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Over the course of systems consolidation, there is a switch from a reliance on detailed episodic memories to generalized schematic
memories. This switch is sometimes referred to as “memory transformation.” Here we demonstrate a previously unappreciated benefit
of memory transformation, namely, its ability to enhance reinforcement learning in a dynamic environment. We developed a neural
network that is trained to find rewards in a foraging task where reward locations are continuously changing. The network can use
memories for specific locations (episodic memories) and statistical patterns of locations (schematic memories) to guide its search. We
find that switching from an episodic to a schematic strategy over time leads to enhanced performance due to the tendency for the reward
location to be highly correlated with itself in the short-term, but regress to a stable distribution in the long-term. We also show that the
statistics of the environment determine the optimal utilization of both types of memory. Our work recasts the theoretical question of why
memory transformation occurs, shifting the focus from the avoidance of memory interference toward the enhancement of reinforcement
learning across multiple timescales.
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Introduction
Over short time periods, the natural world is highly correlated
with itself, whereas over longer time periods, short-term correla-
tions give way to larger statistical patterns. For example, if a bird
discovers fruit on a tree, then returns to the same tree an hour
later, it is likely to find more. In contrast, if the bird returns to the

same tree a month later all of the fruit may be gone, making the
memory for that individual tree less useful. Nonetheless, combin-
ing many such memories provides the bird with general knowl-
edge of where food may typically be found. Hence, two types of
memory (specific vs general) may be more or less useful depend-
ing on the amount of time that has passed.

Given these considerations, it makes sense that the brain relies
on multiple systems to guide behavior (Klein et al., 2002; Doll et
al., 2012, 2015), including those that capture general patterns
(schematic memories) and those that capture specific experi-
ences (episodic memories) (Tulving, 1972; Lengyel and Dayan,
2007). Moreover, humans and animals often rely on recent epi-
sodic memories to make decisions, but episodic memories give
way to schematic memories over time as part of a memory reor-
ganization process (Moscovitch et al., 2006; Tse et al., 2007;
Winocur et al., 2010; Tse et al., 2011; Winocur and Moscovitch,
2011; Richards et al., 2014), sometimes referred to as “schemati-
zation” or “memory transformation” (Winocur et al., 2010;
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Significance Statement

As time passes, memories transform from a highly detailed state to a more gist-like state, in a process called “memory transfor-
mation.” Theories of memory transformation speak to its advantages in terms of reducing memory interference, increasing
memory robustness, and building models of the environment. However, the role of memory transformation from the perspective
of an agent that continuously acts and receives reward in its environment is not well explored. In this work, we demonstrate a view
of memory transformation that defines it as a way of optimizing behavior across multiple timescales.
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Winocur and Moscovitch, 2011). The benefits of this episodic to
schematic transformation are usually assumed to be reduced
memory interference (McClelland et al., 1995; O’Reilly and
Rudy, 2001), and the formation of a more stable memory (Squire
and Alvarez, 1995). However, these perspectives do not consider
the potential advantages of memory transformation for making
decisions that exploit the temporal statistics of the environment.

Some computational work has explored the idea that episodic
to schematic transitions could be beneficial for guiding behavior
(Lengyel and Dayan, 2007). These results suggest that there is a
performance improvement in using episodic memories soon af-
ter a novel experience and schematic memories after more expe-
rience. However, this considers only the accumulation of data,
and not the passage of time. In the real world, there are periods of
data accumulation (e.g., foraging) and periods without data (e.g.,
rest, migration), and memory transformation occurs regardless
of whether data are being accumulated or not (Winocur et al.,
2007; Richards et al., 2014).

To test whether the benefits of memory transformation are a
consequence of the accumulation of time itself, we developed a
computational model of an agent with both episodic and sche-
matic memories. The agent uses only its position in a 2D envi-
ronment and rewards found at specific spatial locations to learn a
navigational model, store episodic memories, and build sche-
matic memories via replay. We trained the agent in an environ-
ment where the reward locations constantly changed, such that
new reward locations were correlated in the short-term but were
independent and sampled from a stable distribution in the long-
term. As well, we varied the amount of time between foraging
trials. We show that the best strategy in this environment is to rely
on episodic memories after short delays but to shift to schematic
memories after long delays, independent of data accumulation.
We also find that the timing of this shift depends on the temporal
statistics of the environment. When in environments that tend to
be consistent for long periods of time, the optimal strategy is to
shift to schematic memories slowly. Finally, we explored whether
memory transformation was also beneficial when the long-term
distribution of rewards was nonstationary. We found that the
benefits of schematic memories are limited to cases where the
long-term pattern of rewards is relatively stable. These results
suggest that the temporal statistics of the world are one of the
principal reasons that both episodic and schematic memories are
used by the brain to guide behavior. Furthermore, the extent to
which an animal relies on detailed or gist-like memories at differ-
ent times may be tuned to optimize reinforcement learning in
different contexts (Moscovitch et al., 2006; Winocur et al., 2010;
Winocur and Moscovitch, 2011).

Materials and Methods
Simulated foraging task. In this study, we use a simulated foraging task
wherein a model agent must navigate a space to find a moving reward.
Here, the reward moves within a bounded space of arbitrary units, with
the boundaries set to [0, 1]. The reward location, l�t�, moves with incre-
mental shifts within a “bout” or sudden shifts between “bouts” (see Fig.
1). Incremental shifts correspond to the addition of a white noise variable
to l�t�, whereas sudden shifts correspond to a resampling of the reward
location according to a predefined multivariate normal distribution in
space. Specifically:

l�t� � � l�t � 1� � �, if tb � B
�, if tb � B (1)

Here, � � [�1, �2], where �1, �2 � N(0, ��). Similarly, � � [�1, �2],
where �1, �2 � N(	, ��), and thus represents a randomly selected new

location for the reward at the start of a new bout with mean value 	. tb

refers to the time within a bout of length B. In some simulations, B was
held at a constant value (see Figs. 4, 6, 7), whereas in other simulations, it
was sampled from an exponential distribution with rate parameter 
bout

(see Fig. 5).
Importantly, this formulation ensures that over short time spans the

expected value of the reward location is correlated with its last location,
whereas over longer time spans the reward location tends to be a random
variable that is independent of any previous, specific locations, given
knowledge of the underlying distribution (see Expected reward proba-
bility distribution). Although this is a very abstract environment, we
would argue that this principle tends to hold true in the real world (i.e.,
the world tends to be correlated with itself over short periods of time and
regress to a general distribution over longer periods of time). Addition-
ally, by changing �� or 
bout, the degree of the correlation in reward
locations over different time spans can be modulated.

At the start of each trial, the agent is initiated in a random location in
the space. Whenever a reward is found, a trial ends and the agent “rests”
for an intertrial delay. Importantly, although the agent is not interacting
with the environment during the intertrial delay, the reward location
continues to move, meaning that the reward will be at a new location
when the agent begins a new trial. Hence, the length of the intertrial delay
influences the probability that the reward location is correlated with the
location where the agent last found it.

We tasked the agent to find 120 rewards in total and measured its
performance on the final 100 rewards (the first 20 rewards were consid-
ered the “pretraining period” for the agent). We calculated the agent’s
performance as the reward rate (s �1), or mean latency to reward (s).
Reward rate is computed as the inverse mean latency to reward. Each
simulation (i.e., the finding of 100 rewards) counts as one sample in the
data presented, within which the mean or inverse mean is computed. In
all the data presented in this paper, we use n � 20 samples per condition.

Basic agent architecture. The agent we use in this simulated foraging
task has three major components: an episodic memory system, a sche-
matic memory system, and a forward model for navigation (see Fig. 2A).
In addition, the agent has a critic module that estimates the value of any
given location in space based on the agent’s reward history, which then
enables the calculation of a prediction error for rewards (for details, see
Temporal difference learning). In most of the simulations in this paper,
the agent makes decisions about where to move in the environment by
using the outputs from its episodic and schematic memory systems as
goal locations, and using the forward model to determine how to navi-
gate to those goals. The one exception is the “habitual” agent (see Habit-
ual agent; see Fig. 6), which uses an actor module coupled to the critic
module to implement a typical actor-critic reinforcement learning strat-
egy (Sutton and Barto, 1998; Foster et al., 2000).

Episodic system architecture and information flow. The episodic mem-
ory system in our agent is a neural network designed to have the following
properties: (1) store specific reward locations, (2) emphasize more recent
memories, and (3) store new memories continuously, with the strength
of storage modulated by the relevance of the memory to finding rewards.
We chose these properties because they are in line with the characteristics
of episodic memory in mammals (Clayton et al., 2007; Conway, 2009;
Kumaran et al., 2016), although we note that these characteristics are by
no means a complete representation of true episodic memory, which has
many more components to it (Hassabis and Maguire, 2007; Conway,
2009). We designed the episodic memory network as an abstraction of
the medial temporal lobes (see Fig. 2A), which are central to episodic
memory storage in mammals (Kumaran et al., 2016). Within this frame-
work, our episodic network consists of a spatial encoder, a recurrent
network (in analogy to the CA3 region of the hippocampus) and a net-
work of place field units (in analogy to the CA1 region of the hippocam-
pus). Although we make obvious reference to these subregions, we note
that we are capturing the believed computations of these regions, and are
not necessarily making statements or predictions of the neurophysiology,
or algorithms implemented within them. To borrow from Marr’s level of
analysis (Marr, 1982), we are assuming certain computational properties
while being general, and/or agnostic about the algorithmic and imple-
mentation details. The number of units per region is as follows: Ns � 2
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(spatial encoder), Ne � 490 (autoencoder), and Nm � 980 (place cells).
The initial synaptic weights between the spatial encoder and autoen-
coder, autoencoder and itself (recurrent connections), and autoencoder
and place cells are sampled from a Gaussian distribution, N(0, 0.1).

The spatial encoder acts as the input for the episodic network, re-
sponding to location-based information. Spatial inputs (i.e., Cartesian
coordinates) elicit activation states equal to the coordinate values (one
unit represents the x position, one unit represents the y position). Pop-
ulation activity for the autoencoder, e, is calculated as a function of the
weighted sum of the spatial encoder activity, s, as follows:

e � sig(WSE-AEs) (2)

The autoencoder is a three-layer feedforward network through time,
with the synaptic weight matrices WAE-AE being equal between each
“layer” of time. Autoencoder activities in subsequent time layers are
calculated as functions of the previous layer’s activity and the recurrent
weight matrix. The superscript in autoencoder activity (e.g., e(0)) refers to
the feedforward time layer, indexed as an element of the set (0, 1, 2). As
such, activity is calculated as follows: e�t�1� � sig�WAE-AE e�t��, where
e(0) � sig(WSE-AE s). The final time layer, e(2), then projects to the place
cells.

The activity of the place cells is the ultimate memory readout for the
episodic system and is denoted by m. These activities are calculated dif-
ferently depending on whether the agent is encoding its location or re-
trieving a memory. When retrieving a memory, activity is calculated
similar to the autoencoder as follows:

m � sig(WAE-PC e(2)) (3)

However, when encoding a location, place cell activity is calculated using
each unit’s place cell receptive field and the current location as follows:

mi�xt� � e
��xt�si�2

2�m2 (4)

where xt is the vector of the agent’s current position, si is the vector of the
center of cell i’s place field, and �m controls the breadth of the place fields.
Here, si � �s1, s2�i, where s1 and s2 are each uniformly sampled from the
interval [0, 1], and �m � 0.16.

Episodic memory storage. In line with the third property of episodic
memories listed above, as the agent moves throughout space, it con-
stantly encodes its location, but in a manner that is modulated by the
relevance to its goal of finding rewards. To do this, it passes activity
through the spatial encoder and into the autoencoder. The autoencoder
activity state is then stored in its recurrent synapses using a back-
propagation through time algorithm (Rojas, 1996) computed to three
time steps. And so, the autoencoder, which is a three-layer feedforward
network through time, learns to recapitulate this spatial encoder-driven
activity state in its final temporal layer as it passes activity through its
recurrent synapses. Thus, the supervised training vector for the final
autoencoder layer is identical to the initial activity vector in the autoen-
coder given the spatial encoder input (see below). However, to ensure
that the storage is goal-relevant, we modulate the learning rate by a
prediction error term (see Temporal difference learning).

Mathematically, the autoencoder’s initial activity is dependent on spa-
tial encoder input, e, and the synaptic weight matrix between the spatial
encoder and the autoencoder, WSE-AE as follows:

e(0) � sig(WSE-AE s) (5)

where the superscript in e(0) refers to the feedforward time layer, indexed
as an element of the set (0, 1, 2). The activity states in subsequent layers
are calculated similarly as follows:

e(t�1) � sig(WAE-AE e(t)), t � {0, 1} (6)

The weight matrix is updated in accordance with the derivation in Rojas
(1996), but with the additional modulation of the prediction error term,
�t as follows:

��t� � Q(t)(d(t) � WAE-AE�
(t�1)) (7)

	WAE-AE
t�1 � � �t
��(t)e(t�1) � �(t�1)e(t)), t � 
1, 2� (8)

	WAE-AE �
(	WAE-AE

(0) � 	WAE-AE
(1) )

2
(9)

where � is the error vector computed for a particular layer, Q is the
derivative matrix for all the units in that layer, d is the difference between
the final layer activity state and the training data (i.e., d � e(2) � e(0)),
WAE-AE is the autoencoder weight matrix, and 
 is the learning rate. At
each time step, one training epoch occurs. However, when a reward is
found, 50 training epochs occur.

The weights between the autoencoder and place cells are learned using
the perceptron learning rule, treating the system as a two-layer feedfor-
ward network. Here, the input is e(2) and the training data are place cell
activity mt � �m1�xt�, m2�xt�, …, mNm

�xt��, where mi�xt� is place cell i’s
activity given the agent’s current position. With this training, the net-
work learns to map the activity patterns stored in the autoencoder to
place field activity patterns. This is what then allows the system to recall
place field patterns it has previously encountered. Indeed, with these
learning rules, the episodic network exhibits the desired properties,
showing an ability to recall specific place field patterns, but with a clear
bias toward the most recent reward location (see Fig. 2B).

Schematic system architecture and information flow. The schematic sys-
tem is a neural network designed to store a general statistical model of
reward locations, in line with the current understanding of schematized
memories in the mammalian brain (Ghosh and Gilboa, 2014; Richards et
al., 2014). To achieve this, we built the schematic system as a Restricted
Boltzmann Machine (RBM), which is a two-layer neural network archi-
tecture that can store a generative model of the probability distribution of
a dataset (Hinton, 2010), and which has been used to model schematic
memory in previous papers (Káli and Dayan, 2004). The lower layer of
the network is a direct projection of the place cells from the episodic
network. This layer functions as the visible layer, v, in the RBM and
contains 980 units. The second layer functions as the hidden layer in the
RBM, h, which models the probability distribution of its inputs and
consists of 300 units. Thus, the second layer receives information from
the place cell projection and determines the statistical regularities con-
tained within (see Fig. 2D). These two layers are connected bidirection-
ally, and symmetrically, with a weight matrix WCTX. Again, despite the
obvious analogy to the neocortex, we emphasize that we are agnostic as to
the brain’s actual implementation of the schematic store. Indeed, there is
some evidence to suggest that the traditional “episodic” regions of the
medial temporal lobes may be capable of learning probabilities or statis-
tics across memories (Turk-Browne et al., 2010; Kumaran and McClel-
land, 2012).

Schematic memory storage and recall. Learning in the schematic net-
work is conducted offline, via episodic replay events that occur during
“rest” at the end of a trial. This design was motivated by the current
understanding of the neurobiology of memory transformation, wherein
schematic memories are built via replay in the hippocampus during rest
(Frankland and Bontempi, 2005; Winocur et al., 2010). Details of the
replay events are provided in the next section.

Training of the schematic network is accomplished with the contras-
tive divergence algorithm. According to the contrastive divergence, algo-
rithm computed to one step (Hinton, 2010) as follows:

	wi, j � 
��vihj
data � �vihj
reconstruction� (10)

where wi, j is the weight in WCTX between unit i in the visible layer and
unit j in the hidden layer. The first term, �vihj
data, is computed in a single
step by clamping the visible layer to some training data, and sampling the
hidden layer. Place cell activity states, as they are replayed during offline
states after a reward is found, constitute the input at the visible layer, and
hence the training data (for details on how these training data are gener-
ated, see Episodic replay). The probability of activation of a hidden unit
is stochastic and is given by the following:

P�hj � 1�v) � sig�bj � �i
viwi, j� (11)
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where bi is the bias to unit i. That is, the value of hidden unit hj is set to 1
given an input in the visible layer with a probability defined by the sig-
moid of the sum of all its inputs. So, as the weights of the inputs to a
particular hidden unit increase, the probability of its activation increases.

During the reconstruction step, the activity of a visible unit is given by
the following:

vi � P�vi � 1�h) � sig�ci � �
j

hjwi, j� (12)

where cj is the bias to unit j the difference here being that the activity state
of the reconstructed visible unit is set to its probability value, rather than
being set to 1 with some probability. This update allows us to reconstruct
a visible layer with values contained within the interval (0, 1), which
better map onto actual place cell values. The result is a more accurate
determination of the hidden layer’s prediction of a particular place cell
activity state. Recall in the schematic system involves a single reconstruc-
tion step as described above, taking a cue activity vector over v, passing it
to the hidden layer, then passing it back to determine the probabilities in
the visible layer, which then constitute the recalled memory.

The products vihj for both the data and the reconstruction are deter-
mined by computing the outer products of the vectors of activation. The
overall weight update to the weigh matrix is given by the following:

	WCTX � 
(vdata � hsampled � vreconstructed � hreconstructed) (13)

with 
 being the learning rate. We use 200 epochs of training for the
schematic network in each “rest” period for the agent.

Replay. Replay is initiated by the episodic network using random activity
in the spatial encoder. This is then propagated through to the autoencoder-
place cell system. Here, the activity elicits a recall event by first triggering
pattern completion in the autoencoder recurrent network by running it
forward for three time steps. The completed pattern is then used to activate
the place cells. The resultant place cell activity pattern, mR, is then passed to
the schematic system visible layer, v, and schematic training occurs using mR

as the training data. Because episodic storage is modulated by a prediction
error term, the result is that the schematic system tends to receive any re-
cently discovered reward location for training, in line with the in vivo record-
ing literature (Kudrimoti et al., 1999; Euston et al., 2007). This is potentially
more biologically plausible than the assumption of iid sampling from the
episodic memory store and thus is an important difference from previous
models of consolidation (McClelland et al., 1995; Mnih et al., 2015). The
ultimate result of replay is that the schematic system learns a generative
model of relevant reward locations. We note that this is consistent with a
recent proposal regarding the potential utility of memory replay for learning
goal-relevant statistics (Kumaran et al., 2016).

Moving through space. As mentioned above, to navigate through space
the agent uses a forward model and an action selector. The forward
model is a three-layer neural network: the first layer contains 988 units,
consisting of the 980 place cells, and 8 action units. The last layer contains
980 place cell units. The action units at � 
N, NE, E, SE, S, SW, W, NW�
correspond to each of the eight principal cardinal directions. The net-
work functions to predict place cell activity should a movement in a
direction be taken; that is, given current place cell activity, m�xt�, and a
potential action choice at (e.g., N, the network outputs a vector in its final
layer that is a prediction of place cell activity should a movement be taken
at the current position in the north direction; see Fig. 3A). So, at each
time step, the network cycles through all eight potential actions, setting
the appropriate action unit, ai, to 1, and initiates a prediction for the
outcome of that action using current place cell activity, m�xt�.

The probability that an action is chosen by the action selector is as
follows:

P�at � ai� �
1

�mO � m� (xt�1�ai)�
(14)

where m� (xt�1�ai) is the predicted place cell activity pattern and where
mO is the combined memory output from the episodic and schematic
memory systems (see below). To introduce some randomness in choices

as the task progresses, the probability that some action choice ai is taken
is calculated as follows:

P�at � ai� � �R
�mO � m� (xt�1�ai)�

�1

�
j
�mO � m� (xt�1�aj)�

�1
�

1 � �R

8
(15)

where �R is a random policy unit that decreases as time within a trial
increases as follows:

�t�1

R
� �t

R �
tL

4000
(16)

where tL is the time since the start of the current trial. �R is bound to the
interval (0, 1) and resets to 1 at the start of every trial. Therefore, the agent
shifts toward random actions as the trial proceeds without finding a
reward. This design helps to ensure that the agent explores the space
sufficiently if it is having trouble finding a reward.

Ultimately, when the agent is not behaving randomly, it chooses the ac-
tion that it predicts will bring it closer to the location recalled from memory,
mO (see Fig. 3B). To compute mO, a recall event is initiated at each time step.
This is accomplished by allowing the current location, xt to act as a cue for the
episodic and schematic networks. Activity passes through the episodic
and/or schematic system, as described previously, to produce an output
(mE or mS for the episodic and schematic outputs, respectively, or mO; for
more information on combining outputs using a policy unit, see below).

The forward model is trained in an online manner to predict place cell

activity (i.e., m� (xt�1�at)) given current place cell activity (i.e., m(xt))
and an action. After a movement is chosen by the agent, the true value of
m(xt�1�at) is computed as the agent moves in the space and its place cells
are activated, and this activity is used as a training vector for the forward
model given its previous place cell activity m(xt) and action choice at as
inputs. Thus, the forward model is only trained using place cell activity
from positions it actually traverses and movements it actually makes.
Training proceeds using a back-propagation algorithm (Rumelhart et al.,
1988) with a learning rate of 0.05.

Episodic and schematic policy unit. As described above, memory recall
events produce goals for the forward model, mO. These goals are convex
combinations of the outputs from the episodic and schematic memory
systems, mE and mS, respectively. Specifically:

mO � �mE � (1 � �)mS (17)

with � being a policy unit that sets the balance between episodic and sche-
matic control. � is computed using an exponential function as follows:

�t�1 � � �te
�
�t, if Rt � 0

1, if Rt � 1 (18)

where 
� is the exponential decay constant. Importantly, this means that, in
the absence of a reward, over time the memories being used to guide navi-
gation gradually switch from what the episodic system is recalling to what the
schematic system is recalling. This is ultimately how we implement the pro-
cess of memory transformation in this network. We emphasize again that we
remain agnostic as to the actual mechanisms in the brain. Indeed, we think it
extremely unlikely that memory transformation is implemented by the ex-
ponential decay of a single policy unit. But we note that this captures the
general computational principle of memory transformation, and it leads to a
switch in the agent’s foraging behavior from focusing on specific locations to
focusing on statistical patterns of locations, as we previously observed in
water-maze search behavior in mice (Richards et al., 2014).

Temporal difference learning. As described above, the agent modulates
the strength of memory storage using an internal prediction error, �t. The
agent calculates �t by estimating the value of each position in space with
its critic function, C�m(xt�), and setting as follows:

�t � � Rt � C�m�xt��, if Rt � 1
�C�m(xt�1�) � C�m�xt��, otherwise (19)

Where � is a temporal discounting factor and C�m(xt�1�) is the new critic
value after a move has been made at time t. C�m(xt�) is calculated as a
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weighted linear sum of the place cell units: C�m(xt�) � WPC-Critic m(xt). The
weights, WPC-Critic, are updated at each time step via a temporal difference
learning algorithm, as in previous models of navigation (Foster et al.,
2000) as follows:

	WPC-Critic � 
�tm(xt) (20)

Habitual network. The habitual, or model-free, network (see Fig. 6) is
an actor-critic network (Sutton and Barto, 1998) that consists of three
components, two of which were described above: place cell units that
receive location coordinates as their input and output f(xt), and a critic
that outputs C�m(xt�). The third, novel component is the “actor.” The
actor consists of 8 units corresponding to the principle cardinal direc-
tions and receives connections from the place cell units (see Fig. 6A). As
the agent moves through space, place cell-to-actor weights, WPC-Actor, are
modulated according to the critic’s computed temporal difference error
(for this computation, see the previous section) and the action selected as
follows:

	WPC-Actor � 
�t at m(xt) (21)

where 
 is the learning rate, at is the selected action, and �t is the temporal
difference error computed by the critic. Hence, the model-free network
learns a value function across space via the critic and uses this predicted
value to influence actor choices given place cell activity. Ultimately, the
model-free network learns to select appropriate actions given m(xt) and
is driven to reward locations based on this mapping. For a comprehen-
sive explanation of an actor-critic network using place cells, see Foster et
al. (2000).

Expected reward probability distribution and Kullback–Leibler diver-
gence difference score. To estimate whether the episodic or schematic
systems provided better predictions for the reward location, we com-
pared the distribution of recalled locations with the expected probability
distribution for the reward. Specifically, if a new bout starts at time ts

with the reward at location xs, and tb is the length of the new bout (with
tb � Exp�
bout�), then according to Equation 1, the expectation with
respect to tb of the reward probability distribution function at time
t � ts is given by the following:

R�x, t�tb
� P�t � ts � tb�PDFNorm(x � xs; 0,�t � ts���)

� P�t � ts � tb�PDFNorm(x; 	, ��)

� �1 � CDFExp(t � ts; 
bout�)PDFNorm(x � xs; 0, �t � ts���)

� CDFExp�t � ts; 
bout�PDFNorm(x; 	, ��) (22)

where CDFExp is the cumulative distribution function for the exponential
distribution and PDFNorm is the probability density function for the nor-
mal distribution. Essentially, this equation shows that the expectation of
R�x, t� is comprised of a Brownian motion term multiplied by the prob-
ability that a new bout has not occurred, plus a Normal distribution with
mean 	 multiplied by the probability that a new bout has occurred.

Comparison between the expected reward probability distribution
and the output of the memory systems was accomplished with a Kull-
back–Leibler divergence difference score. Formally, this difference score,
S, was defined as follows:

S �
DKL�Z�mS)�R�x, t�tb

�� � DKL�Z�mE)�R�x, t�tb
��

DKL�Z�mS)�R(x, t�tb
�]�DKL�Z�mE)�R(x, t�tb

�]
(23)

where DKL� � � � � is the Kullback–Leibler divergence and Z(.) is a distri-
bution defined as the normalized inverse Euclidean distance in place
cell activity between each point in space and the memory trace. Ac-
cording to this formula, S is closer to 1 when the episodic memory is
a better match to the expected distribution reward, and S is closer to
�1 when the schematic memory is a better fit to the expected reward
distribution.

Symbols and parameter values. Table 1 provides a list of all of the
symbols used in the equations above and provides the values that were
used for the parameters in the simulations.

Software. All simulations were performed using custom code writ-
ten in the Python programming language (RRID: SCR_008394) with
the NumPy (RRID: SCR_008633) and SciPy (RRID: SCR_008058)
libraries. The software is freely available as a github repository
(https://github.com/adamsantoro/episodic-semantic-network.git).

Results
Simulating foraging and the passage of time
In natural environments, resources such as food have predictable, but
often changing, locations. Importantly, one can distinguish two catego-
ries of change. First, there are small incremental changes where the re-
source, or reward, stays in approximately the same location, but drifts
over time. In such situations, memories for recently found reward loca-
tions hold high predictive value for future reward locations because re-
ward location deviations are small. Second, there are sudden changes,
where reward location deviations may be quite large. In such cases,
memories for recently found rewards may not hold high predictive
value, but a statistical model of where rewards occur in general could be
advantageous.

Table 1. Symbols used in the equations and values that were used for the
parameters in the simulations

Variable Description Value (if applicable)

Ns No. of spatial units 2
Ne No. of units in recurrent network

(autoencoder)
490

Nm No. of place cells 980
Nv No. of cortical units (layer 1) 980
Nh No. of cortical units (layer 2) 300

 Bout length Variable (see text)
tb Time elapsed within bout �0, 
�
Rt Reward administered at time t {0, 1}
�� Within-bout variance 0 (none) or 0.003
�� Interbout variance 0 (none) or 0.11
�f Place cell breadth 0.16
� Sampled reward location (sudden shift) �N(	, ��) bound to �0, 1�
� Incremental shift �N(	, ��)
lt Reward location at time t �0, 1�
xt Agent location at time t �0, 1�
si Place cell centerfield �0, 1�
s Spatial cell activation vector —
e (k) Recurrent network (autoencoder) layer k

activation vector
—

m Place cell activation vector (memory) —
mE Episodic output —
mS Schematic output —
mO Combined episodic/schematic output —
mR Output from replay event —
m�(xt�1�ai ) Predictedoutputgivenactionai —
V Cortex layer 1 activation vector —
H Cortex layer 2 activation vector —
WSE-AE Spatial encoder to autoencoder weights —
WAE-AE Autoencoder recurrent weights —
WAE-PC Autoencoder to place cell weights —
WCTX Cortical weights —

Agent speed 0.04
at Action taken at time t �{N, NW, W, SW, S, SE, E, NE}
ai Possible action at time t �{N, NW, W, SW, S, SE, E, NE}
�t Policy unit (episodic, schematic) at time t �0, 1�
�Rt Policy unit (random) at time t �0, 1�
�t Temporal difference error —
� Temporal difference discounting factor 0.95

 Learning rate (autoencoder) �t 0.1

Learning rate (cortex) 0.00001
Learning rate (place cells, actor) 0.0075
Learning rate (place cells, critic) 0.04
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To simulate both types of change in an environment, we de-
vised a foraging task wherein a reward is located in a bounded 2D
space, with the reward location changing in an incremental or
sudden fashion (Fig. 1). Time is divided into distinct epochs (or
bouts), of length B, with each bout corresponding to a period of
relative stability in the environment where the reward location
shifts in an incremental manner. The time in a given bout, tb, is set
to zero at the start of the bout and increments upwards until
tb � B, at which point a new bout begins. When a new bout
begins, the reward location is randomly sampled from a 2D nor-
mal distribution with mean 	, and so, potentially large and sud-
den shifts in the reward location can occur. (Formally, the
location of the reward at any time, l(t), is given by Eq. 1). When a
reward is found, a “rest” period is enforced before the start of a
subsequent foraging trial, which is called the intertrial delay. Dur-
ing this delay, the reward location continues to move. So, large
intertrial delays most probably entail large deviations from the
last found reward location, whereas small intertrial delays prob-
ably entail only small deviations from the last found reward loca-
tion. Therefore, we hypothesize that, when the delay is small,
specific memories will be more predictive, but when the delay is
large, a generalized model will be more predictive.

A neural network model of a foraging agent with two
memory systems
To perform this task, we developed an agent that moves through
the 2D space searching for rewards. Ultimately, the agent’s search
behavior is governed by a model-based system that consists of
three interacting components: an episodic memory store, a sche-
matic memory store, and a navigation system (Fig. 2A). The ep-
isodic memory store performs computations thought to occur in
the medial temporal lobes. The first stage is a spatial encoder,
which receives the current agent position as Cartesian coordi-
nates. The encoder acts as an interface to the mnemonic system,
consisting of an autoencoder (analogous to CA3) and a place cell
cognitive map (analogous to CA1). The autoencoder functions to
encode activity states induced by the spatial encoder. Place cell
activities are calculated differently depending on whether or not
the agent is engaged in memory storage or memory recall. When
the agent is engaged in memory storage, we assume that the place
cells receive direct spatial information from the spatial encoder.

In this case, place cell activity is a direct
reflection of the agent’s current position
(calculated using Eq. 4). When the agent is
engaged in memory recall, the place cell
activities are functions of the autoencod-
er’s input and thus reflect whatever loca-
tion the autoencoder has stored (as in Eq.
3). Importantly, episodic encoding occurs
constantly as the agent moves through the
space, with the strength of encoding being
modulated by a prediction error signal �t

(as in Eqs. 7–9, 19). The consequence of
this is an episodic memory system that,
when primed with any location in the
space, settles on attractor points located
at specific locations in space where new,
unexpected rewards were recently
found. This is similar to the recall of
recent spatial memories we have ob-
served in rodents in navigation tasks
(Richards et al., 2014).

The schematic memory in the agent is
a two-layer generative model (i.e., it stores information about
probability distributions and can sample from them). This is in
line with the current understanding of schematic memory
(Winocur et al., 2010; Ghosh and Gilboa, 2014) and a previous
computational model of schematic memory in the neocortex
(Káli and Dayan, 2000, 2004). The input layer to the schematic
memory system is a direct copy of the place cells in the episodic
system, and it is trained with place cell activity generated via
offline replay in the episodic system during the intertrial delay
(the learning algorithm is detailed in Eqs 10 –13). Recall in the
schematic system involves cuing it with a given place cell activity
pattern at its input layer, then activating the upper layer, before
reactivating the input layer via the upper layer, providing a new
set of place cell activities modified to the expectations of the
schematic memory system.

Because the episodic system stores recently discovered unex-
pected reward locations, replay provides the schematic system
with data that reflect the underlying distribution from which
reward locations are sampled between bouts. Thus, recall in the
episodic and schematic systems provides very different patterns
of place cell activity: episodic recall leads to place cell activity
patterns that reflect the most recently discovered reward location,
whereas schematic recall leads to place cell activity patterns that
match the overall pattern of where new platform locations appear
(Fig. 2B–D). Put another way, the episodic system recalls specific,
recent reward locations, and the schematic system recalls the
probability distribution that governs the location of rewards in
the environment.

Navigation by the foraging agent
The final major component of the agent is the navigation system,
which is composed of a forward model and an action selector.
The navigation system uses place cell activity to predict which
action would bring the agent closer to goals recalled by the mem-
ory systems (Fig. 3A). The goals, mO, are a combination of the
place cell activities generated by recall in the episodic and sche-
matic memory systems. The extent to which the goal reflects
episodic or schematic recall is determined by a policy unit, �,
such that � � 1 ensures purely episodic goals, � � 0 ensures
purely schematic goals, and 0 � � � 1 ensures goals that are

Figure 1. Illustration of a simulated foraging task and the passage of time. The agent was tasked to find reward locations that
moved through a bound environment. After finding a reward (considered one trial, shown as gray regions, asterisks indicate found
rewards), the agent was given a “rest” period termed the “intertrial delay.” The position of the reward, l�t�, moved incrementally
within a bout of length B. At the end of a bout, the location was resampled from a Gaussian distribution with mean 	. Importantly,
the movement of the reward proceeded regardless of whether the agent was foraging (gray regions) or resting (white regions).
This implies that reward locations would tend to stay in approximately the same location at short intertrial delays but would tend
to be sampled from the long-term distribution after long intertrial delays.
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some mixture of episodic and schematic recall (Fig. 2B–D; see
Eq. 17).

Actions at any point in time, at, correspond to movements in
any one of the eight principle cardinal directions (i.e.,
at � 
N, NE, E, SE, S, SW, W, NW�). At every time step, the for-
ward model receives both the current location as encoded by the
place cell activities, m(xt), and a potential action, ai. It then pre-
dicts subsequent place cell activities should this action be

taken, m� (xt � 1�ai). The action selector compares this prediction to
the goal location mO and chooses at � ai to bring it closer to mO (Fig.
3B). (However, the action selector becomes increasingly random as
trials proceed to encourage exploration, see Eqs. 14–16.)

To make the situation faced by the agent more ecologically
realistic, the forward model is trained online during the search for
a reward. In other words, although the forward model provides
the agent with an understanding of the consequences of move-
ment in the environment, it does not possess this understanding
a priori. Therefore, performance in this task depends critically on

the ability of the forward navigation model to accurately and
rapidly learn to predict future place cell activity given the agent’s
current state and a potential action. So, as an initial test of the
system, we examined the forward model’s ability to guide search
behavior. The forward model quickly learned to predict future
place cell activity, exhibiting a vastly reduced error in its predic-
tions in as quickly as 10 time steps, regardless of whether it was
using only episodic recall, schematic recall, or a combination for
its goals. As the agent completed the task and found rewards, it
was reinitiated in random locations in space where the forward
model had no experience. This resulted in spikes in the error rate
for the forward model’s predictions (Fig. 3C, dashed lines). To
show that this increase in learning error did not compromise the
agent’s ability to navigate, we performed a control experiment
(Fig. 3D,E). First, the agent explored the space until it found a
reward in the due north, or due east location in the space. Next, it
was transported to a location directly south (for the north condi-
tion) or west (for the east condition), and the navigation system

Figure 2. A neural network model of a foraging agent with two memory systems. A, Illustration of the neural network model. To perform the task, the agent was equipped with both episodic and
schematic memory stores, as well as a navigation network. The episodic network consisted of a spatial encoder, autoencoder, and place cells, whereas the schematic network was a two-layer
network (specifically, an RBM). Recall outputs from these memory systems were fed into the navigation network, which chose actions such that the agent’s subsequent position was most probably
congruent with the memory systems’ encoded reward location. Computed prediction errors influenced the strength of encoding of the agent’s current position, with encoding occurring in an online,
continuous fashion. B–D, Examples of recalled place cell activities for the different types of memory. A policy unit, �, determined the relative influence of the episodic and schematic systems to the
overall memory output on the place cells. Each colored circle represents a place cell, with the color showing the activity level. B, Episodic memory output. High levels of � promoted episodic output,
which produced place cell activities congruent with the most recently found reward (large green circle). C, Schematic memory output. Schematic outputs (small �) produced place cell represen-
tations congruent with the statistics of all previously learned reward locations. Black dots represent previously found rewards. D, Mixed memory output. A mix (�� 0.5) produced a blend of the two
memory systems in place cell activity.
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calculated what its next action would be. If the navigation system
were to function properly, an accurately encoded memory should
direct the agent to choose the action “north” for the north con-
dition (Fig. 3D) and “east” for the east condition (Fig. 3E). In-
deed, the most probable actions selected by the action selector
were the correct choices (Fig. 3D,E). Most importantly, the dis-
tribution of action probabilities did not change appreciably even
in instances where the agent was in a new location with higher
levels of error in the forward model’s predictions (Fig. 3D,E,
bottom). Together, these results indicate that the navigation
system functions adequately within just a few time steps in the
environment and continues to perform well even as the for-
ward model’s error momentarily increases throughout the
task. Moreover, it exhibits consistent performance whether it
uses just its episodic system, schematic system, or a combina-
tion for its goals.

Shifting from episodic to schematic memory over time
improves agent performance
To explore how memory transformation (i.e., a shift from
episodic to schematic memory over time) might improve re-
inforcement learning in our foraging task, we implemented a
time-dependent decay in the � variable (Fig. 4A). Specifically,
� decayed exponentially over time with decay constant 
�, but
increased back to 1 whenever a reward was found (Fig. 4B; see
Eq. 18). We note that this decay occurred with the passage
of time, independently of data accumulation. Hence, � de-
cayed during the intertrial delays as well as during foraging.
This design ensured that after short intertrial delays the goals
used by the navigation system were primarily episodic (as a
reward was found recently in this case), and after long inter-
trial delays the goals used by the navigation system were pri-
marily schematic.

Figure 3. Navigation by the foraging agent. A, Illustration of the forward model. The agent’s forward model takes in current place cell activity, as well as a potential action choice, and outputs the
predicted place cell state if the action were to be taken. B, An example path showing the agent navigating to a goal (red circle). The predicted state from the forward model is compared with
the memory output to determine the probability of that action being taken, leading the agent to navigate a path (black line) directly to its goal. This goal may or may not be in the same position as
the actual current reward location (large green dot) but will always depend on previous reward locations (small green dots). Bottom, Probability of the next action to be taken by the agent. C, Plot
of forward model error during learning. As the agent wanders through space searching for rewards, the learning error for the forward model prediction decreases rapidly, but experiences sharp spikes
whenever the agent is reinitiated in a new location (dotted lines). D, E, Tests of the navigation system. Despite the increase in learning error observed when the agent is initialized in new positions,
it is still able to appropriately weight the probability of actions. This holds even in the first step after a learning error spike (bottom).
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We predicted that this system of decaying � would lead to
improved performance in foraging, given that recent, specific
locations would be highly predictive of the reward locations with
small intertrial delays, but the overall probability distribution
governing the interbout sampling would be more predictive with
large intertrial delays. As expected, we observed that, when we
clamped � � 1 (purely episodic goals), the agent performed bet-
ter at short intertrial delays than long intertrial delays (Fig. 4C,
blue circles). In contrast, when we clamped � � 0 (purely sche-
matic goals), we found that the performance of the agent was
largely flat across intertrial delays, such that it was worse than the
purely episodic system at short intertrial delays but better than
the purely episodic system at longer intertrial delays (Fig. 4C,
white circles).

Given these results, we predicted that a system with exponen-
tial decay of � would combine the best performance of both
systems. Indeed, we found that the “transformation” model ex-
hibited better overall performance than either the purely episodic
of purely schematic systems. Indeed, the transformation from
episodic to schematic memory did not merely achieve the best of
the reward rates from either individual memory system. Instead,
it had a higher rate of reward discovery than either system in
isolation at every intertrial delay (Fig. 4C, orange circles). This
result was somewhat unexpected, although we believe that it can
be explained by the fact that a combined goal (0 � a � 1) is a
better predictor when some amount of time has passed because
the expected location of the reward itself would be determined by
some combination of the most recent specific location and the
probability distribution governing interbout samples. Our data
suggest that, if an agent is presented with an environment where
short-term, temporal correlations give way to long-term stochas-
tic patterns, then reinforcement learning can be enhanced by
memory transformation.

Memory transformation can be optimized to the temporal
dynamics of the environment
In our simulated foraging task, there is regularity to the rate at
which new bouts occur. As such, we reasoned that a combined
system could optimize its performance by tuning the speed at
which it switches between its episodic and schematic systems. In
other words, if new bouts occur frequently, meaning that the
environment regresses to the long-term distribution rapidly,
then it may be best to switch to the schematic system more
quickly. In contrast, if new bouts occur infrequently, meaning
that the reward locations remain correlated with the previous
location for extended periods of time, then it may be best to have
the episodic system drive behavior for longer.

To explore this idea, we measured the degree of matching
between the memory output for the episodic and schematic sys-
tems to an analytically computed expected probability distribu-
tion of reward locations under conditions where the bout length
was sampled from an exponential distribution (Fig. 5A, B, inset).
Because this introduced a new random variable (i.e., bout length,
whose sampling was controlled by different values of the rate
parameter 
bout), we reasoned that different values of 
bout would
result in different degrees of matching to the episodic and sche-
matic systems as a function of time. The reward distribution (i.e.,
Gaussian Brownian motion with variable length bouts sampled
from an exponential distribution, see Eq. 22) was compared with
the distribution of recalled place cell activities output by both the
episodic and schematic systems using a Kullback–Leibler Diver-
gence difference score (Fig. 5B; see Eqs. 22,23). The manner in
which we designed this difference score ensured that a score �0
corresponds to a better match between the episodic memory out-
put and the reward distribution, whereas a score �0 corresponds
to a better match between the schematic memory output and the
reward distribution. As expected, as the 
bout values increased

Figure 4. Shifting from episodic to schematic memory over time improves agent performance. A, Diagram of the memory transformation process. The memory transformation agent combined
episodic and schematic models using a policy unit � to switch between episodic (� � 1) and schematic (� � 0) output for guiding navigation. B, Dynamics of the policy unit. The policy unit
exhibited an exponential decay as time passed, reverting back to episodic navigation immediately after reward had been found. So, the intertrial delay directly impacted the agent’s initial search
strategy when starting a new trial. C, Performance of the episodic-only, versus schematic-only versus transformation models. The memory transformation agent outperformed the best performance
(both mean latency to reward, and reward rate) of either the episodic or schematic systems alone across all intertrial delays (delay � 
500, 1000, 2000, 4000�).
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(i.e., as the mean bout lengths increased), the time it took for the
schematic system to be more predictive increased. Conversely, as

bout decreased, the episodic system ceased to be more predictive
more quickly (Fig. 5B).

To test whether we could tune the rate at which memory
transformation occurred to the environmental statistics, we ran
the agent in the reward-finding task under different 
bout values
while modulating the rate at which the agent decayed toward
schematic recall (
�; see Eq. 18). To visualize the effects of mod-
ulating 
�, we computed the percentage increase in reward-
finding latency above the best-performing 
� (Fig. 5C, larger
circles) for each value of 
bout. In line with our predictions, as the
value of 
bout increased, the optimal 
� increased (Fig. 5C). How-
ever, one unexpected result was that the disadvantage of switch-
ing to the schematic system too quickly in conditions with a high

bout was drastic (Fig. 5C, yellow circles, low 
� values). We be-
lieve that this may be because the rapid transformation to the
schematic system prevents the agent from exploiting the preci-
sion of the episodic system under conditions where the reward
tends to remain in a similar location. Alternatively, the effects of
switching to the episodic system too slowly under the lower 
bout

conditions (Fig. 5C, blue circles, high 
� values) were not as
pronounced, which may be due to the fact that the episodic sys-
tem will still direct the agent to the general area in which rewards
occur, unless it is recalling a recent outlier.

These results suggest that the speed at which memory
transformation occurs can be optimized to the environment:
environments with rapid regression to a pattern demand rapid
transformation, whereas environments that regress to a pattern
slowly demand extended use of episodic memory. However, we
also found that switching to the schematic system too quickly is
particularly disadvantageous. This implies that a potentially good

“default” for an agent in a new environ-
ment with unknown conditions is to
engage in very slow memory transforma-
tion, which may provide a normative rea-
son for the long transformation times in
experimental conditions where subjects
are unfamiliar with the environment
(Kim and Fanselow, 1992), and the rapid
transformation times seen when subjects
are familiar with the task already (Tse et
al., 2007, 2011; McClelland, 2013). The
mechanistic reason is likely to involve the
nature of memory storage in distributed
networks with preexisting schemata (Mc-
Clelland, 2013).

A habitual agent is not as effective at
foraging as the memory transformation
agent in a variable environment
In addition to an episodic to schematic
transformation, researchers have demon-
strated that, with enough training, there is
a shift from goal-directed (or model-
based) behavior to habitual (or model-
free) behavior (Daw et al., 2005; Dolan
and Dayan, 2013). This suggests that ha-
bitual systems may be superior to goal-
directed systems when sufficient data have
been accumulated. However, habitual
systems do not adapt quickly to altered
contingencies, such as changes to the

action-reward associations in the environment (Dolan and
Dayan, 2013). As such, it may be that a goal-directed system, such
as our memory transformation agent, would be superior to a
habitual agent in a variable environment, though inferior in a
constant environment.

To explore this, we built a habitual agent for our foraging task.
The agent was based on a previous model of reinforcement learn-
ing for navigation (Foster et al., 2000). Like our memory-
transformation agent, the habitual agent possessed a set of place
cells and a critic system to estimate the value of different locations
in the environment. However, the habitual system did not navi-
gate using an explicit goal recalled from memory. Instead, it used
an “actor” module that decided which action to select based
purely on the current place cell activity (Fig. 6A). In other words,
the habitual agent made decisions using location-to-action asso-
ciations that it formed during learning (see Eqs. 19 –21). We then
compared the performance of our memory transformation agent
to the habitual agent, both at a variety of intertrial delays and at
different levels of variance in the incremental (��) and interbout
(��) movement of the reward (Fig. 6B–E, top rows).

When there was no variance in the environment (i.e., when
the reward stayed in one place), we found that the memory trans-
formation agent (Fig. 6B, blue circles) was actually better at for-
aging than the habitual agent (Fig. 6B, white circles), when both
agents were given equivalent amounts of training (20 pretraining
trials followed by 100 regular trials). This held regardless of the
intertrial interval. However, we found that, with overtraining
(400 additional trials), the habitual agent came to outperform
our memory transformation agent (Fig. 6B, gray circles). We
believe that this is because the memory transformation agent is
using its forward model, which is accurate but not perfect,
whereas in a constant environment the habitual agent learns a

Figure 5. Memory transformation can be optimized to the temporal dynamics of the environment. A, Illustration of the
foraging task with randomly sampled bout lengths (the end of a bout is indicated by a jump in the reward location). B, Comparison
of the accuracy of episodic versus schematic memories over time. If bouts are sampled from an exponential distribution, then the
time it takes for the memory output from the schematic system to more accurately match an analytically computed expected
reward distribution is dependent on the rate parameter for bout sampling (
bout, inset). A negative value in the Kullback–Leibler
divergence (KLD) difference score indicated better schematic match, whereas positive values indicated better episodic match. C,
Test of the ability of a combined network to optimize its performance under conditions where bouts were sampled using different

bout values. Larger circles represent the best performing episodic-schematic switch value (
�), with other values being compared
with this best performing value. As the bout lengths increased (blue vs green vs yellow circles), the optimal episodic-schematic
switch time similarly increased.
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very accurate map of the value of each ac-
tion at different points in space. Hence,
our data suggest that, in a nonchanging
environment, a habitual system is better
than a goal-directed system as long as suf-
ficient data can be accumulated.

However, the situation was very dif-
ferent when the reward location was
variable. In these cases, the memory
transformation agent generally outper-
formed the habitual agent. In particular, if
we introduced some within-bout vari-
ance, we found that the memory transfor-
mation agent was markedly better than
the habitual agent at lower intertrial de-
lays, even if the habitual agent received
five times the training (Fig. 6C). We saw
similar results at low intertrial delays if we
introduced between-bout variance (Fig.
6D) or both within- and between-bout
variance (Fig. 6E). However, interestingly,
we found that the memory transforma-
tion agent did not outperform the habit-
ual agent at higher intertrial delays (Fig.
6C–E). Indeed, with both within- and
between-bout variance present, we ob-
served a slight advantage for the over-
trained habitual agent at the longest
intertrial delay we tested (Fig. 6E). None-
theless, given the general performance of
the two systems, it would appear that in a
variable environment it is generally better
to rely on a goal-directed agent with mem-
ory transformation capabilities, except af-
ter very long periods of time.

The benefits of schematic memory
depend on a stable long-term
distribution of reward locations
When considering the benefits of memory
transformation in our foraging task, we
wondered how much it depended on the
presence of a stable long-term distribu-
tion of reward locations. In other words, if
the distribution of between-bout reward
locations was nonstationary, would sche-
matic memories actually provide any ben-
efit, or would they become “out-of-date”
too quickly to be useful? Further, we
wanted to explore whether the schematic
system’s performance in a nonstationary
environment would depend on the amount
of training.

To explore these issues, we trained the
agent with either episodic only (� � 1) or
schematic only (� � 0) memories in a set
of tasks where the mean of between-bout
reward locations (	, see Fig. 1) was itself
sampled from another distribution after
every 20 trials (Fig. 7A). Specifically, we tested the agent in con-
ditions where 	 was resampled every 20 trials from either a nor-
mal distribution with low variance (N(0.7, 0.05); Fig. 7B), a
normal distribution with high variance (N(0.7, 0.11); Fig. 7C),

or a uniform distribution (U(0, 1); Fig. 7D). As well, we examined
the performance of the agent during the first 20 trials (pretrain-
ing; Fig. 7, left column), the second set of 20 trials (early training,
Fig. 7, middle column), and the last set of 20 trials (late training,

Figure 6. A habitual agent is not as effective at foraging as the memory transformation agent in a variable environment. A, Illustration
ofthehabitualagentarchitecture.Theagentwithmemorytransformationwaspittedagainstahabitual (model-free)system, composed of
place cells that interacted with a critic, which learned a value function, and an actor that learned a place-to-action function. B, Performance
of the agents when the reward location was constant. When tasked to find a stationary reward within a single bout, the habitual system
with 400 trials of extra training outperforms an episodic model-based system, which in turn outperforms a model-free system that received
an equivalent amount of training. C, Performance of the agents with some within-bout variance (incremental changes), but no new bouts
(i.e., no between-bout variance). D, Performance of the agents with no within-bout variance, but some between-bout variance (i..e.
multiple bouts). E, Performance of the agents with both between-bout and within-bout variance.
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Figure 7. The benefits of schematic memory depend on a stable long-term distribution of reward locations. A, Illustration of a nonstationary long-term distribution. We trained agents in a set
of tasks where the mean of between-bout reward locations (	, see Fig. 1) was itself sampled from another distribution after every 20 trials. B, Performance of episodic-only and schematic-only
agents in the case where new 	 values were resampled from a small Gaussian distribution, 	 � N (0.7, 0.05). C, Performance of the agents in the case where new 	 values were resampled
from a large Gaussian distribution, 	 � N (0.7, 0.11). D, Performance of the agents in the case where new 	 values were resampled from a uniform distribution (	 � U �0, 1�). We
examined the performance of the agent during the first 20 trials (pretraining, left columns), the second set of 20 trials (early training, middle columns), and the last set of 20 trials (late training, right
columns). In the first trials of pretraining the episodic system outperformed the schematic system. However, the schematic memory system came to outperform the episodic system at high intertrial
delays when 	 was resampled from a low variance Gaussian distribution (B, middle and right columns). When 	 resampling was done with a uniform distribution, the episodic system always
outperformed the schematic system (C, D).
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Fig. 7, right column). In agreement with other studies of episodic
versus schematic control (Lengyel and Dayan, 2007), we found
that, during the first trials of pretraining, the episodic system
outperformed the schematic system, regardless of the type of 	
resampling or the intertrial delay (Fig. 7, left column). However,
differences emerged when we examined later training. In partic-
ular, we found that, if the resampling of 	 was done with low
variance, then as training proceeded, the schematic memory sys-
tem came to outperform the episodic system at high intertrial
delays (Fig. 7A, middle, left), as we observed with a stationary
distribution (Fig. 4B). In contrast, when 	 resampling was done
with high variance, the schematic system only ever tied with the
episodic system in its performance at higher intertrial delays (Fig.
7B). Furthermore, when 	 resampling was done with a uniform
distribution, the episodic system always outperformed the sche-
matic system (Fig. 7C). In total, our results demonstrated that the
benefits of the schematic memory system (and with it, memory
transformation) depended on the presence of a stable long-term
distribution, or at the very least, a relatively low degree of nonsta-
tionarity coupled with sufficient training. Alternatively, a schematic
memory system that actually attempts to develop a model of higher-
order changes in the long-term pattern of reward locations may be
able to further enhance reinforcement learning in more thoroughly
nonstationary environments like these.

Discussion
Evidence of a transformation from specific memories to general
or statistical memories during consolidation has become stron-
ger in recent years (Wiltgen and Silva, 2007; Winocur et al., 2007;
Durrant et al., 2011; Richards et al., 2014; Sekeres et al., 2016).
However, the question of why this transformation may be bene-
ficial has typically been framed in terms of reducing mnemonic
interference or increasing mnemonic stability (McClelland et al.,
1995; Squire and Alvarez, 1995; O’Reilly and Rudy, 2001). Here,
we explored whether shifting from episodic to schematic systems
over time is an advantageous strategy in environments where
short-term consistency gives way to long-term patterns. We sim-
ulated a foraging task in which a reward shifted its location both
gradually and suddenly throughout the environment, and built
an agent that could use episodic or schematic memories to guide
its searches. We observed a performance distinction between ep-
isodic and schematic memory-based control. With short delays
between foraging trials, the episodic system more accurately pre-
dicted subsequent reward locations. With long delays between
foraging trials, the schematic system more accurately predicted
subsequent reward locations, even in the absence of further data
accumulation. As such, when the agent was given the ability to
switch between episodic and schematic control (transformation),
it could take advantage of each system’s strengths and could effi-
ciently find rewards regardless of the delay between foraging tri-
als. We also found that the optimal timing of the shift was
sensitive to the temporal dynamics of the environment: if the
reward location regressed to a general statistical distribution very
slowly, it was better to prolong the use of episodic memories.
Further, we showed that our agent using episodic and schematic
memories could generally outperform a habitual agent in vari-
able environments, although our transformation agent per-
formed worse in a constant environment if the habitual agent was
given sufficient training. Finally, we showed that the benefits of
the schematic memory system depended on the presence of either
a stable long-term distribution for reward locations, or a nonsta-
tionary distribution with relatively low variance paired with suf-
ficient training. Together, these results demonstrate that episodic

and schematic memories have unique and complementary ad-
vantages for guiding behavior, and combining them in a manner
that matches the statistics of the environment can produce so-
phisticated reinforcement learning. This may help to explain the
evolution of memory transformation in the mammalian brain.

Influenced by the ideas of Marr (1970, 1971), McClelland et al.
(1995) considered the potentially complementary nature of epi-
sodic and schematic memory systems. They demonstrated that
episodic systems may be good for rapidly encoding data for later
replay, to allow schematic systems to slowly identify statistical
patterns across events. Indeed, there is neuropsychological evi-
dence supporting the idea that there are distinct learning systems
in the brain with these complementary capabilities (Tulving,
1972; McClelland et al., 1995; Tse et al., 2007, 2011; Richards et
al., 2014). In our model, we made the same fundamental distinc-
tion between these two forms of memory, but we embedded it
within the larger context of reinforcement learning. As a natural
extension of McClelland et al. (1995), our episodic system was
designed for storing specific reward locations on-line, whereas
our schematic system was designed for learning the general pat-
tern of reward locations across time via episodic replay. Although
our model shares these essential features with McClelland et al.
(1995), it builds on their framework in three important ways.
First, our model operates in a fully online, autonomous fashion
with learning and consolidation occurring continuously in the
environment as experiences occur, consistent with the situations
faced by animals. This allowed us to explore how complementary
episodic and schematic systems perform in tasks with realistic
temporal dynamics (i.e., the passage of time in the absence of
further data accumulation). Second, memory encoding in our
model is controlled by a prediction error signal rather than being
externally determined. This adds an additional layer of autonomy
and ensures that only data relevant to unexpected rewards (i.e.,
changes) get stored in memory. It is also in line with neurophys-
iological evidence showing that learning is modulated by dopa-
minergic signaling that encodes a temporal difference prediction
error (Schultz et al., 1997; O’Carroll et al., 2006; Bethus et al.,
2010). Third, our model did not require interleaved learning for
the schematic system, eliminating the need for independent and
identically distributed memory replay events. Instead, recent
events were replayed with higher probability in our model. This
resembles the organization of memory replay observed in vivo
(Kudrimoti et al., 1999; Euston et al., 2007). In considering these
differences, our model implements episodic and schematic sys-
tems in a more realistic scenario. Moreover, it reframes comple-
mentary learning systems as a solution to reinforcement learning
in changing environments. We believe that this new perspective
fits well with the most recent articulation of the complementary
learning systems theory from McClelland and colleagues, which
emphasizes the relevance of the theory to the design of intelligent
agents (Kumaran et al., 2016).

Neuropsychological studies in humans and experimental an-
imals have also explored the idea of complementary learning sys-
tems, especially from the perspective of systems consolidation
(Zola-Morgan and Squire, 1990; Frankland and Bontempi, 2005;
Moscovitch et al., 2006; Wang and Morris, 2010; Winocur et al.,
2010; Winocur and Moscovitch, 2011). These studies have un-
covered two major components of systems consolidation. First,
as memories age, the cortex plays an increasingly important role
in their expression. Second, aged memories tend to be less spe-
cific and less contextually dense, and instead are more gist-like
(or schematic) in nature. Such findings are typically interpreted
as reflecting a consolidation process that renders memories less
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vulnerable to disruption over time (Frankland and Bontempi,
2005). Our model expands on this proposed function of systems
consolidation. It suggests that, in addition to protecting memo-
ries from interference, the consolidation process functions to
optimize reward seeking behavior. By this account, systems con-
solidation need not be a unidirectional process. Instead, it sug-
gests that the brain shifts back and forth between episodic and
schematic control depending on which provides the best predic-
tions. In our model, if a new reward is encountered, the network
switches back to reliance on its episodic memory system. Consis-
tent with this, there is evidence in the neuropsychology literature
that remote memories recontextualize (i.e., become more epi-
sodic) following reminders (Hupbach et al., 2007). However, in
the absence of reminders, there is a tendency to shift from epi-
sodic to schematic retrieval over time (Winocur et al., 2010). We
would suggest that, as in our simulated foraging task, the real
world tends to be relatively consistent over short time periods but
regresses to general distributions over long time periods. Thus,
schematic systems will usually be best for control after long peri-
ods of time have passed since an experience, which could provide
a normative account for instances of temporally graded retro-
grade amnesia following damage to the episodic system (Scoville
and Milner, 1957). However, we note that one component of our
model that is likely different from the reality in the brain is that
our episodic memory system only ever forgot as a result of over-
writing. In contrast, in the regular brain, there is evidence that
episodic memories are typically highly transient (Conway, 2009).
Thus, switching between episodic and schematic memories in the
real brain will also depend on the dynamics of forgetting. Future
research should explore how forgetting would affect the impor-
tance of memory transformation for optimizing decisions.

Our results can also be understood as being part of a broader
examination of how the brain uses different memory systems to
make decisions (Klein et al., 2002; Daw et al., 2005; Doll et al.,
2012; Wunderlich et al., 2012). Researchers have observed a
switch between goal-directed (or model-based) behavior, guided
by memories of past events and action outcomes, to habitual (or
model-free) behavior, guided by stimulus–response associations
(Daw et al., 2005). This switch may be desirable because, in stable
environments, habitual systems are both competent and compu-
tationally efficient (Watkins and Dayan, 1992; Sutton and Barto,
1998). However, in changing environments, habitual systems
deal poorly with altered contingencies (Foster et al., 2000; Dolan
and Dayan, 2013). In these cases, goal-directed systems typically
offer a better solution because memories of recent events can be
used to update action-outcome predictions (Dayan and Niv,
2008; Dolan and Dayan, 2013). In the simulated environment we
used here, a habitual system did indeed struggle with the moving
reward location (Fig. 6), although it performed better than our
model with sufficient training when the reward location was sta-
tionary. It should be noted, however, that with enough time, and
the right parameter settings, a habitual system can learn a stable,
long-term distribution of reward locations. Nonetheless, what
our work demonstrates is that a goal-directed system that uses a
combination of both specific, recent memories and a generative
model based on multiple memories can easily take advantage of
both short-term correlations and long-term statistical patterns
without the large amounts of training that a habitual system re-
quires. Given our results, and previous research into switching
between memory systems (Daw et al., 2005), we hypothesize that
the optimal strategy for guiding behavior may be to rely on epi-
sodic, goal-directed control when experience is limited, switch to
schematic, goal-directed control when enough time has passed to

render episodic memories nonpredictive, and then switch to ha-
bitual control when accumulated experience and/or environ-
mental stability are relatively high.

This proposal is broadly in agreement with the work of
Lengyel and Dayan (2007), which suggested that episodic systems
should guide behavior early in training, and schematic systems
should guide behavior late in training. However, our model ex-
amines the benefits of an episodic to schematic switch even in the
absence of the accumulation of new data. By emphasizing the
passage of time in addition to data accumulation, our model
makes some explicit, novel predictions about the relationship
between the structure of the environment and the optimal bal-
ance between episodic and schematic control. In highly stochastic
environments (i.e., situations with a rapid regression to the un-
derlying distribution), we predict that the brain will rapidly shift
to schematic control. In contrast, in environments where changes
always occur gradually, such that the most recent experiences
accurately predict new events, we predict that the brain will rely
on episodic control for longer periods of time. This seems to
contrast with Lengyel and Dayan’s (2007) prediction that the
episodic system should generally be engaged in rapidly changing
environments. Perhaps these different predictions result from
our focus on the general passage of time as opposed to more
training data. However, it is important to note that there are
other significant differences between our work and theirs. First,
we used a one-step forward model for both episodic and sche-
matic control, whereas Lengyel and Dayan (2007) did not use a
forward model for episodic control (episodic control for them
was explicit recapitulation of previous actions). This meant that
for us, unlike for Lengyel and Dayan (2007), the difference be-
tween episodic and schematic systems boiled down to whether a
specific or general model of reward locations was used, not
whether a forward model was used. Second, we did not alter the
action-state transitions that our agent faced, meaning that the
agent’s one-step forward model was always fairly accurate follow-
ing the initial pretraining phase (Fig. 3). In other words, whereas
uncertainty about the accuracy of the forward model was a key
feature of Lengyel and Dayan (2007), it did not factor into our
study. Although there are many situations animals face in which
the accuracy of their forward models may be uncertain, we would
argue that for foraging tasks such as the one we studied here that
is not the case: barring totally new environments, or major motor
changes, animals are likely to have good internal models of how
their movements alter their position in space. Thus, whereas for
Lengyel and Dayan (2007) one of the central advantages of epi-
sodic control was that it did not depend on a forward model, in
our work, this issue was not central to the episodic versus sche-
matic division, nor clearly a major issue for the specific task we
were studying. More research that explores how the passage of
time would impact a system where uncertainty is embedded
within model-based control would help clarify these discrepan-
cies. Once these issues have been explored, a more comprehen-
sive theory of the utility of memory transformation for animal
survival can be fleshed out.
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