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The framework of criticality provides a unifying perspective on neuronal dynamics from in vitro cortical cultures to functioning human
brains. Recent findings suggest that a healthy cortex displays critical dynamics, giving rise to scale-free spatiotemporal cascades of
activity, termed neuronal avalanches. Pharmacological manipulations of the excitation-inhibition balance (EIB) in cortical cultures were
previously shown to result in deviations from criticality and from the power law scaling of avalanche size distribution. To examine the
sensitivity of neuronal avalanche metrics to altered EIB in humans, we focused on epilepsy, a neurological disorder characterized by
hyperexcitable networks. Using magnetoencephalography, we quantitatively assessed deviations from criticality in the brain dynamics of
patients with epilepsy during interictal (between-seizures) activity. Compared with healthy control subjects, epilepsy patients tended to
exhibit a higher neural gain and larger avalanches, particularly during interictal epileptiform activity. Moreover, deviations from scale-
free behavior were exclusively connected to brief intervals at epileptiform discharges, strengthening the association between deviations
from criticality and the instantaneous changes in EIB. The avalanches collected during interictal epileptiform activity had not only a
stereotypical size range but also involved particular spatial patterns of activations, as expected for periods of epileptic network domi-
nance. Overall, the neuronal avalanche metrics provide a quantitative novel description of interictal brain activity of patients with
epilepsy.
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Introduction
Epilepsy, a chronic neurological disorder that affects �1% of the
world’s population (World Health Organization, 2015), is asso-

ciated with an altered excitation-inhibition balance (EIB) in the
cortex (Eichler and Meier, 2008; Fritschy, 2008; Badawy et al.,
2012). The manifestation of hyperexcitable networks and the un-
derlying epileptic processes are mediated by changes in numer-
ous physiological and dynamical factors of both the excitatory
and inhibitory circuits (Wendling et al., 2005; Eichler and Meier,
2008; Fritschy, 2008). Accordingly, it has been suggested that
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Significance Statement

Healthy brain dynamics requires a delicate balance between excitatory and inhibitory processes. Several brain disorders, such as
epilepsy, are associated with altered excitation-inhibition balance, but assessing this balance using noninvasive tools is still
challenging. In this study, we apply the framework of critical brain dynamics to data from epilepsy patients, which were recorded
between seizures. We show that metrics of criticality provide a sensitive tool for noninvasive assessment of changes in the balance.
Specifically, brain activity of epilepsy patients deviates from healthy critical brain dynamics, particularly during abnormal epi-
leptiform activity. The study offers a novel quantitative perspective on epilepsy and its relation to healthy brain dynamics.
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cortical excitability in patients with epilepsy is constantly chang-
ing (Badawy et al., 2012). Along with the occurrence of recurrent
seizures (Banerjee et al., 2009), interictal (between-seizures) pe-
riods are likewise characterized by distinct excitability features
(McCormick and Contreras, 2001; Badawy et al., 2012). A mag-
netoencephalography (MEG) or EEG trace often shows interictal
epileptiform activity (IEA), namely, abnormal waveforms not
associated with seizure symptoms. However, it is still subject to
debate whether interictal spikes forerun, drive, or rather protect
against the outburst of seizures (Rogawski, 2006; Staley et al.,
2011).

In the past decade, numerous studies have presented support-
ing evidence that a healthy cortex displays near-critical dynamics;
namely, it operates on the border between premature termina-
tion and runaway explosive growth of neuronal activity, thereby
enabling efficient information propagation (Beggs and Timme,
2012; Shew and Plenz, 2013; Massobrio et al., 2015). A critical
state is accompanied by scale-free cascades of activity, termed
neuronal avalanches (Plenz, 2012). The sizes of these cascades
obey a power law distribution with a specific exponent of � �
�3/2. These cascades have been successfully described by a crit-
ical branching process (Harris, 1989). Accordingly, the gain of
neural systems is reflected through the branching parameter, �.
In critical systems, � � 1; namely, one event in a cascade leads, on
average, to a single future event, whereas subcritical dynamics
correspond to a lower gain, and supercritical dynamics to a
higher gain.

It has previously been shown, both theoretically (Poil et al.,
2012) and experimentally, that avalanche analysis is sensitive to
EIB manipulations. When the ratio of excitation to inhibition in
cortical cultures was pharmacologically disturbed by the intro-
duction of antagonists of fast glutamatergic or GABAergic syn-
aptic transmission, the systems deviated from criticality (Shew et
al., 2009). In systems with reduced GABA inhibition, the power
law was destroyed, and the avalanche size distribution became
bimodal with more large-sized avalanches than expected from a
power law distribution, reflecting supercritical dynamics. Con-
sistent with these findings, sleep deprivation, which was shown to
increase cortical excitability in humans (Huber et al., 2013) and is
known to trigger epileptic seizures (Kotagal and Yardi, 2008), was
also demonstrated by neuronal avalanche analysis to correlate
with deviations toward supercritical dynamics (Meisel et al.,
2013).

Can the neuronal avalanche analysis provide a sensitive tool to
assess the constantly changing excitability of the epileptic brain?
In this study, we examined neuronal avalanches in interictal rest-
ing state activity of patients with epilepsy, vis-à-vis healthy con-
trol subjects, with the aim to monitor deviations from the critical
state. The neuronal dynamics of epilepsy patients can potentially
deviate from near-critical brain dynamics, even in prolonged in-
terictal periods during which the patients do not experience sei-
zures. Another central aspect is examining whether IEA, as
opposed to seemingly “normal” activity within the interictal pe-
riods, indicates a difference in the operating distance from criti-
cality. This may provide mechanistic insights into the dynamics
of EIB in epileptic networks outside of seizures. Particularly, as
interictal recordings are routinely used in epilepsy diagnosis and
presurgical evaluation to localize epileptogenic zones (Stefan et
al., 2003; Wang G. et al., 2011; Lascano et al., 2012), a better
understanding of the neuronal dynamics within interictal peri-
ods is of prime importance. Finally, because a substantial body of
work in basic cognitive research is based on interictal intracranial
recordings from patients with epilepsy, an examination of the

validity of generalizing from nonepileptiform brain activity of
patients with epilepsy to the general population is in itself a sig-
nificant goal.

Materials and Methods
Participants. Patients with refractory epilepsy were referred to the Elec-
tromagnetic Brain Imaging Unit at Bar-Ilan University for presurgical
assessment. Twenty patients of either sex (adults: n1 � 12, age1 � 24.9 �
6.2 years; children: n2 � 8, age2 � 9.1 � 3.2 years) were randomly
selected from a large centralized database under the inclusion criteria
that the patients underwent an MEG recording while awake and that the
reviewing neurologist reported abnormal epileptiform activity in the re-
corded data. The patients were treated by antiepileptic drugs (detailed
clinical information is provided at Table 1) and underwent MEG record-
ings during the evening, without daytime sleep. The study was approved
by the Ethics Committee of the referring hospital, Tel-Aviv Sourasky
Medical Center, in accordance with the Declaration of Helsinki. Eighteen
age-matched healthy control subjects of either sex (adults: n1 � 12,
age1 � 25.4 � 5.6 years; children: n2 � 6, age2 � 10.4 � 1.5 years) were
also recruited to the study and underwent MEG recordings during vary-
ing hours during the day or evening. Informed consent for the MEG
recordings was obtained from each subject or parent. Two of the patients
with epilepsy were younger (patients 9 and 20, Table 1) than the age-
matched control subjects and were therefore excluded from between-
group comparisons (epilepsy children group: n2 � 6, age2 � 10.4 � 2.6
years). Another patient (patient 12, Table 1) had insufficient amount of
epileptiform activity for purpose of analyses; thus, this patient and her
age-matched healthy control subject were excluded from between brain
activity period type comparisons.

Data acquisition and preprocessing. MEG recordings were conducted
with a whole-head, 248-channel magnetometer array (4-D Neuroimag-
ing, Magnes 3600 WH) in a magnetically shielded room while partici-
pants lay supine with their heads positioned in the MEG helmet.
Reference coils, located �30 cm above the head, were used to remove
environmental noise. Accelerometers (Bruel and Kjaer) attached to the
gantry were used to remove vibration noise. Five localization coils were
attached to the head of each participant before data acquisition to mon-
itor the head position relative to the MEG sensors. Head localization
measurements (1 mm precision) were performed several times during
long recordings to ensure that the participant remained still. Head shape
and the positions of the coils were digitized using a Pollhemus
FASTTRAK digitizer. MEG data were digitized with a sample rate of
either 678.17 Hz or 1017.25 Hz and bandpass filtered online at 1–200 Hz
or 0.1– 400 Hz, respectively. The 50 Hz signal from the power outlet was
recorded by an additional channel, and the average power-line response
to a power cycle was subtracted from every MEG sensor, enabling the
noise and its harmonics to be cleaned without the need to apply a notch-
filter (Tal and Abeles, 2013).

Data processing and analysis were performed using MATLAB 2011b
(The MathWorks) and Fieldtrip open-source toolbox for Advanced
MEG Analysis (Oostenveld et al., 2011). MEG data were first cleaned for
line frequency, building vibration, and heartbeat artifacts with in-house
open-source software (Tal and Abeles, 2013). Additionally, data from up
to two malfunctioning MEG sensors were discarded. Data were down-
sampled to 678.17 Hz if needed and bandpass filtered offline between 1
and 80 Hz. Epochs contaminated by muscle or jump (in the MEG sen-
sors) artifacts were marked and subsequently excluded from all analyses.
Independent component analysis (ICA) was performed (Jung et al.,
2000) to ensure the removal of all eye movements, blinks, and remaining
heartbeat artifacts. ICA components reflecting such artifacts, as deter-
mined by visual inspection of the 2D scalp maps and time course of that
ICA component, were rejected, and the remaining components were
used to reconstruct the data.

Interictal MEG datasets from the patients with epilepsy were reviewed
by a neurologist (M.M.), with expertise in MEG and EEG in epilepsy. He
identified interictal epileptiform transients within each dataset, which
were accordingly defined as IEA periods. The remaining segments from
each dataset were thus defined as non-IEA periods. Notably, manual
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detection by human experts is the gold standard, against which auto-
matic algorithms are benchmarked (Halford, 2009). Nonetheless, for the
purposes of this manuscript, it suffices to consider IEA periods as only
having higher propensity to consist of epileptiform activity. The seg-
ments were marked and tagged and were later analyzed separately. Fur-
thermore, a heuristic counting of interictal epileptiform discharges
(IEDs) was obtained by focusing, within the previously identified IEA, on
joint extrema suprathreshold events (i.e., peaks) in at least 8 (�3%)
sensors occurring within 150 ms of the first event. Thus, this criterion
determined a minimal duration of discharge width combined with a
refractory period (i.e., until the next extremum can be categorized as a
separate IED). The chosen parameters were found to accord with the
waveforms of epileptiform activity in our datasets (Nowak et al., 2009).

Signal discretization, cascade size and duration distributions, and power
law statistics. The signal from each sensor was z-scored by subtracting its
mean and dividing by the SD. The mean for each sensor was calculated
over all non-IEAs or healthy preprocessed periods. Both positive and
negative excursions beyond the chosen threshold of 3 SDs from the mean
for each sensor were identified. A single event was identified per excur-
sion at the most extreme value (maximum for positive excursions and
minimum for negative excursions). Importantly, under these parameter
and procedure selections, there was no significant difference in event rate
between healthy control subjects and epilepsy patients in non-IEA peri-
ods ( p � 0.4; see Fig. 3A); thus, these periods were neither favored nor
discriminated against in discretization. The time series of events obtained
from each sensor was discretized with time bins of duration �t. The
timescale of the analysis, �t � 2.95 ms, was twice �tmin, which is the
inverse of the data sampling rate (Shriki et al., 2013). A cascade was
defined as a continuous sequence of time bins in which there was an event
on any sensor, ending with a time bin with no events on any sensor. The
number of events on all sensors in a cascade was defined as the cascade
size. Cascades from IEA and non-IEA periods were collected sepa-
rately. Notably, if a cascade occurred during a tagging transition be-
tween an IEA and a non-IEA period, it was exclusively assigned to the
IEA period. Thus, there was no breaking of evolving cascades due to
tagging.

According to the theory of critical branching processes, power law
behavior is predicted at the critical state (Harris, 1989). The neuronal
cortical sources undergo linear mixing at the sensor level as each MEG
sensor linearly sums contributions from multiple cortical sources. In a
previous study (Shriki et al., 2013), power law distributions in a simu-
lated network were observed at both the source and sensor level, at crit-
icality. Increasing the degree of overlap in sensitivity of nearby sensors
caused a more shallow power law exponent, and a slight underestimation
of small cascades, while the branching parameter remained close to 1. At
small sensor overlap, the power law exponent was similar at both the
sensor and source levels and was close to �1.5. The sensor level analysis
is therefore informative to assess criticality, and particularly to assess
relative deviations, as is done in this study. Yet, inferring the spatial
spread and propagation of a cascade at the sensor level is limited by the
mixing of sources.

The fit of the avalanche size and duration distributions to a power law
were analyzed as described previously (Clauset et al., 2009; Klaus et al.,
2011). The candidate distributions were power law and exponential dis-
tributions, both characterized by a single parameter (degree of freedom)
and log-normal and exponentially truncated power law distributions,
both characterized by two parameters. All distributions were limited to
the range between a minimum and a maximum size. Power laws were
modeled as follows:

P�� x� � � C�x� xmin � x � xmax

0 otherwise (1)

Exponential functions were modeled as follows:

P�� x� � � C�e��x xmin � x � xmax

0 otherwise (2)

Log-normal functions were modeled as follows:

Table 1. Clinical details of patientsa

Patient no. Age (yr) Gender MRI Medications Possible location of epileptogenic zoneb

Adults
1 19 Female No lesion Carbamazepine; levetiracetam R frontoparietal
2 30 Male No lesion Lamotrigine; levetiracetam R frontoparietal
3 19 Male No lesion Primidone; sulthiame; valproate; clobazam L 	 R frontal
4 29 Male Suspected FCD: L insular and temporal Oxcarbazepine; valproate; levetiracetam; clobazam L frontal
5 31 Male Suspected FCD: L occipital Clobazam; gabapentin; carbamazepine;

oxcarbazepine
L frontotemporal

6 20 Male A lesion in the left cingulate Phenobarbital; levetiracetam; phenytoin L frontotemporal
7 18 Male No lesion Oxcarbazepine R frontal, temporal, and parietal
8 18 Female Findings of unknown origins Valproate; carbamazepine R 
 L frontal, temporal and parietal
9 36 Female No lesion No information R parietal

10 27 Female Bilateral perisylvian polymicrogyria Clobazam; topiramate; valproate; oxcarbazepine R frontotemporal 	 parietal
11 29 Male No lesion Lamotrigine; valproate L frontal
12 23 Female No lesion Carbamazepine; clonazepam; levetiracetam R 	 L frontotemporal

Children
13 7 Female No lesion Diazepam R frontoparietal
14 9.5 Female Suspected hydrocephalus Valproate; clobazam; zonisamide R temporal, parietal, and insula
15 8.5 Male FCD: R frontal and bilateral cingulate,

preventricular heterotopia of
gray matter

Levetiracetam; primidone R frontal

16 14 Male No lesion Levetiracetam; ethosuximide MEG sources diffuse throughout hemisphere
R 	 L (possibly primary generalized seizures)

17 11 Female Suspected R MTS Carbamazepine L frontal 	 temporal
18 12.5 Male Suspected FCD: R frontal Carbamazepine; levetiracetam R frontal
19 5 Female No lesion Levetiracetam; oxcarbazepine L frontal
20 5.5 Female No lesion No information R frontoinsular 	 parietal

aFCD, Focal cortical dysplasia; MTS, mesial temporal sclerosis.
bLocation of epileptogenic zone was estimated by a combination of imaging modalities, including video-EEG, MEG, and PET.
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P�,�� x� � � C�,�

�2��x
exp � 	

1

2 �ln x 	 �

� �2� xmin � x � xmax

0 otherwise

(3)

Exponentially truncated power laws were modeled as follows:

P�,�� x� � � C�,�x�e��x xmin � x � xmax

0 otherwise (4)

where C�, C�, C�,�, and C�,� are normalization factors.
The parameters xmin and xmax were set to include all observed

avalanches.
A maximum likelihood estimation was applied directly to the sample

of avalanche sizes (and durations). Assuming independence of avalanche
sizes (and durations) and a sample of n avalanches, the likelihood of a
sample of avalanche sizes given the power law and exponential models,
and a parameter � or �, respectively, is the product of individual proba-
bilities of each avalanche size as follows:

L� param�x� � 	 i�1

n
Pparam� xi� (5)

While the log-likelihood is given by the following:

l� param�x� � 
i�1

n
ln�Pparam�xi�� (6)

The best fit parameters for the power law and exponential distributions

(�̂ and �̂) were calculated by maximizing the log-likelihood as a function
of the parameter. To determine whether a power law or an exponential
distribution have a higher likelihood to model the data, the log of the
likelihood-ratio (LLR) was taken with the best fit parameters as follows:

LLR� x�n�� � l��̂�x�n�� 	 l��̂�x�n�� (7)

Thus, a positive LLR indicates that the power law model is more likely,
whereas a negative LLR indicates that the exponential model is more
likely; for an LLR of zero, neither distribution is more likely. To deter-
mine whether the LLR was significantly different from zero, the p value of
the LLR was calculated as follows:

p � erfc� LLR

�2n�2� (8)

where: �2 �
1

n
�i�1

n ��l���xi� 	 la� 	 �l���xi� 	 l���2

with la � l���x�n��/n

and l� � l���x�n��/n.
The LLR for the comparison between exponentially truncated power

law and log-normal distributions can be calculated analogously (Eqs. 7,
8). The conventional choice of an exponentially truncated power law
model is motivated by the predicted cutoff of the power law around
system size (i.e., number of sensors in the array). Nevertheless, this model
is suboptimal, as the exponent is applied over all effective range, therefore
affecting the entire fit and the obtained power law exponent. Since log-
normal and exponentially truncated power law have an additional degree
of freedom compared with the power law and exponential models, the
LLR test would have been difficult to interpret if intermixingly com-
pared. Thus, when comparing distributions for each single subject and
period type, only models with the same number of degrees of freedoms
were tested against each other (Klaus et al., 2011). Additionally, at the
group level, we compared all four competing models using Bayesian
Model Selection (BMS) (Penny et al., 2004; Penny, 2012). The BMS
determined the most likely model for a given dataset taking into account
model complexity. In practice, this was obtained by plugging into the
BMS open code [part of the SPM12 package (http://www.fil.ion.ucl.ac.
uk/spm/)] estimations of log-evidences for each model over subjects and
period types. The log-evidence is a measure of model goodness, which
can be decomposed into an accuracy (i.e., model fit or likelihood) and
complexity (which serves as penalty) terms, where the best model bal-
ances the two terms to give the highest log-evidence. The approximations

to the log-evidence used in this study are the Akaike Information Crite-
rion (AIC), and the Bayesian Information Criterion (BIC). The AIC and
BIC approximate the complexity with the number of parameters and the
number of parameters scaled by the log of the number of observations,
respectively. These approximations are simpler and potentially less accu-
rate than the negative free-energy bound on the log-evidence (Stephan et
al., 2009) but do not rely on additional assumptions regarding the pa-
rameters of the fitted models.

Throughout this article, the reported power law exponent, �, is the one
fitted to the simple power law model (Eq. 1), and not to the exponentially
truncated power law (Eq. 4). This was chosen because of two complimen-
tary reasons: (1) according to the BMS analysis applied at the group level,
the power law model is more consistent with our datasets; and (2) al-
though the exponential decay multiplication factor is conventionally in-
serted to capture the cutoff of the power law behavior at approximately
system size (in our case, size of the sensor array), it affects the entire
range, thus distorting the power law exponent itself. Nonetheless, the
fitted exponential modulation parameter, �, is a measure of interest and
was a subject for group and period type comparisons.

Estimation of deviation from the critical neuronal avalanche size distri-
bution, calculation of branching parameter, and avalanche shape collapse
analysis. The nonparametric measure, 
, quantifies the difference be-
tween an experimental cumulative density function (CDF) for cascade
sizes and the theoretical reference CDF. As for neuronal avalanches, the
probability density function (PDF) of cascade size x follows a power law
with a slope � � �1.5. The corresponding CDF for cascade size, F NA(�),
specifies that the fraction of measured cascade sizes x 
 � is a �0.5
power law function, FNA��� � �1 	 �l/L��1�1 	 �l/�� for l � x � L.
Therefore, 
 is expressed as follows:


 � 1 

1

m
k�1

m
�FNA��k� 	 F��k�� (9)

where �k are m � 10 cascade sizes logarithmically spaced between the
minimum and maximum observed cascade size. The measure 
 was
found to be more accurate in measuring deviation from neuronal ava-
lanches than other nonparametric comparisons of CDFs (e.g., Kolmogo-
rov–Smirnov and Kuiper’s tests) (Shew et al., 2009).

The branching parameter, �, representing the gain of the system, was
estimated by calculating the ratio of the number of events in the second
time bin of a cascade to that in the first time bin. This ratio was averaged
over all cascades for each participant and for IEA and non-IEA periods
separately, with no exclusion criteria (Shriki et al., 2013) as follows:

� �
1

Nav

k�1

Nav nevents(2nd bin of k�th avalanche)

nevents(1st bin of k�th avalanche)
(10)

where Nav is the total number of avalanches in the particular dataset and
nevents represents the number of events in a particular bin.

The values of � and � vary with the time scale of analysis of �t. Con-
sistent with Shriki et al. (2013), we find that for �t close to 3– 4 ms the
obtained values, are very close to the ones predicted for a critical branch-
ing process. Here, the chosen timescale is 2.95 ms. Additionally, the
obtained values were only weakly sensitive to changes in the threshold. As
was shown previously, for different choices of the threshold, there are �t
values that are consistent with the branching process, and those �t values
are all in the same ballpark (Shriki et al., 2013).

Importantly, because IEA and non-IEA periods have different dura-
tions and rates (see Fig. 3A) across patients, it was necessary to establish
a more valid basis for comparison; we therefore used an identical number
of avalanches (Nsamples � 3500), randomly selected from each dataset
(i.e., IEA periods, non-IEA periods, and full recording of patients with
epilepsy, and healthy control subjects) to construct size distributions and
assess the branching parameter. One patient (patient 12, Table 1), who
did not have a sufficient IEAs to obtain a substantial amount of ava-
lanches, was excluded from all IEA and non-IEA comparisons (n � 19;
n1 � 11, n2 � 8), as well as from all IEA, non-IEA and healthy control
comparisons (n � 17; n1 � 11, n2 � 6). Noticeably, for all datasets, no
significant differences were found between �, 
, and � based on the full
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recordings and those based on the 3500 sampled avalanches ( p was in the
range of 0.8 – 0.99 for all parameters and datasets). The statistical tests
used throughout this study were t test, when comparing epilepsy patients
and healthy control subjects, and one-way ANOVA, when comparing
IEA and non-IEA periods from patients to healthy subjects. Post hoc
comparisons were carried out by pairwise t test. Multiple comparisons
were Bonferroni corrected. Nonetheless, in several cases, the assumption
of homogeneity of variances has been violated. Accordingly, in these
cases, the statistical tests used were Welch ANOVA with a Games–Howell
test.

At criticality, an avalanche temporal profile is expected to show a
characteristic shape which scales with the avalanche duration (Friedman
et al., 2012):

S�t, T� � F� t

T���T� � F� t

T�Tb (11)

where S(t, T) is the number of events at time t in an avalanche of duration

T, F� t

T� is the expected characteristic shape with a rescaled time axis (i.e.,

relative to the avalanche duration), and b is the critical exponent.
To examine whether the avalanche shapes will collapse to a single

characteristic shape, F� t

T�, the avalanches were divided into groups of

same duration and the time axis was scaled by that duration, to obtain a
common axis between 0 and 1. Following, a common binning at the
highest temporal resolution was used, and each avalanche was interpo-
lated accordingly. Avalanches of the same duration were averaged to
obtain a set of relatively smoother temporal profiles (i.e., shapes, one for
each duration) of which amplitudes are predicted to scale by a scaling

function of the form ��T�T̃ b. The optimal �̂�T� was found by minimizing
the squared difference between the scaled shapes and the mean shape
relative to the mean shape. The resulting �̂�T� was plotted as a function of
duration, T, in log-log coordinates, and a linear fit was used to extract the
exponent of the anticipated power law. In our datasets, we found that, by
accumulating all avalanches collected from all epilepsy patients, the max-
imal duration that has at least 1000 avalanche samples is 14 bins in
non-IEA periods and 24 bins in IEA periods. The lower limit for duration
was determined by supporting a meaningful temporal profile, and it was
set to 5 bins. Thus, the analysis could only be applied to this relatively
narrow range of durations.

Results
Using the framework of neuronal avalanches, we investigated
interictal brain activity in patients with refractory epilepsy and
compared the findings with brain activity of healthy control sub-
jects. The neuronal avalanche analysis constitutes the detection of
large positive and negative signal deflections (e.g., Fig. 1A). Ac-
cordingly, by applying an amplitude thresholding operation
(threshold of �3 SD), the discretization of the continuous elec-
tromagnetic signals into highly synchronized point events was
obtained. Subsequently, the discrete events were clustered into
spatiotemporal cascades based on temporal proximity within a
time bin, �t, of duration 2.95 ms. Importantly, the findings for
control subjects (n � 18) supported these choices of threshold
and �t: the branching parameter, �, was �1 (� � 1.06 � 0.15),
the distribution of cascade sizes followed a power law with an
exponent, �, that was close to �3/2 (� � �1.52 � 0.08), and the
measure, 
, which quantifies the differences between an experi-
mental cascade size CDF and the expected theoretical reference,
was �1 (
 � 0.97 � 0.02) (please also see Table 2, where the
values of metrics are indicated for adults and children separately).
Indeed, a maximum likelihood based analysis demonstrated a
significantly higher likelihood of a power law compared with an
exponential function for all subjects (see Materials and Methods,
p 
 0.01), as well as a significantly higher likelihood of an expo-

nentially truncated power law compared with a log-normal func-
tion in 17 subjects (p 
 0.05; 1 patient demonstrated p 	 0.2). At
the group level, according to BMS, the expectation of the poste-
rior gives highest likelihood for the power law model according to
the AIC log-evidence approximation, and for the exponentially
truncated power law according to the BIC approximation. By
AIC: power law, 0.79; exponential, 0.06; log-normal, 0.06; expo-
nentially truncated power law, 0.09. By BIC: power law, 0.12;
exponential, 0.05; log-normal, 0.08; exponentially truncated
power law, 0.75. As expected for healthy subjects, all the values
indicate close proximity to a critical branching process, support-
ing the parameters’ choice. Nonetheless, sensitivity to variations
in the time scale �t and in the threshold were small and closely
followed previously reported results (Shriki et al., 2013).

Figure 1 illustrates several consecutive neuronal avalanches
associated with interictal epileptiform discharges in a particular
patient. The high positive and negative amplitude deflections that
can be seen in Figure 1A were converted into suprathreshold
discrete events that are presented on a raster plot (Fig. 1B). The
time axis (horizontal, Fig. 1B) was binned according to �t (gray
vertical lines, Fig. 1B), and each uninterrupted consecutive group
of events represents a neuronal avalanche.

Figure 1C, D illustrates the spatiotemporal nature of the neu-
ronal avalanches. They present topographic maps across time,
each portraying the inward and outward magnetic fields (i.e., red
and blue extrapolations across the 2D layout of MEG sensors)
that surround the intracellular current flows of a synchronized
and aligned group of cortical neurons (forming a dipole). In this
particular case, the measured activity is IEA. Noticeably, the
propagation of these current flows in the opposite direction or
across different orientations of the folded cortex may change the
polarity and spatiotemporal distribution of the measured fields
(Fig. 1D). However, because our interest lies in the identity and
magnitude of activated networks, the extreme of each suprath-
reshold deflection, whether positive or negative, was marked as a
discrete event (symbolized as black dots on the topographic
maps), and the combination of such discrete events, in-between
silent time bins, as an avalanche (the topographic maps of each
avalanche time bins are grouped with a purple curly bracket;
Fig. 1C,D).

Comparing patients with epilepsy and healthy
control subjects
We compared the values of the major neuronal avalanche metrics
from the full recordings of epilepsy patients with those of healthy
control subjects. The dominant tendency in the sampled epilepsy
population was toward substantially higher values than the ex-
pected theoretical values for a critical process (Harris, 1989) and,
accordingly, higher than the values for healthy control subjects,
suggesting an altered EIB in the epilepsy patients [for patients
with epilepsy (n � 18), � � �1.37 � 0.12, 
 � 1.03 � 0.05, � �
1.29 � 0.23; vs healthy control subjects, p � 0.0001 for � and 
,
and p � 0.001 for �] (Fig. 2B, a 3D phase plot; Table 2, mean �
SD of adults and children). The avalanche size distributions of
one patient and one control subject are shown in Figure 2A. As
demonstrated in Figure 2A for a single patient, in some of the
patients with epilepsy, there were higher probabilities for large-
size avalanches than expected from a �1.5 power law (dashed
black line), and accordingly the slope of the avalanche size distri-
butions on log-log coordinates was substantially shallower.
Nonetheless, the observed behavior of the avalanche size distri-
butions of all patients was noticeably scale-free, with a cutoff (i.e.,
a reduction in the frequency of avalanches larger than a particular

12280 • J. Neurosci., November 30, 2016 • 36(48):12276 –12292 Arviv et al. • Deviations from Critical Dynamics in Epilepsy



Figure 1. Identification and visualization of neuronal avalanches in IEA. A, MEG trace of 1 s duration from a few representative sensors (amplitude range: � 5.5 
 10 �13 tesla). Pink stripes
indicate the identified avalanche durations. Importantly, in this particular example, these times are associated with epileptiform activity. The time range indicated (Figure legend continues.)
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size compared with a power law behavior) that corresponded to
the size of the sensor array. The mean estimated cutoff increases
with the size of the (sub-)sensor array (epilepsy patients: R 2 �
0.94, p 
 0.05, healthy control subjects: R 2 � 0.91, p 
 0.05),
whereas the cutoff occurred at significantly larger size avalanches
in patients with epilepsy under the same spatial constraints;
whole array: p � 0.02, Bonferroni corrected. Additionally, the
mean exponent of the exponential modulation, �, in the expo-
nentially truncated power law model was significantly smaller for
epilepsy patients, � � 0.021 � 0.012, than for healthy control
subjects, � � 0.039 � 0.013 (p 
 10�4). A maximum likelihood
based analysis demonstrated a significantly higher likelihood of a
power law compared with an exponential function for all subjects
(see Materials and Methods, p 
 10�7), as well as a significantly
higher likelihood of an exponentially truncated power law com-
pared with a log-normal function in 7 patients (p 
 0.05; 3 pa-
tients demonstrated a significance tendency p 
 0.1, 8 patients
demonstrated p 	 0.2). At the group level, according to BMS, the
expectation of the posterior gives the highest likelihood for the
power law model. By AIC: power law, 0.83; exponential, 0.06;
log-normal, 0.06; exponentially truncated power law, 0.05. By
BIC: power law, 0.68; exponential, 0.05; log-normal, 0.20; expo-
nentially truncated power law, 0.07. Overall, it seems that, al-
though some patients occupied a higher-values region of the (�,

, �) phase space, there was also a substantial overlap with the
upper end of the healthy controls’ distribution, and therefore the
two populations are not completely separable on the basis of
these parameters.

The temporal organization of neuronal avalanches has addi-
tional special characteristics, which are predicted for a critical

branching process (Harris, 1989). Accordingly, the avalanche du-
ration, T, follows a power law P(T) � T � with an exponent � �
�2 (Plenz, 2012). A maximum likelihood estimation was applied
directly to the sample of avalanche durations to estimate the
power law exponent. Whereas for healthy control subjects � �
�2 [(n � 18), � � �2.02 � 0.10], for patients with epilepsy the
exponent is higher than expected for critical systems [(n � 18),
� � �1.77 � 0.14; (p 
 10�9)]. Nonetheless, a significantly
higher likelihood of avalanche duration distributions to be mod-
eled by an exponential function compared with a power law was
found for 13 patients (p 
 0.001; 2 patients demonstrated a
significance tendency p 
 0.1, whereas 3 patients demonstrated
p 	 0.1), as well as for 17 control subjects (p 
 10�7). Addition-
ally, a significantly higher likelihood of a log-normal function
compared with an exponentially truncated power law was found
for 9 patients (p 
 0.05), whereas only 2 patients demonstrated a
higher likelihood of an exponentially truncated power law com-
pared with a log-normal function (p 
 0.05; 7 patients demon-
strated p 	 0.1). In the control group, 4 subjects demonstrated a
higher likelihood of a log-normal function, whereas 4 subjects
demonstrated a higher likelihood of an exponentially truncated
power law (p 
 0.05; 10 subjects showed no preference to either
function p 	 0.1). At the group level, according to BMS, for
epilepsy patients the expectation of the posterior gives the highest
likelihood for the exponential and log-normal models according
to the AIC log-evidence approximation, and of the log-normal
according to the BIC approximation. By AIC: power law, 0.07;
exponential, 0.50; log-normal, 0.37; exponentially truncated
power law, 0.06. By BIC: power law, 0.05; exponential, 0.08; log-
normal, 0.80; exponentially truncated power law, 0.07. For the
control subjects, the expectation of the posterior gives highest
likelihood of the exponential model according to the AIC log-
evidence approximation, and of the log-normal and exponential
according to the BIC approximation. By AIC: power law, 0.05;
exponential, 0.79; log-normal, 0.10; exponentially truncated
power law, 0.06. By BIC: power law, 0.05; exponential, 0.42; log-
normal, 0.44; exponentially truncated power law, 0.09. Overall,
in contrast to theory, neither the power law model nor the expo-
nentially truncated power law seems to model the datasets of
healthy control subjects, as well as epilepsy patients. However, the
duration distributions, as opposed to the size distributions, have
a particularly narrow range of effective power law regimen due to
the smaller magnitudes involved. Moreover, as reported previ-
ously (Arviv et al., 2015), there is a consistent, across all subjects,
underrepresentation of small durations than would have been
expected from a power law (see Fig. 4A). This underrepresenta-
tion might be related to sensor overlap (Shriki et al., 2013). Ad-
ditionally, the theoretical prediction of power law behavior for
the duration distribution assumes a fixed time-step for each step
in a cascade. The natural temporal jitter in the propagation of
neuronal activity may lead to deviations from the expected power
law. Therefore, the fitted exponent, �, should be considered as
the linear approximation to the distribution in log-log coordi-
nates. In this sense, these fitted exponents are meaningful, and as
shown above, they exhibit a significant difference between epi-
lepsy patients and healthy control subjects.

Comparing IEA and non-IEA periods of interictal activity
In the interictal brain dynamics of patients with epilepsy, some of
the neuronal avalanches originate from IEA periods, as in Figure
1, whereas others originate from nonepileptiform brain dynam-
ics, which we termed non-IEA. The cascades collected from IEA
versus non-IEA periods, which exhibit dissimilar dynamics and

4

(Figure legend continued.) by the dark pink bracket at the top of the figure is portrayed in the
Raster plot in B. B, The Raster plot represents each suprathreshold event in the first 3 avalanches
in the trace. The sensors (vertical axis) are ordered according to the chronological order of
participation. There are common sensors participating in all 3 avalanches. Gray vertical lines
indicate the binning of the time axis (horizontal, �t � 2.95 ms). C, D, Spatiotemporal propa-
gation of cascades. C, First panel represents the set of all sensors participating in avalanche 1. C,
D, Each topographic map represents the average activity across a time bin in units of SD. The
time in milliseconds from the beginning of avalanche 1 is indicated at the top of each topo-
graphic map. Black dots indicate the sensors that have crossed the �3 SD threshold. Similar
regions are activated within the IEA of this particular patient, corresponding to a focus in the
right dorsolateral frontal lobe. However, orientation or direction of propagation differ between
cascades (D).

Table 2. Neuronal avalanche metrics in epilepsy patients and healthy control
subjects

� � 


Healthy controls Adults (n1 � 12)
1.05 � 0.16 �1.53 � 0.08 0.97 � 0.02

Children (n2 � 6)
1.08 � 0.14 �1.50 � 0.06 0.98 � 0.02

Epilepsy patients Adults (n1 � 12)
1.27 � 0.23 �1.38 � 0.13 1.03 � 0.06

Children (n2 � 6)
1.34 � 0.26 �1.37 � 0.12 1.03 � 0.05

Healthy controls (n � 17)
1.06 � 0.16 �1.52 � 0.08 0.97 � 0.02

Epilepsy patients (n � 17)
non-IEA periods

1.10 � 0.13 �1.47 � 0.06 0.99 � 0.02
IEA periods

1.65 � 0.24 �1.22 � 0.10 1.09 � 0.05
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morphology of measured waveforms, may be characterized by a
difference in their distances from the critical point. Therefore, we
examined whether the characteristics of IEA and non-IEA in the
epilepsy patients differed from the near-critical dynamics of the
healthy control subjects. In contrast to the significant difference
in the suprathreshold event rate between epilepsy patients and
healthy control subjects (p � 0.002; Fig. 3A, inset), the non-IEA
periods of patients with epilepsy have a similar event rate to that
of healthy control subjects (p � 0.66; Fig. 3A). Indeed, the anal-
ysis shows that the event rate during IEA periods was significantly
higher than the rate during non-IEA periods and the rate in
healthy control subjects (p 
 0.0005, for both). Because Levene’s
test resulted in the rejection of the null hypothesis of equal vari-
ances, the reported p values are those of a Welch ANOVA with a
Games–Howell test. Additionally, the mean duration (and size)
of the avalanches during non-IEA in the patients with epilepsy
were significantly (and with a significance tendency) greater than
those in healthy control subjects (p 
 0.001 and p � 0.07, respec-
tively), whereas the avalanches during the IEA periods were even
larger (p 
 0.001 and p � 0.01 for duration and size, respectively,
compared with those in the non-IEA periods and to those in
healthy control subjects). Again, because Levene’s test resulted in
the rejection of the null hypothesis of equal variances, the re-
ported p values are those of a Welch ANOVA with a Games–
Howell test. In the phase plot presented in Figure 3D, there was a
considerable overlap between patients with epilepsy during non-
IEA periods and healthy control subjects (which, indeed, did not
include only the lower end region occupied by healthy control
subjects). The differences in metrics of non-IEA periods com-

pared with healthy control subjects were significant for � (p �
0.05) and with a significance tendency (p � 0.06) for 
; differ-
ences for � were not significant (p � 0.45). Importantly, the
mean values across epilepsy patients for non-IEA periods (n �
17; � � �1.47 � 0.06, 
 � 0.99 � 0.02, � � 1.10 � 0.13), are
similar to those for healthy control subjects (n � 17; � �
�1.52 � 0.08, 
 � 0.97 � 0.02, � � 1.06 � 0.16) and are likewise
consistent with the predicted values for a critical branching pro-
cess. However, the IEA periods were characterized by a substan-
tial deviation from the critical point toward supercritical
dynamics (n � 17; � � �1.22 � 0.10, 
 � 1.09 � 0.05, � �
1.65 � 0.24) (Table 2 summarizes metrics’ values for IEA and
non-IEA periods, and healthy control subjects). The values of the
avalanche metrics during IEA periods had only a minor overlap
in this phase space with non-IEA periods and with the avalanche
metrics in healthy control subjects (p 
 10�9). Remarkably, in
each patient with epilepsy, the parameters for the IEA periods
were larger than those for the non-IEA periods. The avalanche
size distributions of any particular patient demonstrated the
above-described divergence of the IEA and non-IEA distribu-
tions while still exhibiting scale-free behavior with a cutoff at
approximately the size of the sensor array (Fig. 3C, a single pa-
tient). The mean estimated cutoff across patients increased with
the size of the sensor array (IEA, R 2 � 0.97, p 
 0.01; non-IEA, R 2

� 0.94, p 
 0.05; Fig. 4A), while the cutoff occurred at signifi-
cantly larger size avalanches during IEA periods under the same
spatial constraints; whole array: p 
 10�6 (p 
 10�6), sub-
samples of array (Fig. 4A, insets): p 
 10�7 (p 
 10�5), p 
 10�5

(p 
 10�4), p 
 0.001 (p 
 0.05), p � 0.001 (p 
 0.05), Bonfer-

Figure 2. Neuronal avalanche metrics for epilepsy patients and control subjects. A, Avalanche size distribution from an individual patient. Black dashed line indicates a reference power law (��
�1.5). The avalanche size distribution for this patient had a substantially higher power law exponent (���1.26) than expected for a critical branching process. Inset, Avalanche size distribution
for a healthy control subject (� � �1.52). B, Three-dimensional phase plot of the power law exponent, �, the nonparametric measure, 
, and the branching parameter, �, for epilepsy patients
(red) and healthy control subjects (blue). Each point corresponds to a single subject. Stars indicate across-subjects mean and two-dimensional projections of the mean. Solid vertical and horizontal
lines indicate the theoretical expected value for a critical branching process (���1.5, 
� 1.0, �� 1.0). Whereas the mean values of the parameters for the control subjects were similar to the
theoretical values, the mean values for the epilepsy patients differed substantially from the theoretical values.
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Figure 3. Comparison of suprathreshold events and neuronal avalanche metrics between IEA and non-IEA periods from patients with epilepsy versus control subjects. A, Bar plot of mean
suprathreshold event rate � SEM of IEA versus non-IEA periods. Notably, for each epilepsy patient, the event rate during IEA was higher than that during non-IEA (indicated for each patient by an
orange or a cyan circle, respectively, and linked by a gray line). Inset, Bar plot of mean event rate � SEM of epilepsy patients versus healthy control subjects. Red asterisks indicate significance. B,
Mean avalanche size (number of events) � SEM and mean duration (number of time bins) � SEM are represented in bar plots (turquoise and green bars, respectively). Gray asterisks indicate
significance. Particularly, for each patient with epilepsy, the size and duration during IEA were greater than during non-IEA. C, Avalanche size distributions of IEA and non-IEA periods from an
individual patient. Black dashed line indicates a reference power law (���1.5). During IEA periods, the avalanche size distribution for this patient had a substantially higher power law exponent
(� � �1.22) than expected for a critical branching process, whereas during non-IEA periods the exponent was much closer to expected value (� � �1.45). D, Three-dimensional phase plot of
the power law exponent, �, the nonparametric measure, 
, and the branching parameter, �, for both IEA and non-IEA periods from epilepsy patients and for healthy control subjects. Each orange
and cyan point indicates a single epilepsy patient at IEA and non-IEA, respectively. Blue point indicates a healthy control subject. Stars indicate mean across-subjects and two-dimensional projections
of the mean. Solid vertical and horizontal lines indicate the theoretical expected value for a critical branching process (� ��1.5, 
 � 1.0, � � 1.0). Whereas the mean values of the parameters
obtained from patients during non-IEA periods and from control subjects were similar to the theoretical values, the mean values of the parameters obtained from patients during IEA periods differed
substantially from the theoretical values.
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roni corrected, compared with non-IEA periods (and healthy
control subjects). Additionally, the mean exponent of the expo-
nential modulation, �, in the exponentially truncated power law
model was significantly smaller for IEA periods, � � 0.013 �
0.007, than for non-IEA periods, � � 0.034 � 0.010 (p 
 10�6),
healthy control subjects, � � 0.039 � 0.013 (p 
 10�7), while no
significant difference was found between non-IEA periods and
healthy control subjects (p � 0.23). A maximum likelihood
based analysis demonstrated a significantly higher likelihood of a
power law compared with an exponential function for both IEA
and non-IEA periods (see Materials and Methods, p 
 10�7). For
IEA periods, there was a significantly higher likelihood of an
exponentially truncated power law compared with a log-normal
function in 13 patients (p 
 0.05; 1 patient demonstrated a sig-
nificance tendency p 
 0.1, 3 patients demonstrated p 	 0.2). For
non-IEA periods, a significantly higher likelihood of an exponen-
tially truncated power law compared with a log-normal function
was found in 11 patients (p 
 0.05; 1 patients demonstrated a
significance tendency p 
 0.1, 5 patients demonstrated p 	 0.1).
At the group level, according to BMS, for IEA periods the expec-
tation of the posterior gives the highest likelihood for the power
law model. By AIC: power law, 0.83; exponential, 0.05; log-
normal, 0.06; exponentially truncated power law, 0.06. By BIC:
power law, 0.77; exponential, 0.05; log-normal, 0.11; exponen-
tially truncated power law, 0.07. For non-IEA periods, the expec-
tation of the posterior gives the highest likelihood for the power
law model. By AIC: power law, 0.80; exponential, 0.06; log-
normal, 0.07; exponentially truncated power law, 0.07. By BIC:

power law, 0.48; exponential, 0.06; log-normal, 0.24; exponen-
tially truncated power law, 0.22.

Next, a maximum likelihood estimation was applied to ava-
lanche durations of both IEA and non-IEA periods of each pa-
tient to determine the power law exponent. The mean power law
exponent fitted to IEA periods (n � 17) is � � �1.60 � 0.13,
which is significantly shallower than the value for non-IEA peri-
ods, � � �1.90 � 0.08, and the value for healthy control subjects
(n � 17) � � �2.02 � 0.10 (p 
 10�9 and p 
 10�11, respec-
tively). Moreover, non-IEA periods are significantly different
from healthy control subjects (p 
 10�6), although both dem-
onstrate proximity to � � �2, which is consistent with the pre-
dicted value for a critical branching process. Nonetheless, for IEA
periods, a significantly higher likelihood of an exponential func-
tion compared with a power law was found for 14 patients,
whereas a higher likelihood of a power law was found in 1 patient
(p 
 0.05; 2 patients demonstrated p 	 0.4). Additionally, two
patients demonstrated a significantly higher likelihood of a log-
normal function compared with an exponentially truncated
power law (p 
 0.005, and 1 patient demonstrated a higher like-
lihood of an exponentially truncated power law (p 
 0.05; 1
patient demonstrated a significance tendency p 
 0.1, 13 patients
demonstrated p 	 0.2). For non-IEA periods, a significantly
higher likelihood of an exponential function compared with a
power law was found for 16 patients (p 
 5 
 10�4, 1 patient
demonstrated p 	 0.1). Additionally, in 4 patients, a significantly
higher likelihood of a log-normal function compared with an
exponentially truncated power law was found for (p 
 0.05), and

Figure 4. Temporal organization of avalanches across all patients: a “grand” perspective. A, Cascade duration distribution of IEA and non-IEA periods from all accumulated avalanches from all
patients. Black dashed line indicates a reference power law (���2.0). During IEA periods, the avalanche duration distribution had a substantially higher power law exponent (���1.56) than
expected for a critical branching process, whereas during non-IEA periods the exponent was much closer to the theoretically expected value (���1.92). B, Avalanche shape collapse analysis. Top
panels, The estimated scaling function �̂�T� as a function of T. The extracted power law exponent b is equal to 0.33 for both IEA (right) and non-IEA (left) periods. Bottom panels, Mean avalanche
shape for each duration, before and after collapse, for both IEA (right) and non-IEA (left). The durations represented in the shape analysis of IEA periods are marked by an orange bracket to the right
of the legend, and the ones of non-IEA periods, by a cyan bracket to the left of the legend. The scales of the panels for IEA (right) and non-IEA (left) periods are not the same.
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1 patient demonstrated a higher likelihood of an exponentially
truncated power law compared with a log-normal function (p 

0.05; 12 patients demonstrated p 	 0.1). At the group level, ac-
cording to BMS, for IEA periods the expectation of the posterior
gives the highest likelihood for the exponential model according
to the AIC log-evidence approximation, and for the log-normal
according to the BIC approximation. By AIC: power law, 0.08;
exponential, 0.73; log-normal, 0.12; exponentially truncated
power law, 0.07. By BIC: power law, 0.06; exponential, 0.12; log-
normal, 0.73; exponentially truncated power law, 0.09; and also
for non-IEA periods. By AIC: power law, 0.06; exponential, 0.78;
log-normal, 0.09; exponentially truncated power law, 0.07. By
BIC: power law, 0.06; exponential, 0.21; log-normal, 0.60; expo-
nentially truncated power law, 0.13. Overall, neither the power
law model nor the exponentially truncated power law seems to
model the datasets of patients at IEA and non-IEA periods. The
model inversion of duration distributions suffers from the short-
coming described in the previous section. However, the fitted
exponents, �, exhibit a significant difference between IEA and
non-IEA periods.

Accumulating all avalanches from all patients of IEA periods
and non-IEA periods separately, enables a “grand” (across all
patients) perspective. Intermixing data from different patients
into a common pool has the benefit of increasing statistical
strength, although it mounts up variability among patients, par-
ticularly at IEA periods. Figure 4A demonstrates “grand” ava-
lanche duration distributions of IEA and non-IEA periods. The
power law exponent of the IEA curve with the highest likelihood
is � � �1.56 and of the non-IEA curve is � � �1.92. Clearly, the
curve of IEA periods is shallower and demonstrates a tendency of
all patients toward avalanches of longer durations during IEA
periods (Fig. 3B). Noticeably, in the “grand” cascade duration
distributions, as in individual patients’ distributions, there is an
underrepresentation of cascades of short durations, which may
result from sensor overlap.

So far, we have focused on power law distributions, which
reflect scale-free dynamics. Although the observed exponents are
consistent with those predicted for a critical system, in general,
power law behavior may also arise from noncritical dynamics. To
go beyond power law distributions, we also looked for universal
scaling relationships in the data. Specifically, we applied the ava-
lanche shape collapse analysis (Friedman et al., 2012) (see Mate-
rials and Methods), which is an additional way to probe for
critical dynamics. This analysis relies on having a large amount of
avalanches of several durations, and thus benefits from the
“grand” perspective. We note that our data-poll supported these
type of analyses only in the grand (across all patients) perspective
and could span a limited duration range (5 
 �t up to 14 
 �t in
non-IEA, and up to 24 
 �t in IEA; see Materials and Methods).
An avalanche shape, S(t, T), is the temporal profile of the number
of events in each time bin, t, along the avalanche duration, T. For
a critical system, avalanche shapes are predicted to have a univer-
sal shape, which scales as a function of avalanche duration, with a
scaling exponent, b (Eq. 11). Avalanche shapes before and after
collapse are depicted in Figure 4B (non-IEA: bottom left, IEA:
bottom right). The dependence of the scaling factor on the ava-
lanche duration is shown in Figure 4B, displaying a power law
with an exponent of 0.33 for both non-IEA (top left panel) and
non-IEA (top right panel). Notably, although the same scaling
exponent was found for non-IEA and IEA periods, the avalanche
shapes themselves have higher amplitudes at IEA versus non-IEA
(Fig. 4B, bottom). The scaling of avalanche shapes further
strengthens the evidence for critical dynamics. Nonetheless, the

scaling exponents derived from the shape collapse analysis are
predicted to obey the following relationship (Sethna et al., 2001;

Friedman et al., 2012):
	� 	 1

	� 	 1
� b 
 1. In our data, the right

side is �1.3 for both non-IEA and IEA periods, whereas the left
side is �1.9 and 2.7, respectively. Therefore, not only that the
two sides of the equations differ, the obtained scaling of ava-
lanche shape collapse does not disclose the deviations of IEA
periods from the critical point (� � �1.5, � � �2.0) and from
the non-IEA periods. Indeed, the above analyses have shortcom-
ings: (1) intermixing data of several subjects, which may differ in
temporal organization of neuronal avalanches and distance from
critical dynamics, may obscure our results; (2) the model inver-
sion of the duration distributions suffers from an underrepresen-
tation at short durations and from a narrow effective range in
which a power law regimen can exist; and (3) the shape collapse
analysis was applied to only a relatively small range of durations
and the obtained shapes were not smooth, suggesting sensitivity
to the relatively small amount of avalanches used in averaging
over these temporal profiles. Nonetheless, the scaling exponent
reported here is in agreement with previous results (Arviv et al.,
2015). Although noisy at longer durations, the avalanche shape
does not seem to be parabolic (Friedman et al., 2012). Rather, it
has a piecewise behavior with a flat part between initiation and
termination. As reported previously, the initiation and the termi-
nation of avalanches are correlated and reflect the gain of the
system, whereas the middle part may reflect different dynamical
processes (Arviv et al., 2015). The new findings presented here
suggest that deviations from criticality, which are reflected in the
gain of the system, may not necessarily be reflected in the scaling
relationships of avalanche shapes. These findings call for further
investigation.

Deviations from critical dynamics are more pronounced
during short time intervals around discharges
Overall, it seems that neuronal-avalanche-based metrics distin-
guish IEA periods from non-IEA periods, both at the interpatient
level and, even more so, without exception at the intrapatient
level. Indeed, by heuristically counting the number of IEDs as
extrema within IEA periods (see Materials and Methods), we
found a significant correlation between the number of interictal
epileptiform discharges across 2, 5, and 7 min and �, 
, and �
(e.g., the correlations at 7 min segmentation were as follows: �:

R	 � 0.83 � 0.07 [range: 0.71 to 0.93], p 
 10�3 for all
subjects; 
: 
R	 � 0.75 � 0.08 [range: 0.61 to 0.91], p 
 10�7

for all subjects; �: 
R	 � 0.84 � 0.09 [range: 0.64 to 0.95], p 

0.01 for all subjects, Bonferroni corrected). Therefore, specifi-
cally focusing on IED transients is important for examining the
degree of deviation from criticality at the short time scale of dis-
charges within the IEA. For this purpose, the recordings of 5
subjects with substantial amount of epileptiform activity were
examined at varying interval lengths surrounding discharges.
These intervals were defined as new IEAs, ranging from �200 ms
(Fig. 5B, brown line) to �10 ms (Fig. 5B, green line) around each
identified discharge. Accordingly, the new non-IEAs included all
cascades outside the corresponding intervals around the IEDs
(Fig. 5B, dashed line of same color as the color associated with the
corresponding new IEA of each interval length). The cascade size
distributions from a representative subject are shown in Figure
5B [the orange lines denote analysis according to the defini-
tion of the expert (M.M.) of IEA]. At increasingly narrower
time intervals around the discharge, the deviation from a
scale-free behavior became more pronounced, resembling a
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bimodal distribution. Thus, deviation from scale-free behavior
was concentrated around very short IED transients. Avalanches
of a specific size range became more frequent, substantially sur-
passing the expected probability from a power law distribution.
Moreover, when shifting the �10 ms interval relative to the IED
at �25 ms steps, such that the IEDs will not be at the center, only
at intervals proximate and after the IEDs (�25 ms), the deviation
from scale-free behavior remained pronounced, reflecting tem-

poral asymmetry with respect to the IED. The correlation be-
tween the probability of large-size avalanches and the temporal
proximity to IEDs is also presented in Figure 5C. Grouping ava-
lanches by their temporal separation from the nearest IED shows
that, at close proximity to an IED, there is a substantial peak in the
mean size of avalanches, which remains above baseline for tens of
milliseconds (Fig. 5C, right). Noticeably, the baseline of mean
avalanche size over IED periods is by itself larger than over non-

Figure 5. Effect of spatial and temporal extent on avalanche size distributions in an individual patient. A, Cascade size distributions of IEA periods (solid lines) and non-IEA periods (broken lines)
for subsamples of the sensor array. Line color represents the number of sensors in the analysis: lime, 38; green, 62; light blue, 125; dark pink, 206; orange, 248 sensors. Bottom left insets, Diagrams
of the sensor array with colored subsamples. The cutoff occurred at larger size avalanches for IEA periods than for non-IEA periods in each subsample of the sensor array, reflecting the manifestation
of larger size avalanches under the same spatial extent. B, Cascade size distributions for different intervals around epileptiform discharges. The IEA periods were sequentially concentrated around
the epileptiform discharges, focusing on the following intervals around the discharge peak [color, interval (�ms)]: green, 10; cyan, 20; azure, 30; blue, 40; dark blue, 50; purple, 75; violet, 100;
magenta, 125; pink, 150; red, 175; brown, 200. As the interval around IEDs became narrower, the IEA avalanche size distributions demonstrated both an increasingly visible “bump” around
characteristic avalanche sizes (resembling a bimodal distribution) and a reduction of small avalanche probabilities. Black dashed line indicates a reference power law (� � �1.5). The non-IEA
periods, now comprising all the excluded activity outside the IEA intervals, are indicated by dashed lines of the same colors as the corresponding IEA of narrow intervals. Substantial deviation from
scale-free behavior appeared only for very short time scales of tens of milliseconds. Inset, Running the exact same procedure but focusing on intervals surrounding extrema within non-IEA periods
did not result in a similar bump. The extrema were identified using the same criteria as those for the IEA periods. C, Mean size of avalanches as a function of temporal proximity to an IED (right panel,
orange), or to its analogously detected equivalent during non-IEA periods (left panel, cyan). Line indicates the mean. Shadowed area represents � SEM
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IEA periods. This may be affected by IED clustering, although the
analysis was limited to relatively short time intervals, of plus or
minus the order of magnitude of the time difference between IED
events. This analysis also reveals temporal asymmetry, as the larg-
est mean avalanche size is obtained at a few milliseconds shift in
time from the IED. This temporal asymmetry is partially due to
the definition of the IED as the peak at the first participating
sensor. Defining the IED at the last participating sensor, or even
more so at the last suprathreshold event, decreased the asymme-
try but did not eliminate it. Temporal asymmetry may suggest
that the deviation from criticality is more prolonged after the IED
than before and that it reflects some asymmetry in the underlying
dynamical processes (fast ignition and slow decay). However,
because of the large number of IED events required, these analy-
ses could only be applied to very few subjects. Thus, further study
is needed to draw general conclusions about asymmetry from
these data and there may be individual differences.

Neuronal avalanches during IEA periods are
more stereotypical
The stereotypical nature of epileptiform activity may be revealed
throughout the collected avalanches, not only in terms of their
size range but also in terms of the spatial identity of the partici-
pating sensors, which may potentially reflect the activation of
epileptic networks. One way to quantify this is by examining
whether avalanches tend to involve the same groups of sensors or
different combinations of sensors. Given the n most active sen-
sors, characterized by the highest event rate, we calculated the
percentage of avalanches that involved these sensors among all
avalanches of size n or more. We repeated this analysis for differ-
ent values of n and applied it separately to IEA and non-IEA
periods. Figure 6A shows that, during IEA periods, there is a
much higher prevalence of avalanches involving the most active
sensors (p 
 10�8, for 1, p 
 10�7, for 2, p 
 10�6, for 3 and 5,
p 
 10�5 for 10, p 
 10�4 for 20, p � 0.002 for 30 and with a
significance tendency p � 0.08 for 50 sensors in combination,
Bonferroni corrected). This higher propensity of coactivation of
leading sensors (within avalanches) suggests a more spatially ste-
reotypical activity during IEA. Moreover, by focusing on two-
sensor combinations within an avalanche, and calculating for
each pair of sensors the probability to co-participate in an ava-
lanche during IEA periods versus the probability during non-IEA
periods, it became apparent that the corresponding probability
matrices displayed different patterns (Fig. 6C, left panels, an ex-
ample from a single subject). Of particular interest are pairs of
sensors that have high probability to coparticipate in avalanches.
Therefore, we converted the probability matrices into binary ma-
trices, assigning 1 to pairs with a probability that is greater than
the mean � 1 SD, and zero otherwise. Then, based on these
matrices, we calculated the degree for each sensor (i.e., the num-
ber of connections to that sensor) (Rubinov and Sporns, 2010).
The mean degree per sensor across patients was significantly
higher during IEA periods than during non-IEA periods (IEA,
36.1 � 7.5; non-IEA, 27.7 � 2.8; higher at each patient; controls,
28.7 � 3.3). Accordingly, the degree density per patient (i.e., the
percentage of existing connections from possible connections)
was significantly higher during IEA periods than during non-IEA
periods and significantly higher than in healthy control subjects
(IEA, 14.6 � 3.1%; non-IEA, 11.2 � 1.1%, p 
 0.001; higher at
each patient; controls, 11.7 � 1.3%, p 
 0.005; non-IEA periods
do not differ significantly from values for healthy control sub-
jects, p � 0.6) (Fig. 5B, bottom panel) (Rubinov and Sporns,
2010). Because Levene’s test resulted in the rejection of the null

hypothesis of equal variances, the reported p values are those of a
Welch ANOVA with a Games–Howell test. Furthermore, the dis-
persion of the degree distribution across sensors, measured as the
SD of the distribution of each patient, was higher for IEA periods
than for non-IEA periods across patients (IEA, 29.1 � 13.5; non-
IEA, 12.0 � 6.3, p 
 0.001; higher at each patient; controls:
13.5 � 5.4, p 
 0.001; non-IEA do not differ significantly from
control, p � 0.7) (Fig. 6B, top). Testing the homogeneity of vari-
ances by Levene’s test resulted in the rejection of the null hypoth-
esis of equal variances for 14 of 19 patients (p 
 0.05). Figure 6C
(middle panels) shows the degree distribution from a single
patient (for clarity, each distribution was divided by its mean).
Clearly, the degree distribution is more spread out during IEA
and more centered near the mean during non-IEA periods.
Plotting the degree associated with each sensor as a topo-
graphic map (Fig. 6C, right panels) demonstrated the realiza-
tion of relatively extreme values of both high and low degrees
and revealed a relation between sensors of high degree and
epileptic networks. As apparent from Figure 6C (top right),
this patient has a right dorsolateral frontal epileptic focus. In
contrast, the topographic maps of non-IEA periods revealed a
narrower range of degree. This patient, as most control sub-
jects and other patients during non-IEA periods, exhibited a
relatively higher degree at medial frontal and medial posterior
sites (Fig. 6C).

Discussion
Accumulating evidence supports the hypothesis that healthy
brain dynamics maintain proximity to a critical state (for review,
see Massobrio et al., 2015). To examine the sensitivity of metrics
of criticality to changes in the balance of excitation and inhibition
in epilepsy, we evaluated deviations from critical brain dynamics
in patients with refractory epilepsy outside of seizures.

Neuronal avalanches in epilepsy: an across-subject outlook
We found a tendency among the epilepsy patients toward higher
values of the branching parameter (i.e., of the neural gain) and
toward shallower avalanche size distributions compared with the
healthy control subjects. Within each group, there was a large
variability in the neuronal avalanche metrics, which may reflect
differences in the individual distance from critical dynamics or
variations in the physical constraints of the measurements, such
as the size and position of the head within the MEG helmet (the
latter option is the less likely, because we found no differences in
the calculated neuronal avalanche metrics between children and
adults; Table 2). Nonetheless, despite this variability, the differ-
ences between the two groups were significant. Antiepileptic
drugs, with which all patients in this study were treated, tend to
normalize the EIB and may reduce the density of interictal epi-
leptiform elements (Duncan, 1987; Khachidze et al., 2010).
Nonetheless, the patients in this study have drug-resistant epi-
lepsy; thus, in these patients, antiepileptic drugs do not fully con-
trol seizures. The influence of antiepileptic drugs would diminish
the difference between groups. The fact that this difference is still
present indicates that the antiepileptic drugs only partially influ-
enced the MEG traces. Assigning the obtained deviations to epi-
lepsy was further supported by examining periods of IEA and
non-IEA periods separately. The division between the epilepsy
patients and the healthy subjects became much more pro-
nounced when we focused on IEA periods, suggesting a shift
toward an excitation-dominated state. Nevertheless, we note that
the avalanche analysis and the branching process description, by
themselves, cannot directly determine the neuronal populations
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Figure 6. Stereotypical characteristics of collected neuronal avalanches from IEA periods. The spatial identity of the participating sensors in the collected avalanches may reflect the stereotypical
nature of epileptiform activity. A, Graph represents a comparison between the percentage of avalanches � SEM during IEA periods and during non-IEA periods that consist of a combination (of
various sizes between 1 and 50) of MEG sensors that have highest event rate at the specific period type. Red asterisks indicate significance. Accordingly, the sensors of highest rate are more likely to
be activated together in cascades within IEA versus non-IEA periods, suggesting a stereotypical and dominant pattern of activations within cascades of IEA periods. B, The mean degree density
(fraction of possible connections) � SEM and mean SDs � SEM of degree distribution are represented in bar plots (violet and pink bars, respectively). Particularly, for each patient with epilepsy,
degree density and SD for IEA were higher than for non-IEA. Asterisks indicate significance. C, Top row, IEA periods. Bottom row, Non-IEA periods for a single subject. Left panels, The matrices
representing the probabilities for each pair of sensors to participate in an avalanche. The probabilities differed between IEA and non-IEA periods, showing different patterns of probabilities across
sensor pairs. Middle panels, Histograms of the degree calculated for each sensor based on the binary versions of the left column matrices (conversion was based on assigning 1 only to pairs with
probability that is greater than the mean � SD). For this patient, the mean � SD per sensor was as follows: during IEA periods, 30.1 � 31.1; during non-IEA periods, 29.0 � 13.7. Notably, the IEA
histogram was more dispersed than the non-IEA histogram (according to Levene’s test, the assumption of homoscedasticity was not met). Right panels, Topographic map plots of the assigned
degree of each sensor. The degrees of IEA periods reached higher values and were related to the epileptic networks in this patient.
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or mechanisms responsible for the observed changes. For exam-
ple, the effect of increased synaptic excitation may be equivalent
to that of decreased inhibition. However, in general, supercritical
dynamics is likely to correspond to an excitation-dominated state,
whereas subcritical dynamics is likely to reflect an inhibition-
dominated state, whatever the nature of the precise underlying
mechanisms. Several theoretical physiological models relate the
emergence of seizure activity to mechanisms involving changes in
the underlying excitatory and/or inhibitory dynamics (da Silva et
al., 2003; Breakspear et al., 2006; Jirsa et al., 2014). Furthermore,
differences in network connectivity, short-term depression and
facilitation, single neuron excitability, and additional factors can
also determine whether the network will be subcritical, critical, or
supercritical. Studying more biologically detailed models using
the analyses proposed here could constrain the possible mecha-
nisms and provide new insights into the changes that take place.

Despite the higher values of the branching parameter, the av-
alanche size distributions during IEA periods still displayed
power law behavior, albeit with higher exponents. This finding
suggests that scale-free behavior can still be maintained even
when the balance is perturbed. We found substantial deviations
from scale-free behavior only at very short time intervals around
the interictal epileptiform discharges themselves. Presumably,
during seizures, an excessive and sustained hypersynchronous
discharge activity may demonstrate a more durable bimodal be-
havior, similar to the behavior of cortical tissues under pharma-
cologically induced shifts in the EIB (Shew et al., 2009). If so, this
view may support a continuous outlook between the isolated
abnormal waveforms and seizures (Fisher et al., 2014).

The neuronal avalanche metrics during non-IEA periods in
the epilepsy patients were close to those expected from a critical
branching process (� � �1.5, 
 � 1, � � 1). However, they
demonstrated a small but significant positive difference from the
brain dynamics of the healthy subjects in terms of a longer mean
duration of neuronal avalanches and a higher mean power law
exponent. In contrast, there were no significant differences in the
event rate or in the branching parameter. Notably, several studies
demonstrated that antiepileptic drugs influence the spectrum of
background activity (Neufeld et al., 1999; Clemens et al., 2007;
Cho et al., 2012), yet such spectral differences may specifically
relate to good (and not to poor) drug responsiveness (Kim et al.,
2015). Accordingly, the differences in neuronal avalanche met-
rics between control subjects and non-IEA periods in patients
were minimal.

The small differences between non-IEA periods and the brain
dynamics of the healthy subjects may not necessarily reflect a
divergence from critical dynamics in patients with epilepsy when
outside of IEA. A possible source of the observed differences may
be a suboptimal division of our datasets between IEA and non-
IEA periods. An additional factor that affects the neuronal ava-
lanche analysis is prolonged wakefulness (Meisel et al., 2013). The
epilepsy patients in our study had been instructed not to sleep
during the day so as to increase the yield of IEDs during the clinic
visit in the evening (Pillai and Sperling, 2006). Thus, although
these patients were not sleep deprived, there may have been up to
a few hour dissimilarity in sustained wakefulness before MEG
recordings between patients and control subjects, which may ac-
count for the small difference between the neuronal avalanche
distributions. Sustained wakefulness was shown to affect neuro-
nal avalanche metrics, demonstrating, for example, an increase in
the branching parameter, �, with time awake (Meisel et al., 2013).
The significance of this result was shown while comparing the
mean over the first 9 h awake to the mean over 30 –39 h awake.

Nonetheless, the � trace (with 3 h resolution) clearly indicates
that the substantial variation is associated with approaching sus-
tained 24 h awake. Accordingly, here, the potential difference
between patients and control subjects for up to a few additional
hours of wakefulness should amount to minute differences, if
any. This is in agreement with our findings.

Neuronal avalanches in epilepsy: individual differences
Overall, our findings suggest that IEA periods, as opposed to
non-IEA periods, deviate from the critical dynamics associated
with healthy cortical function and that variations in the neuronal
avalanche metrics are correlated with epileptiform activity. De-
spite substantial across-subject variability in neuronal avalanche
metrics, we saw a consistent, without exception, intrasubject de-
viation in neuronal avalanche metrics between the IEA and non-
IEA periods. Accordingly, within each individual, IEA periods
deviated toward the supercritical regimen in all measures. Thus,
it may be possible to monitor the instantaneous distance from a
critical state and deviations in EIB relative to the patient-specific
scale. Adopting this framework may open up new prospects for
diagnosis and treatment of the disease through personalized
medicine.

Additionally, we were able to demonstrate that the collected
avalanches during IEA have stereotypical spatial patterns, in ac-
cordance with the activation of specific epileptic networks of the
individual. Epileptic networks give rise to propagating synchro-
nized discharges, which seem to be successfully captured by the
spatiotemporal nature of neuronal avalanches. If the links be-
tween each pair of sensors are defined as their probability to
coparticipate in an avalanche, the connectivity matrices of IEA
periods versus non-IEA periods dissociate between abnormal
connectivity (of disperse degree distribution and with nodes of
significantly higher degrees) to a relatively normal connectivity.
Resting state activity reflects functional networks that are corre-
lated with the underlying anatomical connectivity (Hagmann et
al., 2008; Greicius et al., 2009) and may differ between healthy
subjects and patients with epilepsy (Luo et al., 2011; Wang Z. et
al., 2011). In previous work, we showed that the brain dynamics
of healthy subjects maintain an individual-specific operation
point in a phase-space characterized by the (�, 
, �) metrics, as
each individual revealed a high consistency across evoked and
resting-state activity (Arviv et al., 2015). Nonetheless, the spatio-
temporal patterns of neuronal avalanches that were manifested
under such similar dynamical constraints were substantially dif-
ferent between the two cognitive states (Arviv et al., 2015). This
implies that the spatiotemporal patterns of neuronal avalanches
carry additional information, which could be harnessed in future
studies of abnormal connectivity in the epileptic brain.

Neuronal avalanches in epilepsy: integration into the state of
the art
The present results suggest that, in patients with drug-resistant
epilepsy, there is a deviation from the critical branching process
description, particularly at temporal and spatial proximity to ep-
ileptiform discharges. These results accord with those of previous
studies exploring various metrics within the criticality frame-
work. For instance, Hobbs et al. (2010) analyzed local field po-
tential activity recorded by microelectrode arrays from cortical
tissues removed from patients with epilepsy. They demonstrated
both a bump in the avalanche size distribution over relatively
large-size avalanches and a correlation between the branching
parameter and the firing rate that was restricted to periods of
elevated firing rate (Hobbs et al., 2010). Previously, the scaling
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exponents of neuronal avalanches and long-range temporal cor-
relations were shown to be highly correlated in healthy brain
dynamics (Palva et al., 2013). In patients with epilepsy, intracra-
nial EEG recordings provided evidence of robust power law scal-
ing of long-range temporal correlations, with higher scaling
exponents in the seizure onset zone, even during interictal peri-
ods; these findings suggest more persistent temporal correlations,
with slower decay, in epileptogenic regions (Parish et al., 2004;
Monto et al., 2007). Hence, the framework of critical dynamics
offers novel viewpoints that may provide mechanistic insights
into this neurological disease (Monto et al., 2007).

Another illuminating aspect is the relationship between epi-
lepsy and sleep. Sleep, particularly deep NREM sleep, increases
IEA and certain seizure types, yet, REM sleep seems to suppress
seizures (Bazil, 2000; Méndez and Radtke, 2001; Kotagal and
Yardi, 2008). Using neuronal avalanche analysis from intracra-
nial depth electrodes in epilepsy patients during seizure-free
nights, significantly larger and longer avalanches were detected
during NREM sleep than while awake or during REM sleep (Pri-
esemann et al., 2013). Sleep deprivation also increases the occur-
rence of epileptiform discharges as well as seizures (Pillai and
Sperling, 2006; Kotagal and Yardi, 2008). Correspondingly, the
probability for larger cascade sizes and branching parameter was
shown to increase during sustained wakefulness of over 24 h
awake (Meisel et al., 2013). The current study complements this
important perspective by showing that IEA is related to deviation
from criticality toward supercritical dynamics and that ava-
lanches metrics are correlated with the propensity for IEDs.

Moreover, recently, the hypercortical excitability of sleep-
deprived healthy subjects, particularly when selectively deprived
of rapid eye movement sleep, was demonstrated by using trans-
cranial magnetic stimulation (Huber et al., 2013; Placidi et al.,
2013). Here, we were able to demonstrate that the hyperexcitabil-
ity of IEA is related to deviations from critical dynamics, thus
providing additional support to the association between critical
dynamics and EIB (Shew et al., 2009; Poil et al., 2012). Conse-
quently, these findings may provide means to quantitatively as-
sess changes in EIB based on noninvasive recordings from
humans, which does not rely on external stimulation. Character-
izing and monitoring these changes are of high importance for
diagnosis and treatment of the disease.
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source imaging of focal epileptic activity: a synopsis of 455 cases. Brain
126:2396 –2405. CrossRef Medline

Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ (2009) Bayesian
model selection for group studies. Neuroimage 46:1004 –1017. CrossRef
Medline

Tal I, Abeles M (2013) Cleaning MEG artifacts using external cues. J Neu-
rosci Methods 217:31–38. CrossRef Medline

Wang G, Worrell G, Yang L, Wilke C, He B (2011) Interictal spike analysis of
high-density EEG in patients with partial epilepsy. Clin Neurophysiol
122:1098 –1105. CrossRef Medline

Wang Z, Lu G, Zhang Z, Zhong Y, Jiao Q, Zhang Z, Tan Q, Tian L, Chen G,
Liao W, Li K, Liu Y (2011) Altered resting state networks in epileptic
patients with generalized tonic-clonic seizures. Brain Res 1374:134 –141.
CrossRef Medline

Wendling F, Hernandez A, Bellanger JJ, Chauvel P, Bartolomei F (2005)
Interictal to ictal transition in human temporal lobe epilepsy: insights
from a computational model of intracerebral EEG. J Clin Neurophysiol
22:343–356. Medline

World Health Organization (2015) Epilepsy. http://www.who.int/mediacentre/
factsheets/fs999/en/.

12292 • J. Neurosci., November 30, 2016 • 36(48):12276 –12292 Arviv et al. • Deviations from Critical Dynamics in Epilepsy

http://dx.doi.org/10.1093/cercor/bhl049
http://www.ncbi.nlm.nih.gov/pubmed/16908492
http://dx.doi.org/10.1097/00002826-199903000-00003
http://www.ncbi.nlm.nih.gov/pubmed/10202602
http://dx.doi.org/10.1016/j.seizure.2009.07.002
http://www.ncbi.nlm.nih.gov/pubmed/19656691
http://dx.doi.org/10.1155/2011/156869
http://www.ncbi.nlm.nih.gov/pubmed/21253357
http://dx.doi.org/10.1073/pnas.1216855110
http://www.ncbi.nlm.nih.gov/pubmed/23401536
http://dx.doi.org/10.1016/j.neuroscience.2004.03.002
http://www.ncbi.nlm.nih.gov/pubmed/15120866
http://dx.doi.org/10.1016/j.neuroimage.2011.07.039
http://www.ncbi.nlm.nih.gov/pubmed/21864690
http://dx.doi.org/10.1016/j.neuroimage.2004.03.026
http://www.ncbi.nlm.nih.gov/pubmed/15219588
http://dx.doi.org/10.1016/j.sleep.2012.11.020
http://www.ncbi.nlm.nih.gov/pubmed/23343775
http://dx.doi.org/10.1523/JNEUROSCI.5990-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22815496
http://dx.doi.org/10.1371/journal.pcbi.1002985
http://www.ncbi.nlm.nih.gov/pubmed/23555220
http://dx.doi.org/10.1111/j.1535-7511.2006.00144.x
http://www.ncbi.nlm.nih.gov/pubmed/17260058
http://dx.doi.org/10.1016/j.neuroimage.2009.10.003
http://www.ncbi.nlm.nih.gov/pubmed/19819337
http://dx.doi.org/10.1038/35065675
http://www.ncbi.nlm.nih.gov/pubmed/11258379
http://dx.doi.org/10.1523/JNEUROSCI.3864-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/20007483
http://dx.doi.org/10.1177/1073858412445487
http://www.ncbi.nlm.nih.gov/pubmed/22627091
http://dx.doi.org/10.1523/JNEUROSCI.4286-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23595765
http://dx.doi.org/10.1016/j.neulet.2011.03.070
http://www.ncbi.nlm.nih.gov/pubmed/21458535
http://dx.doi.org/10.1093/brain/awg239
http://www.ncbi.nlm.nih.gov/pubmed/12876149
http://dx.doi.org/10.1016/j.neuroimage.2009.03.025
http://www.ncbi.nlm.nih.gov/pubmed/19306932
http://dx.doi.org/10.1016/j.jneumeth.2013.04.002
http://www.ncbi.nlm.nih.gov/pubmed/23583420
http://dx.doi.org/10.1016/j.clinph.2010.10.043
http://www.ncbi.nlm.nih.gov/pubmed/21126908
http://dx.doi.org/10.1016/j.brainres.2010.12.034
http://www.ncbi.nlm.nih.gov/pubmed/21167825
http://www.ncbi.nlm.nih.gov/pubmed/16357638

	Deviations from Critical Dynamics in Interictal Epileptiform Activity
	Introduction
	Materials and Methods
	Results
	Comparing patients with epilepsy and healthy control subjects
	Comparing IEA and non-IEA periods of interictal activity
	Neuronal avalanches during IEA periods are more stereotypical
	Discussion
	Neuronal avalanches in epilepsy: an across-subject outlook

	Neuronal avalanches in epilepsy: individual differences
	References

