McLaughlin et al. (2000) and Wielaard et al. (2001) there were
no complex cells to speak of.

To summarize, our model shows that to cultivate a property
like OS it is necessary only to “seed” it, that is, to introduce a weak
form of OS to a fraction of the population (e.g., those cortical cells
with four or more LGN inputs), and the effects will be amplified
through corticocortical interactions. Similar views have been ex-
pressed before (Ben-Yishai et al., 1995; Hansel and Sompolinsky,
1997). Here we demonstrate the idea in a realistic model, with
robust OS in both simple and complex cells emerging as a result
of corticocortical interactions.

Continuity of orientation maps

An important question raised in the Introduction is whether
or not the model can generate orientation preferences that are
intermediate between the small number of orientations that
can be specified by the known sparse LGN connectivity. Sim-
ulation results, using the same 8 X 8 matrix of <orientation X
SE> gratings as in the results shown in Figure 5, answered this
question in the affirmative (Fig. 8). In the <orientation X
SF> matrix, we deliberately used grating orientations that
were not commensurate with those in the LGN templates (Re-
sults, Input patterns of LGN to V1). The templates have a
threefold rotational symmetry, while the gratings used in the
experimental simulations represent eight orientations at equal
angles apart. Figure 8A shows the peak firing rates in response
to the <orientation X SF> matrix averaged over several hun-
dred neurons in six different patches, the precise locations of
which in our model cortex are also shown. Except for the
pinwheel-center patch, each of the other patches shows a clear
preference for an orientation and a range of SF values. The
orientation preference coincides with the location of the patch
within the HC, and the SF preference peaks at 2-3 ¢/d, consis-
tent with macaque V1 data (De Valois et al., 1982). Since no
cortical cell has LGN afferents aligned with grating stimuli at
45° or 135°, the only way that some neurons can acquire
orientation preferences in these directions is through the ef-
fects of corticocortical interactions.

To take a closer look at the ability of our model to produce
orientation preferences not represented by LGN templates, we
focus on two adjacent regions of the HC, one containing neurons
assigned LGN templates aligned with 30°, and the other tem-
plates aligned with 60 °; the two regions are separated by a narrow
corridor in which some neurons receive the 30° and some the 60°
templates (see Results, Input patterns of LGN to V1). The ques-
tion of interest here is, how well can the model “see” the visual
angles in between?

Figure 8B shows statistics for orientation preferences when
the model is presented with 12 gratings, aligned with orientations
evenly spaced between 0° and 180°. The seven panels show his-
tograms of preferences for neurons located in seven different
(narrow) wedges of the HC, chosen so that, with an ideal orien-
tation map, they would have orientation preferences for 25-35°,
30-40°, 35-45°, . . ., 55-65°, respectively. In the first and last
panels, it is not surprising that 30° and 60° are preferred, given
that they coincide with LGN template assignments. But observe
how, in increments of 5 visual degrees, the peaks of the histo-
grams shift gradually yet definitively to the right. In the third
panel of Figure 8B, for example, all of the neurons receive 30°
templates, yet, due to their relative proximity to the 60° region
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there is an unmistakable bias in that direction. Neurons in the
fourth panel of Figure 8B have the strongest preference for 45°,
even though there are no 45° LGN templates. The only way that
these graded preferences could come about is through cortico-
cortical interactions.

Notice also the diversity in preferences within each region in
Figure 8 B. While the neurons collectively have a clear orientation
preference, individually they show great diversity in their prefer-
ences. Many cells deviate significantly from the mean of the local
population. The diversity of orientation preference is also an
emergent property; it comes about as a consequence of the biases
in cortical input coupled with the dominance of recurrent and
feedback excitation in the model. These features depend on the
probabilistic connectivity between cortical cells described in Fig-
ure 1, Cand D.

Further evidence of smoothing of the orientation map is dis-
played in Figure 8C, which plots vector means of the most pre-
ferred orientations for 36 wedges organized around the pinwheel
center of the HC. Each wedge spans 10° in visual angle with
overlapping windows, as in Figure 8B. Evidently our model net-
work was able to smooth out the very sparse information passed
along by LGN to create a continuous orientation map without
abrupt jumps in orientation preference that might be expected
from the sparse LGN input alone.

Robustness of OS

The simulation results in this article assume that $*"N = 2,1 *
S*E following the study by Stratford et al. (1996); see Materials
and Methods, Parameter determination. Other articles have re-
ported different ratios of thalamocortical-to-corticocortical syn-
aptic strength; e.g., it was found to be ~1 for cat S1 (Schoonover
etal., 2014) and ~4 for mouse S1 (Gil et al., 1999). Therefore, we
thought it was necessary to explore whether or not varying the
SELGON/SEE ratio would affect OS adversely, and found that it does
not. With other parameters set to be similar to those in the pres-
ent model, we found that setting S*“N/S*¥ = 1 causes firing
rates to decrease and the fraction of complex cells to increase, and
vice versa when S®"°N/S* = 3. However, when suitably rescaled,
the orientation tuning and orientation maps, as shown in the
plots in Figure 8A, remain substantially unchanged. This proves
that OS is extremely robust in this kind of model with approxi-
mately balanced excitation and inhibition.

Temporal dynamics in background and under drive

The dynamics of spike firing in local populations is a crucial
emergent property of the model that makes a significant con-
tribution to OS. Raster plots of spike firing in 500 ms windows
are shown in Figure 9B-D, for a patch of ~400 E and I neurons
in an orientation domain. Figure 9B depicts spike firing in
background, and Figure 9C when the population is driven by a
grating drifting at the optimal orientation, while Figure 9D
shows how the same population responds to a grating drifting
at the orthogonal-to-preferred direction. Notice the gamma
rhythm (25-90 Hz) due to partial synchronization in the spike
firing in Figure 9C. The periodicity of the visual drive (4 Hz)
can be deduced from Figure 9A, which shows the spike firing
of a target E cell and its four LGN inputs. Observe by compar-
ing panels A and C in Figure 9 that gamma rhythms are tied
neither to the spiking of LGN cells, which can fire at consid-
erably higher rates (~100 spikes/s), nor to the much slower
temporal frequency of the drifting grating; they are generated
within cortex with their own autonomous resonant frequen-
cies. This is an emergent property of population activity.
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Figure 9.  Dynamics of V1 population impulse trains and mean firing rates. A, Rasters of spi
drifting at 4 Hz (250 ms period). White dots, ON center LGN spikes; black dots, OFF center LGN s|

ikes of a target V1 E cell and its four LGN inputs. These are responses to an optimal drifting grating,

pikes; red dots, V1 spikes. B—D, Rasters of background spike firings in the cortical patch that prefers

vertical gratings in the central HC (B); rasters when the same patch is driven at the optimal (vertical) orientation of the patch (C), driven by the orthogonal orientation (D). B—D, x-axis is time; y-axis
is neuron index within the patch, sorted by number of LGN inputs; lower indices correspond to fewer LGN inputs. E cell spikes are red dots; | cell spikes are blue dots. E, Further information for the
regime depicted in C. Top, Summed spike activity of the E population as a function of time, shown in 5 ms windows. The vertical scale of the plot is the fraction of the total number of cells, illustrating

that, in what may appear to be synchronous spiking events in C, only a small fraction of all E cells
in the same patch, driven in the optimal orientation.

In our model, synchronization of spike firing in the gamma
band is graded and depends on stimulus orientation. These
results are consistent with experimental data (Eckhorn et al.,
1988; Gray and Singer, 1989; Volgushev et al., 2002; Kayser
and Konig, 2004; Henrie and Shapley, 2005; Womelsdorfetal.,
2012). The Fourier transform of the summed spike density of
the neurons (data not shown) has a gamma peak that was high
and narrow for the optimal stimulus, weaker and broader for
the nonpreferred stimulus, and low and very broad under
background conditions. Not only is the greater synchroniza-
tion at the preferred orientation an orientation-specific re-
sponse, it contributes to OS by amplifying the effect of
recurrent excitation locally.

are active. Bottom panels, Histograms of mean firing rates in impulses per second for E and | neurons

It is important to emphasize that, unlike the PING model
(Whittington et al., 2000), synchronization events in our model
involve only fractions of the population, and participation varies
widely from neuron to neuron. The wide distribution of model
firing rates shown in Figure 9E does not support synchronous
spiking involving the full population. Notice in fact that most
model neurons fire at rates too low to follow the gamma-band
fluctuations. In this respect, the firing rate distributions of the
model resemble many experimental datasets (for review, see
Roxin et al., 2011; Buzsaki and Mizuseki, 2014; M. J. Hawken and
R. Shapley, unpublished V1 observations). Even though it may
appear from the raster plot in Figure 9C that the population firing
is highly synchronous, only a fraction of the population partici-
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Figure 10. Intracellular voltages and conductances of driven E and | cells. A, Intracellular v

oltage [in normalized units (0,1); see Materials and Methods, Equations of neuronal dynamics], E

conductance, and | conductance for one representative simple E cell in the vertical patch (as in Fig. 9). B, Same for one representative complex E cell in the patch. ¢, Same for one representative | cell

in the same patch. Occurrences of spikes indicated by red dots in the voltage plots.

pates in any firing event. Figure 9E, which gives the spike counts
for E neurons in Figure 9C, shows clearly that no more than 25%
or so of the E population fire spikes in any of the 5 ms windows.

For a general discussion of the dynamic mechanism behind
such partial synchronization in neuronal networks, see the study
by Chariker and Young (2015). Gamma rhythms are very impor-
tant signatures of cortical dynamics, but in the interest of limiting
the length of this article, we have elected to postpone a more
detailed analysis to a forthcoming article.

To elucidate how gamma-band rhythms are related to the
dynamics of individual neurons, we show in Figure 10 the voltage
and conductance traces of three model neurons: two E cells, one
simple and one complex (Fig. 10A,B); and an I cell (Fig. 10C).
These traces strongly resemble data from intracellular recordings
(Hasenstaub et al., 2005). Figure 10A—C show that fluctuations in
conductance are entrained to gamma-band fluctuations, even
though most of the rising peaks do not cause spikes to fire. In-
deed, how often a neuron spikes, and when, is to some degree
accidental, depending on whether a threshold is crossed. And that
in turn has to do with the interplay between the E and I popula-
tions, even the arrival times of the spikes of presynaptic E/I neu-
rons. Figure 10 demonstrates clearly that firing rates are
determined by dynamics, and cannot be computed from the LIF
equations and parameters alone, i.e., they are also emergent
properties of the model.

Model predictions
A fraction of the simulation results we presented was for purposes
of validating the model by comparison with existing data. Among

the many model outputs that compare well with existing data are
background and driven firing rates and their distributions (Figs.
2, 6, 9), modulation ratio (Fig. 4B), orientation and spatial fre-
quency tuning of individual E and I cells (Fig. 5), population
statistics on peak firing rates, CircVar and SF distributions (Fig.
6), and gamma-band synchronization that is somewhat tuned for
orientation (Fig. 9).

A number of our model results go beyond the data that are
currently available. We propose them as model predictions to be
tested in future experiments, as follows.

(1) Configurations of LGN cells presynaptic to cortical E cells,
as proposed in Results, Input patterns of LGN to V1 (Fig. 3).

(2) Weak OS of I cells: there are some data about weak OS of I
cells in cat cortex (Nowak et al., 2008) and also in mouse visual
cortex (Isaacson and Scanziani, 2011; Liu et al., 2011), but quan-
titative data about the distribution of OS in I cells are lacking.

(3) The even weaker OS of LGN input currents to a cortical
cell: data about mouse V1 indicate very weak OS of LGN input to
V1 cells (Lien and Scanziani, 2013); LGN input to V1 in macaque
is likely very different from that in mouse, but the model predicts
that its OS also is very weak, as shown in Figure 6.

(4) The sharpening of OS for 4Ca cells through interaction
with other cortical neurons, with or without direct LGN input, as
shown in Figure 7.

(5) Properties of the HC orientation preference map: robust
population averages vs the diversity of responses among individ-
ual neurons revealed in Figure 8, A and B.

(6) The continuity of orientation preference maps, as depicted
in Figure 8C (the present resolution of optical imaging is not
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sufficient to test predictions 5 and 6, and high-resolution mea-
surements with two-photon imaging or another high-resolution
technique will be needed).

(7) The partial participation of individual cells in gamma
rhythms, as evidenced by the irregular spiking and entrainment
of the conductances shown in Figures 9 and 10. While some
intracellular recordings in V1 in vivo (Volgushev et al., 2002)
suggest the intermittent participation in the gamma rhythm that
the model predicts, more data are needed to test this specific
prediction.

What distinguishes our model from feedforward (or modified
feedforward) models (e.g., Priebe and Ferster, 2008; Persi et al.,
2011; Rubin et al., 2015; Goris et al., 2015) are the model predic-
tions we have to offer. Predictions such as the sharpening of OS,
higher OS in E cells than I cells, smooth orientation maps on fine
spatial scales, orientation-tuned gamma synchronization, and di-
versity of OS and orientation preferences within local popula-
tions are based on model phenomena that emerge as a result of
dynamic cortical interactions. Feedforward models, which
downplay dynamic interactions, generally do not enable such
predictions.

Discussion

The ability of the model cortex to (1) sharpen weakly tuned ori-
entation inputs (Figs. 5, 6, 7) and (2) fill in the gaps of orienta-
tions not represented by LGN (Fig. 10) is very strong evidence in
support of the hypothesis that, although visual signals in the brain
originate from the retina and LGN, dynamic interactions of cor-
tical neurons play a major role in the processing of this informa-
tion. In our model, OS is extremely robust, and does not require
any fine-tuning of parameters as long as excitation and inhibition
are roughly balanced.

How does the model work and what insight does this give us
into cortical function in general?

Much of the visual processing leading to OS occurs within the
cortex as a result of the dynamic interactions among cortical
neurons. Therefore, these dynamic interactions are a focal point
of our investigation. We have seen in Results (Tuning and
orientation-specific responses of model neurons) how, through
recurrent excitation, cortex produces a coherent and robust ori-
entation preference in local populations, derived from “seeds” of
orientation bias transmitted through weak feedforward currents.
Another useful function of corticocortical interactions is that
they modulate the effects of sparse LGN inputs by filling in po-
tential gaps in the orientation map. No less important is the con-
stant competition between the E and I populations. The
precarious balancing act between these two populations puts the
system in a state of high gain, making it very sensitive to small
changes in input, as we saw in the analysis of the MR distribution.
Furthermore, recurrent excitation coupled with recurrent inhi-
bition helps to produce diversity in neuronal responses enabling
cortex to discriminate among a wider range of stimuli (Kang et
al., 2004).

Through dynamic interactions among neurons, our network
model exhibits behaviors far more complex than can be expected
from the LIF equations (Materials and Methods, Equations of
neuronal dynamics) that govern the dynamics of individual cells.
For a start, there is a great deal of balancing and regulation within
the cortical network. When stimulated, E neurons magnify the
drive at the same time that I neurons put things in check. Prop-
erties (e.g., OS) conferred upon a fraction of the population are
shared with the rest of the population, yet the same system that
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has an averaging effect on its constituent cells (as in the smooth-
ing of the orientation map) also produces great diversities in
firing rates, in circular variance, in spatial frequency preferences,
and in modulation ratios. The diversity of functional properties is
emergent, i.e., it cannot be deduced from the behaviors of single
neurons or even a handful of neurons but arises only through the
interaction of the many constituent parts of the network.

Emergent behaviors are the hallmark of complex dynamical
systems. As our model outputs closely resemble many sets of
experimental data, we propose that the visual cortex is, like our
model, a complex dynamical system. As such, it is driven largely
by population activity, and to understand it requires that we
study not only individual neurons but also population dynamics,
in particular dynamic interactions among neurons connected by
local and medium range circuitries.

Orientation-specific dynamic responses

Our model generates partially synchronized firing in the gamma
band (30-90 Hz) when driven by drifting gratings (Fig. 9A-C).
The response is stimulus dependent and orientation specific:
there is very little synchronized firing in the background, but
strong synchrony was evident at high contrast in domains prefer-
ring an orientation aligned with the grating. Synchronized spik-
ing is more effective in producing recurrent excitation locally,
and indirect inhibition in a slightly larger area through the wide-
spread excitation of I neurons by E neurons (Fig. 1D). Therefore,
gamma-band synchronization at the preferred orientation is a
very effective way for the cortical network to enhance OS.

As mentioned in Results, others have conjectured that
gamma-band rhythms contribute to OS, based on cortical data
(Volgushev et al., 2002; Womelsdorf et al., 2012) and on an ab-
stract model (de Almeida et al., 2009). Now we have shown in our
realistic, data-driven model that gamma-band dynamics are
closely linked to OS. This is an entirely emergent property of the
model. The dynamical characteristics observed in the model are
very similar to data on visually induced gamma-band activity in
real V1 (Eckhorn et al., 1988; Gray and Singer, 1989; Volgushev et
al., 2002; Kayser and Konig, 2004). Notice also that the synchro-
nization of the model network is asymmetric; the I cells are much
more synchronized to the population than are the E cells (Fig. 9),
which is another emergent model property that resembles V1
data (Hasenstaub et al., 2005).

Unlike the earlier PING model (Whittington et al., 2000), our
model predicts that, in gamma-band fluctuations, only small
fractions of the local population are involved in each firing event,
and that individual neurons exhibit quite irregular behaviors de-
spite the quasi-oscillatory activity seen on the population level.
These predictions echo those of Rangan and Young (2013) and
Chariker and Young (2015).

Comparison with earlier work

To our knowledge, the model presented here is the first realistic
model that has modeled accurately the sparseness of magnocel-
lular LGN inputs to the macaque V1 cortex and also successfully
derived OS directly from these inputs. Earlier, more abstract
models proposed that recurrent cortical interactions could pro-
duce high levels of OS even when the OS of the LGN input was
weak (Douglas et al., 1995; Ben-Yishai et al., 1995; Somers et al.,
1995; Hansel and Sompolinsky, 1997). Our model supports these
ideas but goes beyond them in its realistic depiction of the anat-
omy, network dynamics, and the linkage between network dy-
namics and cortical function.
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The present model is very different and much improved com-
pared with earlier large-scale models, such as those of McLaugh-
lin et al. (2000) and Tao et al. (2004, 2006). First, our focus on
dynamics and on population activity is novel; this represents a
paradigm shift that we believe will have implications for future
directions of the field (see below). Second, the present model
incorporates much more realistic neuroanatomy. In addition to
sparse LGN — V1 connectivity, our modeling of the sparse E-E
connections and denser I connections is data driven, as is our
modeling of the feedback from layer 6; we have used biological
guidance in virtually all aspects of our modeling when it is avail-
able. Third, our parameter determination process is more sys-
tematic, and it has been made transparent (Materials and
Methods, Parameter determination). Last but not least, the pres-
ent model is more comprehensive than all previous ones that we
know of. We sought not just to replicate one or two aspects of V1
behavior but to reproduce, in a single model and from a single set
of parameters, many V1 phenomena, such as orientation and
spatial frequency selectivity, spontaneous and driven firing rates,
gamma rhythms, simple versus complex cells, and neuronal di-
versity in all aspects of the above.

The present model differs also from rate models of V1 func-
tion, such as those of Priebe and Ferster (2008), Persi et al. (2011),
Rubin et al. (2015), and Goris et al. (2015), in its emphasis on
temporal dynamics as opposed to the use of fixed transducer
functions as a means to account for cortical transformation of
visual inputs into the population distributions of spike-firing
rates. We appreciate the mathematical appeal of filters and sim-
plified rate models, but approaches of this type downplay dy-
namic interactions among cortical neurons. As we have shown,
such interactions are an integral part of cortical processing.

Future directions in computational neuroscience

A comprehensive, large-scale model of the cortex is not without
cost. In particular, it cannot be as simple as phenomenological
models that focus on one or two sets of behaviors at a time, or on
the properties of single neurons. Comprehensive and phenome-
nological models serve very different purposes: phenomenologi-
cal models typically seek to suggest analogies or to offer simplified
mathematical descriptions. Comprehensive population models,
such as the one we have presented here, seek to link cellular
properties and network structure to dynamics and function, the
ultimate goal being to use these models to test hypotheses and to
suggest future experiments. We propose that for areas of the
brain about which there are sufficient data, such as the visual
cortex, it is time to move to next-generation models that are more
comprehensive, data driven, and dynamic. Such a move would
constitute a paradigm shift in computational neuroscience, and
the present model is a step in that direction.

With regard to other regions of the cerebral cortex, much
more anatomical and functional data than are currently available
are needed for detailed modeling. However, the linkage between
dynamics and function is not limited to V1 cortex. In many cor-
tical areas, cortical activation is associated with increased
gamma-band power in the local field potential (motor cortex,
Murthy and Fetz, 1996; auditory cortex, Brosch et al., 2002; pa-
rietal cortex, Pesaran et al., 2002; prefrontal cortex, Gonzalez-
Burgos and Lewis, 2008), as in V1 (Eckhorn et al., 1988; Gray and
Singer, 1989; Volgushev et al., 2002; Henrie and Shapley, 2005;
Ray and Maunsell, 2010). We propose that analysis of the con-
nections among anatomy, function, and dynamics in the visual
cortex may reveal principles that generalize to the entire cerebral
cortex.
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