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Abstract

Significance: Our current knowledge of the pathophysiology and molecular mechanisms causing psychiatric
disorders is modest, but genetic susceptibility and environmental factors are central to the etiology of these
conditions. Autism, schizophrenia, bipolar disorder and major depressive disorder show genetic gene risk overlap
and share symptoms and metabolic comorbidities. The identification of such common features may provide insights
into the development of these disorders.
Recent Advances: Multiple pieces of evidence suggest that brain energy metabolism, mitochondrial functions
and redox balance are impaired to various degrees in psychiatric disorders. Since mitochondrial metabolism and
redox signaling can integrate genetic and environmental environmental factors affecting the brain, it is possible
that they are implicated in the etiology and progression of psychiatric disorders.
Critical Issue: Evidence for direct links between cellular mitochondrial dysfunction and disease features are
missing.
Future Directions: A better understanding of the mitochondrial biology and its intracellular connections to the
nuclear genome, the endoplasmic reticulum and signaling pathways, as well as its role in intercellular com-
munication in the organism, is still needed. This review focuses on the findings that implicate mitochondrial
dysfunction, the resultant metabolic changes and oxidative stress as important etiological factors in the context
of psychiatric disorders. We also propose a model where specific pathophysiologies of psychiatric disorders
depend on circuit-specific impairments of mitochondrial dysfunction and redox signaling at specific develop-
mental stages. Antioxid. Redox Signal. 31, 275–317.
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I. Introduction

Psychiatric disorders are conditions that affect the
thoughts, emotions, and behaviors of an individual, caus-

ing difficulties in daily life activities, work accomplishments,
and social interactions. These conditions are considered the
result of a complex interplay between genetic and environ-
mental factors (Fig. 1). Although these disorders affect a
significant proportion of the world’s population (19, 119,
244, 376), clinical care remains difficult in terms of diagnosis
and treatment. For the past 40 years, psychiatric disorder
classification in distinct entities has been applied to clinical
practice and in genetics and brain imaging research stud-
ies (10). Currently, treatment strategy is guided by sets of
symptoms along with the clinical course manifested by the
patient. However, symptoms are common to different con-
ditions or they do not fit neatly into categories in some pa-
tients or symptoms may progress in time, causing different
diagnoses to be given to the same patient. Adding to these
challenges is the extremely slow progress in the development
of new treatments as compared with other medical fields.

Some research is moving away from the categories ap-
proach to psychiatric illness and converging toward more
fundamental mechanisms of brain development and neuronal
connectivity. In 2010, Craddock and Owen proposed a linear
succession of five clinical syndromes (mental retardation/
intellectual disability, autism spectrum disorder [ASD],
schizophrenia [SZ], schizoaffective disorder, and bipolar/
unipolar mood disorder) based on opposing gradients of
neurodevelopment and affective pathology (83). This model
postulates stochastic combinations of genetic variations and
environmental elements influencing cellular functions and pos-
sibly determining abnormal neuronal development and biology,
resulting in clinical symptoms.

The genetics of these disorders is complex. Current hy-
pothesis suggests that an unknown number of genetic risk
variants with small-size effects distributed in networks cod-
ing for functional pathways may be at the origin of psychi-
atric disorders (84, 95, 135, 444). Several studies showed
evidence of susceptibility loci or copy number variants
(CNVs) that are common across mental disorders and evi-
dence of specificity of susceptibility genes (51, 85, 261).
Recently, Gandal et al. analyzed the published gene-
expression data from cerebral cortex across five psychiatric
disorders (ASD, SZ, bipolar disorder [BD], major depressive

disorder [MDD], and alcoholism) and showed the existence
of disorder-specific modules of gene coexpression and
common genetic factors that trigger a considerable propor-
tion of the gene-expression overlap between the disorders
(140). In addition, the data suggest that these genetic effects
are mainly indirect through signaling cascades involved in
development and cellular communication. The results from
this study remarkably uncovered how individual and shared
genetic effects and environmental factors might lead to a
range of symptoms. Interestingly, the observed gradient of
synaptic gene down-regulation is compatible with the dis-
order spectrum proposed by Craddock and Owen (83, 140).

FIG. 1. The dimensional model proposes that psychi-
atric disorders are a spectrum of clinical syndromes with
overlapping causes, biological dysfunctions, and symp-
toms. Stochastic arrangement of genetic de novo mutations
or common variations is challenged by environmental fac-
tors and may cause transcription and metabolic changes. If
these changes affect brain development, circuitry, and
function, they lead to psychiatric symptoms. The spectrum
of clinical syndromes is illustrated by a light spectrum.
ASD, autism spectrum disorder; BD, bipolar disorder;
MDD, major depressive disorder; SZ, schizophrenia. Color
images available online.
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Mitochondria are sophisticated organelles that respond to
internal and external cues by controlling central functions
in the cell, such as energy metabolism, redox status, retro-
grade signaling, calcium (Ca2+) homeostasis, and apoptosis.
Multiple pieces of evidence suggest that brain energy me-
tabolism, mitochondrial functions, and redox balance are
impaired to various degrees in psychiatric disorders. Since
mitochondrial metabolism and redox signaling can integrate
genetic and environmental factors affecting the brain, it is
possible that these downstream mechanisms may act as key
regulators in the plethora of symptom gradients observed in
psychiatric conditions (Fig. 2). At the clinical level, psychi-
atric disorders share common physical comorbidities that are
associated with alterations in circadian rhythm (such as sleep,
feeding, and activity/rest phases) and metabolism (such as
diabetes and obesity) (23, 289, 323), both of which are clo-
sely regulated by mitochondria and redox balance. For in-
stance, Karatsoreos et al. showed that shifting mice to a 20-h
light/dark cycle resulted in weight gain, hormone changes,
reduction in the complexity of the neuronal network in the
prelimbic prefrontal cortex, and behavioral modifications
(211). At the cellular level, mitochondrial oxidative phos-
phorylation (94, 339, 391), redox changes (226), and anti-
oxidant defense (470) are not only regulated in a circadian
manner but also signal back to the core clock.

Here, we provide a comprehensive review exploring the
multifaceted mitochondrial roles and interactions with other
organelles and redox mechanisms in the context of normal
brain function and associated with the major psychiatric
conditions, ASD, SZ, BD, and MDD. It is our aim to provide
an update on current knowledge and controversies and to
highlight the research relevant to the context of psychiatric
disorders.

II. Clinical Features and Metabolic Endophenotypes
of Psychiatric Disorders

A. Autism spectrum disorder

The global prevalence of autism and other pervasive de-
velopmental disorders is estimated to be around 62 in 10,000
children (119), although there is still lack of evidence from the
majority of the world’s population. An ASD diagnosis is de-
fined by deficits in communication and social interactions
accompanied by restrictive and repetitive behaviors (11).
Though the rate of diagnosis has increased over the past two
decades, current diagnostic methods depend on the appearance
of behavioral abnormalities (131). There are some cases of
ASD accompanied by syndromes of known molecular eti-
ology, such as the fragile X syndrome, that are called syn-
dromic ASD (490). However, these syndromes can only be
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FIG. 2. Proposal for bioener-
getics, redox and metabolism al-
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and redox regulation are affected in
psychiatric disorders is discussed in
the text. ER, endoplasmic reticu-
lum; mtDNA, mitochondrial DNA;
nDNA, nuclear DNA; OXPHOS,
oxidative phosphorylation; ROS, re-
active oxygen species.
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recognized through genome-wide testing that is not hypothesis
driven (e.g., microarray or whole-exome sequencing) (127).

Although a clinical genome-wide association study
(GWAS) using ASD cohorts has generally not yielded con-
sistent results (415), considerable progress has been made
by genetically analyzing ASD families. Whole-exome se-
quencing and CNV analysis have uncovered rare de novo
mutations in patients with ASD (147, 394). These mutations
are extremely heterogeneous, and none account for more than
1% of ASD cases (102). In parallel, recent advances in the
field of systems biology have caused a paradigm shift in the
biomedical sciences, from single-gene causation models to
pathway-perturbation models (95). Gene-network analysis of
high-confidence risk variants in ASD families has implicated
molecular processes that are important for human fetal cor-
tical development (335, 472). However, many of these
identified gene networks are involved at multiple stages of
development and in a variety of neuronal cell types (such as
neural stem cells and immature neurons).

Many different interventions and treatments have been
proposed and implemented for ASD. Unfortunately, most of
these treatments have not been adequately evaluated, making
an evidence-based approach to ASD treatment difficult. Early
psychosocial interventions are the most frequently evaluated
for preschool children with ASD (160, 214, 344, 363, 432).
Pharmacological interventions, such as risperidone and ar-
ipiprazole, are used mostly for patients with moderate to
severe behavioral symptoms (99, 185, 386). There is very
little evidence for interventions aimed at the core symptom of
ASD, such as restricted and repetitive behavior, including
antipsychotic medication (92, 344, 386).

B. Schizophrenia

SZ is a devastating psychiatric disorder affecting *70
million people worldwide (about 1% of the global popula-
tion) (376). People with the disorder demonstrate a range of
symptoms, including positive symptoms, such as delusions
and hallucinations, and negative symptoms, such as with-
drawal from surroundings, avolition, and flattened affect. SZ
individuals often also show cognitive impairments, namely
difficulty with speech, concentration, and thought organiza-
tion. The accumulation of symptoms represents a heavy
burden for individuals with SZ and they are at higher risk for
suicide, substance abuse, and homelessness (376). Most cases
of SZ are diagnosed in adolescence or young adulthood, and
there is a strong neurodevelopmental component to SZ risk.
Brain imaging showed that SZ patients have smaller brains
and myelination defects (272).

Although evidence has established a genetic basis for SZ
for some time, with family and twin studies consistently
demonstrating high heritability (70, 184, 428), only recently
have specific genetic risk factors been conclusively identi-
fied. The identified genetic risk for SZ includes rare CNVs
and common variants, reflecting a cumulative risk of more
than 100 variants altogether (390). The current picture
emerging in the field indicates that there is not a one-to-one
Mendelian mapping between these SZ risk alleles and diag-
nosis but instead a number of genetic variants with small
effects, resembling a classic polygenic model (135, 444).

Antipsychotic medications in addition to cognitive and
behavioral therapies can help alleviate SZ symptoms; how-

ever, it is estimated that 20%–60% of patients remain resis-
tant to known treatments (295, 307).

C. Mood disorders: BD and MDD

Among the many mood disorders that exist, the most prev-
alent are BD and MDD. BD affects 1% (244) and MDD affects
11%–15% (48) of the population. BD is a debilitating condition
comprising cyclic shifts in mood and energy levels, resulting in
a disruption in the ability to carry out daily tasks. Mood states
range from elated and high-energy states, known as manic
episodes, to sad and low-energy periods, known as depressive
episodes. Manic episodes consist of symptoms such as inflated
self-esteem, decreased need for sleep, fleeting ideas, and in-
creased goal-directed activities. High-energy episodes that are
relatively mild in severity, lasting more than 4 days, are re-
ferred to as hypomanic episodes (11). In addition, a substantial
proportion of subjects with BD tends to experience mixed
episodes of both depressive and manic/hypomanic symptoms.

MDD is diagnosed by the presence of at least five symp-
toms, including depressed or sad mood; diminished interest in
pleasure or anhedonia; significant weight loss or weight gain;
insomnia or hypersomnia; fatigue; excessive feelings of
worthlessness or guilt; diminished ability to think or con-
centrate; and psychomotor agitation and recurrent thoughts of
death or suicidal ideas, for at least 2 weeks (11). Twin studies
estimate nearly 90% heritability for BD (244) and 40% heri-
tability for MDD (429). Theoretically, susceptibility alleles
may have large- or small-effect sizes and their frequencies are
either common or rare and, apart from single-nucleotide
variations in nuclear DNA, other mechanisms probably con-
tribute to inherited risk for disease, including mitochondrial
DNA (mtDNA) variation and epigenetic modifications (84).

Different types of psychosocial and pharmacological
treatment options are available for controlling and preventing
the symptoms of BD and MDD. Medications for BD usually
fall into one of three categories: classic mood stabilizers, an-
tipsychotics, and antidepressants. Treatment often involves a
combination of psychotherapy and mood-stabilizing agents
and/or atypical antipsychotics. Lithium (Li) is the most
commonly prescribed mood stabilizer and has proven to be
highly effective in reducing mania with milder effects on
depressive symptoms (144). For Li, among other targets, Wnt
signaling has been implicated in the therapeutic mechanism
(146, 175, 454). Valproic acid (VPA) and carbamazepine,
both antiepileptic drugs, are used to treat the manic or mixed
phases of BD (144). Alternative or augmented treatments to Li
include antipsychotics such as haloperidol, quetiapine, ar-
ipiprazole, olanzapine, and risperidone or antidepressants
(144). For MDD, antidepressants are used in combination with
various psychosocial therapies. There are numerous classes of
antidepressants, including selective serotonin reuptake inhib-
itors (SSRIs), selective norepinephrine reuptake inhibitors,
monoamine inhibitors, and tricyclic antidepressants. SSRIs
remain the most prescribed class of antidepressants and are a
primary treatment modality for depression (263).

D. Circadian rhythm and metabolism

An individual can tune in and adapt to the external envi-
ronment only by the synchronization of internal rhythms to
external ones. Circadian rhythms play a role in governing many
biological functions across multiple organs, including the brain
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(209). The suprachiasmatic nucleus (SCN) of the hypothal-
amus generates and synchronizes biological rhythms (such
as endocrine and neuronal) and metabolic signals in re-
sponse to light stimuli (418) (Fig. 3). The circadian signals,
in turn, entrain the peripheral clocks (296) that are found in
virtually every cell and organ and thus in different cerebral
structures, including those involved in neuropsychiatric
disorders.

Molecular oscillations result from a negative feedback be-
tween CLOCK (clock circadian regulator; or the related neu-
ronal Per-Arnt-Sim domain-containing protein 2, NPAS2),
BMAL1/ARNTL (aryl hydrocarbon receptor nuclear translo-
cator like), period (PER1–3), and cryptochrome (CRY1–2)
genes. The transcription factors CLOCK and BMAL1 het-
erodimerize and activate transcription of period and crypto-
chrome genes. PER and CRY proteins also form heterodimers
and are inhibitors of CLOCK and BMAL1 function. Another
set of core clock genes are nuclear receptors’ family members
REV-ERB (or the nuclear receptor subfamily 1 group D,
NR1D1–2) and ROR (or retinoic acid receptor-related orphan
receptors RORA-C). REV-ERBa/NR1D1 transcription is acti-
vated by BMAL1/CLOCK heterodimers and repressed by
CRY/PER heterodimers, resulting in circadian oscillations of
REV-ERBa. In turn, REV-ERBa represses BMAL1 transcrip-
tion. REV-ERBb/NR1D2 expression also oscillates in a circa-
dian fashion and can repress BMAL1 transcription (165).
RORA competes with REV-ERBa for binding of their shared
DNA-binding elements to the RORE response element in the
BMAL1 promoter, leading to BMAL1 expression being re-
pressed by REV-ERBa and activated by RORA. The oscillat-
ing expression of RORA and REV-ERBa in the SCN leads to the
circadian pattern of BMAL1 expression (4, 385). This REV-
ERBa/RORA feedback loop interconnects the positive and
negative limbs of the core circadian clock (Fig. 4).

Although the brain’s master clock SCN is entrained by
daily light-dark cycles, the dominant timing cue for periph-
eral clocks appears to be feeding time or availability of food
(Fig. 3). Disruption of clock function in the liver and pancreas

leads to impaired glucose homeostasis (246, 282, 381). Adi-
pocytes rhythmically release leptin, a neuroactive peptide that
regulates satiety through its actions centrally in the arcuate
nucleus of the hypothalamus (223). When leptin rhythms are
disrupted in mutant mice lacking PER1 and PER2 or both
CRY1 and CRY2, the animals show either extreme weight
gain or weight loss. These changes are mediated by rhythmic
behavior and feeding (223), highlighting the role of the cir-
cadian system as a co-ordinator of physiology across periph-
eral organs and the central nervous system.

The clock modulates metabolism, but the metabolic status
of the cell also influences the clock machinery. Although not
all peripheral tissues are entrained by feeding, there is clear
evidence that circadian clocks in the liver, adipose tissue,
muscle, and kidney are responsive to acute changes in nu-
trients and/or downstream signaling pathways involved in
energy supply (115). Restricted feeding can partially rescue
hepatic rhythmicity in CRY1–2 double knockout mice (460)
and kidney and liver rhythmicity in the forebrain/SCN-
specific BMAL1 knockout mice (198). Mice models of obe-
sity and diabetes have disrupted circadian expression of CLOCK
and its target genes, in addition to alterations in locomotor
activity, feeding pattern, and sleep regulation (202, 237).

Transcription studies have shown that many genes involved
in biosynthetic and metabolic processes are rhythmic, with their
expression changing throughout the circadian cycle (5, 232,
320, 333, 501). Interestingly, several of these genes encode rate-
limiting enzymes in essential metabolic pathways (159, 333).
Human plasma samples collected for 48 h revealed that a ma-
jority of metabolites (109 out of 171 metabolites) oscillate
during a complete 24-h wake/sleep cycle (91). Thus, for hu-
mans, most circulating metabolites display rhythmic diurnal
oscillation under normal physiological conditions. This rhyth-
micity likely helps to coherently communicate time of day to
tissues throughout the body, maintains tissue-specific synchro-
nization of peripheral clocks, and promotes efficient temporal
gating of circadian metabolic pathways (115). In particular, the
nicotinamide adenine dinucleotide (NAD+) biosynthesis cycle

FIG. 3. Master SCN and peripheral clocks. Circadian rhythm in mammals is primarily regulated by the master clock of
the SCN in response to an environmental signal, light. Peripheral clocks are synchronized in response to nutrients and to
neuroendocrine cues from the SCN. Outputs of SCN and peripheral clocks impact behavior and physiology such as feeding,
sleep, hormone secretion, and metabolic homeostasis. Although they are not depicted and not well known, the hormones
and products of metabolism may modulate the rhythm of SCN neurons. SCN, suprachiasmatic nucleus. Color images are
available online.
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provides a feedback that participates in the transcriptional
regulation of the core clock (27). CLOCK/BMAL1 also reg-
ulates the expression of NAMPT that encodes nicotinamide
phosphoribosyltransferase, the rate-limiting enzyme of the
NAD+ salvage pathway (325, 357). Therefore, NAD+ levels
oscillate and drive the activity of sirtuin SIRT1, which is an
NAD+-dependent histone deacetylase that inhibits CLOCK/
BMAL1 (20, 324). SIRT1 also interacts with PGC-1a (per-
oxisome proliferator-activated receptor c coactivator 1a) to
enhance the gluconeogenic pathway (369), promoting fat
mobilization in starved mice, and triggers lipolysis in dif-
ferentiated adipose cells (343).

Circadian rhythm and molecular clock mechanism dysre-
gulation are observed across psychiatric diagnoses (247).
Single-nucleotide polymorphisms (SNPs) in core circadian
clock genes have been associated with ASD (326, 485), SZ
(434), BD (327, 397, 412), and MDD (189, 239, 398). There
is still a debate as to whether the symptoms of circadian
disruption are a byproduct of these disorders or a major
contributing factor (210). Impaired circadian rhythms may
lead to anxiety and difficulties in adapting to changes in
psychiatric disorders such as ASD, SZ, and mood disorders.

ASD is often associated with sleep disorders (9, 365) and
low levels of melatonin (294, 445, 446), which led to the
theory that circadian rhythms could be involved in ASD eti-
ology (456, 473). Moreover, ASD was found to be associated
with circadian rhythm disruption at critical brain develop-
mental periods (145). CLOCK and BMAL1 drive daily patterns
of a number of clock-controlled genes, many of which code for
synapse molecules associated with ASD susceptibility (145).
Conversely, circadian-relevant genes were reported to be
highly polymorphic in 28 ASD patients (485). Another
screening for circadian-relevant genes in 110 high-functioning
autistic patients detected significant allelic association for

PER1 and NPAS2, although these associations were not sig-
nificant after correction for multiple testing (326).

There are numerous studies linking circadian disruption
and SZ (352, 476, 482). In a study of 34 patients and the same
number of healthy controls, reduced sleep efficiency, longer
sleep latencies, and increased number of nighttime awaken-
ings were observed for SZ, along with the loss of the negative
correlations of saliva melatonin levels with sleep latency and
total sleep time and positive correlations with sleep efficiency
(1). Moreover, sleep onset and sleep maintenance insomnia
are independent of the course and pharmacological status of
the patient (313). In a GWAS analysis of a United Kingdom
biobank, a genetic correlation between longer sleep duration
and SZ risk was observed (249). In addition, an SNP analysis
showed a CLOCK gene T3111C polymorphism in 145 Jap-
anese schizophrenic patients compared with controls (434),
but the same polymorphism was not observed in patients with
BD or MDD in another study of the Japanese population
(230). CNVs in the vasoactive intenstinal polypeptide re-
ceptor, VIPR1, gene encoding for the receptor for vasoactive
intestinal polypeptide that is also found in the SCN are as-
sociated with increased risk of developing SZ (453). Re-
cently, a loss of rhythmic expression of CRY1 and PER2
genes was observed in primary fibroblasts from 11 SZ pa-
tients with poor sleep, compared with controls (205). Animal
models also link circadian rhythm and SZ. The ‘‘blind
drunk’’ mouse line carries a mutation in the gene SNAP25
(synaptosomal associated protein 25) that leads to disruption
of exocytosis. These mice show SZ-like endophenotypes
(201) and phase-advance rest-activity cycles while also
showing a fragmentation of their circadian rhythm (331).

Existing hypotheses about the biological mechanisms un-
derlying dysregulation of circadian rhythms in BD include
changes in melatonin levels, in expression of melatonin

FIG. 4. Circadian core clock gene regulation. Core components of the circadian clock showing a principal transcription/
translation feedback loop composed of CLOCK, BMAL1/ARNTL, PER1–3, and CRY1–2. An intertwined regulatory loop
regulates the expression of BMAL1 by competition between NR1D1–2 (inhibitors) and RORA-C (activators) for binding to
the ROR enhancer elements (RORE) in the promoter. BMAL1/ARNTL, aryl hydrocarbon receptor nuclear translocator like;
CLOCK, clock circadian regulator; CRY, cryptochrome; NR1D, nuclear receptor subfamily 1 group D; PER, period; ROR,
retinoic acid receptor-related orphan receptors. Color images are available online.
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receptors in the central nervous system, and in daily cortisol
profiles (480). During mania, sleep patterns are significantly
disrupted (368). Genetic evidence links circadian rhythm
dysregulation with BD. CRY2 has been associated with rapid
cycling in BD (406), and two polymorphisms on the CLOCK
and TIMELESS (timeless circadian clock) genes have been
linked to Li responsiveness (378). In addition, PER2, CRY1,
and REV-ERBa expression increased individual responsive-
ness to the therapeutic effects of Li (392). Several key clock
genes affect behavior in mice (288, 289) and mutations in the
CLOCK gene can lead to mania-like behaviors in mice (316,
377). In addition, Li was shown to lengthen the circadian
clock in hamsters (197).

Increased sleep latency, poor sleep quality, and reduced
latency to first rapid eye movement sleep are well docu-
mented in MDD (443). The circadian patterns of gene ex-
pression in the postmortem human brain were disrupted in 34
patients with MDD. Cyclic patterns were much weaker in the
brains of patients with MDD due to shifted peak timing and
potentially disrupted phase relationships between individual
circadian genes (258). In SNP studies, winter depression was
associated with the PER2, CRY2, BMALl, and NPAS2 genes
(251, 338). In addition, CRY1 was found to be associated with
MDD in 105 Chinese patients (189) and CRY2 was found to
be associated with MDD in 383 Finnish patients (239). A
study investigating 8 clock genes in 592 MDD patients
showed that CLOCK and PER3 influenced the risk of de-
pression in a sex-dependent manner (398). Interestingly,
agomelatine is used to treat depression and is a melatonin
receptor agonist with serotonergic activity (93). In ani-
mal models, agomelatine can re-synchronize the circadian
rhythm (278, 314). In humans, agomelatine can increase the
amplitude of circadian rhythms in the rest-activity cycle,
including sleep, which was accompanied by an improvement
of depressive symptoms (215).

Recently, it was shown that the transcriptional coactivator
PGC-1a, which is the master regulator of mitochondrial
biogenesis and energy metabolism, is an essential component
of the circadian clock in the liver and muscle (264). The fact
that a regulation loop exists between clock machinery and
metabolism is interesting because somnolence and appetite
increase are the most frequent adverse effects that precede the
actual clinical benefits of antipsychotics (267). Studies show
that the various areas of neurotransmission altered by anti-
psychotics may affect energy and glucose regulation (170).
More intriguing is the observation that second-generation
antipsychotics (SGAs) with the most intense metabolic effect
and somnolence may be the most effective agents in the most
severe forms of SZ and BD (109). It is possible that the
interplay of circadian rhythm and metabolism contributes to
these effects.

Even though SCN generates and synchronizes biological
rhythms, optimizing the biological and physiological func-
tions of multiple organs, the SCN itself is resistant to most
rhythmic signals that it synchronizes. Evidence such as the
arthropathy developed by BMAL1 null mice suggests that
disruption of the circadian system can cause pathological
conditions through disturbances in peripheral clock regula-
tion rather than in the SCN (50). Hence, it has been postulated
that the links between deregulation of circadian rhythms and
psychiatric disorders may be due to problems within the
peripheral clocks in the brain (297). Indeed, glucocorticoid

ultradian rhythmicity directly induced cyclical gene pulsing
of PER1 expression in the rat hippocampus (80), and
clamping the diurnal variation of corticosterone suppressed
the daily rhythm of PER1 expression in the dentate gyrus but
not in the SCN (151). We can assume that disruption of pe-
ripheral brain clocks likely affects the expression of many
downstream genes, causing some of the symptoms observed
in psychiatric patients. Importantly, this deregulation occurs
at both the systemic and cellular levels. Recent evidence
suggests that disruption of the circadian clock may contribute
to individual vulnerability to psychiatric disorders by altering
the structure and function of neural circuits (150, 211). A
study using the Syrian hamster as an animal model for jet lag
has demonstrated that jet lag can cause deficits in neuro-
genesis, learning, and memory that persist even after cessa-
tion of the experimental jet lag condition (150). Disrupting
the circadian clock in mouse models has been shown to cause
morphological changes in neurons in the medial prefrontal
cortex, with simultaneous behavioral and cognitive changes
(211). Moreover, the disruption of the molecular clock de-
layed the onset of critical period plasticity, which was re-
stored by pharmacological enhancement of c-aminobutyric
acid (GABA)ergic transmission (235). These findings sug-
gest that clock genes control critical periods of postnatal
cortex development in parvalbumin interneurons that are
known to play a pivotal role in critical period plasticity (181).

Advances in the understanding of the link between circa-
dian rhythm and psychiatric disorders will increase aware-
ness that synchronization of internal rhythms may alleviate
some of the symptoms associated with psychiatric disorders,
which holds positive implications for understanding the ulti-
mate disease etiology and development of therapeutic agents.

III. Cellular Energy Metabolism and Brain Activity
in Psychiatric Disorders

The brain energy requirement at resting state is immense,
corresponding to more than 20% of the body’s consumption,
and the majority of it is used for neuronal computation and
information processing (121, 255). Howarth et al. calculated
that, in the cerebral cortex, this signaling energy is spent
mainly on postsynaptic glutamate receptors, action poten-
tials, and resetting the ion gradients to maintain resting po-
tentials; presynaptic transmitter release and transmitter
recycling consume only 9% (188). A considerable amount of
the energy consumed in the brain is for nonsignaling or
housekeeping functions in neurons and glial cells such as
cytoskeleton dynamics, neurotransmitter synthesis and re-
cycling, and lipid turnover and proton leak across the inner
mitochondrial membrane (IMM) (121, 401). For a compre-
hensive investigation of brain bioenergetics, different levels
of complexity have to be considered and data obtained must
be integrated from the whole brain, specific cell types, and
intracellular organelles. For brain studies, magnetic reso-
nance spectroscopy (MRS), functional magnetic resonance
imaging (fMRI), and positron emission tomography (PET)
techniques allow for in vivo visualization of metabolic fluxes
and energy supply to different areas of the brain in relation to
neuronal activity (276). It is now possible to translate the data
obtained in vivo from human brain imaging to the cellular
level. A major technological innovation of the past decade
was somatic cell reprogramming into induced pluripotent
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stem cells (iPSCs) and the elaboration of numerous protocols
for their conversion into neurons, astrocytes, oligodendro-
cytes, and microglia (46, 64, 110, 315, 384, 433) (Fig. 5).
This methodology represents a significant advance by al-
lowing modeling of neurodegenerative and neuropsychiatric
disorders (46, 82). Recently, the study of primary human
neurons and glial cells has also become possible through the
development of protocols for the isolation of individual cell
types and culture of live cells from the brain (494).

A. Oxidative phosphorylation and glycolysis
in brain cells

One of the principal functions of mitochondria is to gen-
erate chemical energy for the cell. The four respiratory chain
complexes (CI–CIV) and adenosine triphosphate (ATP)
synthase carry out oxidative phosphorylation by using elec-
tron donors generated in the mitochondrial matrix by the
tricarboxylic acid (TCA) cycle and fatty acid b-oxidation or
by cytosolic glycolysis. Electron transfer across the respira-
tory chain is coupled with proton translocation to the inter-
membrane space by complexes I, III, and IV, providing the
proton-motive force across the inner membrane that is used
by ATP synthase to synthesize ATP (Fig. 6). Blue-native gel
electrophoresis experiments showed that, in mammalian
cells, the respiratory complexes are organized into super-
complexes with different conformations (CI/CIII/CIV also
named respirasome, CI/CIII, and CIII/CIV) (161, 250, 388).
The functional significance of mitochondrial supercomplexes
is still unresolved (24, 305). However, it is recognized that
assembly of the supercomplexes is dynamic, co-ordinates the
electron flux from different substrates (250), and reduces
reactive oxygen species (ROS) production at complex I (280)
(Fig. 6). Lopez-Fabuel et al. reported that distinctive as-
sembly of complex I into supercomplexes in neurons and
astrocytes is regulated by the expression of the NDUFS1
(NADH:ubiquinone oxidoreductase core subunit S1) subunit
and correlates with the bioenergetics differences between
these cell types (268). Neurons, which depend on oxidative
phosphorylation unlike astrocytes, showed a larger propor-
tion of complex I in supercomplexes, an increased amount of

NDUFS1, and lower ROS generation than astrocytes. Inter-
estingly, overexpression of NDUFS1 in astrocytes promoted
complex I assembly in supercomplexes and reduced ROS
production; the opposite was observed by knocking down
NDUFS1 in the neurons. Other studies showed that mtDNA
variants could affect respiratory complex assembly. The
mitochondrial disorder Leber’s hereditary optic neuropathy
is caused by three-point mutations in two subunits of complex
I (MT-ND1 and MT-ND4) that cause defective complex I
assembly and stability (342). These data emphasize the im-
portance of supercomplexes assembly in the cells’ energy
metabolism, and it is attractive to think that some of the
mtDNA polymorphisms and mutations found in patients
suffering from mental disease could affect this process.

Another essential factor is the maintenance of a correct
balance in phospholipid types at the vicinity of the super-
complexes. Cardiolipin is a phospholipid present in the IMM
that is necessary for supercomplex assembly and stabi-
lization. The reverse occurs for another phospholipid: Phos-
phatidylethanolamine destabilizes supercomplex assembly
(305). Notably, brain phospholipidome is disturbed in the
mouse model of depression induced by chronic unpredictable
stress, presenting reduced cardiolipin and increased phos-
phatidylethanolamine and markers of oxidative stress (124).
Two studies suggest that phospholipid metabolism may be
altered in BD patients. A decreased ratio of phosphomo-
noesters to phosphodiesters was found in patients with bi-
polar depression (399), and the gene SEC14 and spectrin
domain containing 1, SESTD1, that encodes a protein that
binds phospholipids was identified by GWAS in BD patients
who were responsive to lithium (410).

The oxidative phosphorylation machinery is positioned at
the inner membrane cristae, which provide a suitable envi-
ronment for electron transfer and proton translocation (Fig. 7).
The cristae are formed by invagination of the inner membrane
toward the matrix and separated from the rest of the membrane
by the cristae junctions. The processes of formation and
structuring that determine the cristae shape are not com-
pletely known but are associated with mitochondrial fusion
and with the increased insertion of phospholipids and pro-
tein complexes when mitochondrial biogenesis is stimulated

FIG. 5. Comparison of different models for the study of psychiatric disorders. Diverse tools and research models are
necessary to enlighten the etiological mechanisms underlying psychiatric disorders. GWAS as well as, studies involving
animals or cells in a dish have unique advantages and disadvantages but complement each other. GWAS, genome-wide
association studies. Color images are available online.
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(176, 293, 499). Cogliati et al. showed that cristae shape de-
termines respiratory supercomplex assembly and mitochon-
drial respiration efficiency in vitro and, in mouse models of
OPA1 (mitochondrial dynamin-like GTPase or optic atrophy
protein 1), conditional acute deletion or overexpression (76).
OPA1 is required for mitochondrial fusion, regulation of ap-
optosis, and respiration. The increase in the amount of proteins
and dimerization of ATP synthase provide the initial bending
of the inner membrane and cristae formation (414, 423). The
mitochondrial contact site and cristae organizing system
(MICOS) is anchored at the cristae junctions, where it stabi-
lizes the membrane bending and cristae morphology (240,
356). MICOS defines the boundaries of the two compartments
of the inner membrane, the cristae and the inner boundary
membrane, which is in close proximity to the outer membrane
and contains the transport machineries (Fig. 7). Mitofilin/
MIC60 and MIC10 are the core subunits of the two dynamic
supercomplexes composing MICOS, in addition to at least

six other proteins (356). Knocking down MIC60, MIC10,
and MIC19 by short-hairpin-mediated RNA interference
(shRNA) in mouse embryonic fibroblasts resulted in loss of
most of the cristae junctions, demonstrating the critical role
of MICOS in cristae organization (257). DISC1 (disrupted
in schizophrenia 1), which is a genetic risk factor for mul-
tiple psychiatric disorders, interacts with MIC60 and is a
component of MICOS (337, 346). DISC1 deficiency in-
duced in a stable human neuroblastoma cell line by ex-
pression of shRNA caused mitochondrial fragmentation,
partial disassembly of the MICOS complex, reduction
of mtDNA content, and impaired assembly and activity of
respiratory complexes (346).

Energy can also be generated in the cytoplasm by glycol-
ysis (Fig. 8). Under aerobiosis, the glycolysis end product is
pyruvate, which is transported to the mitochondria to fuel the
TCA cycle and oxidative phosphorylation. Under anaero-
biosis or hypoxia, glycolysis converts pyruvate into lactate.
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FIG. 6. Assembly of re-
spiratory complexes into
supercomplexes. Assembly
of supercomplexes (CI/CIII/
CIV, CI/CIV, and CIII/CIV)
is dynamic and coordinates
the flux of electrons from
different substrates and re-
duces O2

�- production at CI.
In neurons, the high expres-
sion of NDUFS1 promotes
CI assembly into supercom-
plexes and reduced superox-
ide production. In astrocytes,
NDUFS1 expression is low-
er with a higher proportion
of free CI and superoxide
production. CI, complex I
(NADPH:ubiquinone oxidor-
eductase); CII, complex II
(succinate:uniquinone oxidor-
eductase; CIII, complex III
(ubiquinol-cytochrome c oxi-
doreductase); CIV, complex
IV (cytochrome c oxidase);
IMM, inner mitochondrial
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�-, superoxide. Color ima-

ges are available online.
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A metabolic switch to aerobic glycolysis (also named the
Warburg effect) occurs in certain cell types, such as cancer
cells, stem cells, and astrocytes, when glucose is converted to
lactate in the presence of oxygen (340, 442, 461). In vitro
studies showed that embryonic stem cells, iPSCs, and neu-
ral progenitors have a metabolic preference for glycolysis;

therefore, glucose metabolism reprogramming is crucial in
neuronal differentiation (2, 442, 492, 497, 498). Several
factors and pathways have been identified during this pro-
cess: the PI3K-AKT-mTOR (phosphoinositide-3-kinase–
protein kinase B–mammalian target of rapamycin) pathway,
the nuclear coactivator PGC-1a, and the mitochondrial

FIG. 7. Organization of mitochondrial and ER membranes. The oxidative phosphorylation machinery is located at the
inner membrane cristae. The MICOS complexes (MIC60, MIC10, MIC19, MIC25, MIC26, MIC27, QIL1, and DISC1)
define the boundaries of the cristae. In yeast, MICOS interacts with the ERMES complex, providing a communication
platform between the IMM and OMM and the ER membrane; a mammalian equivalent has not been identified yet. OPA1 is
also required to shape the cristae at the inner membrane. OPA1 and mitofusins MFN1–2 are implicated in mitochondrial
fusion and are present in the three membranes. The TOM complex is a multiunit translocase that mediates import of
precursor proteins into the mitochondrial internal compartments. The SAM is necessary for the integration of proteins in the
OMM. Direct Ca2+ transfer between the ER lumen and the mitochondria occurs via the complex IP3R/GRP75/VDAC and
the MCU. Ca2+, calcium; DISC1, disrupted in schizophrenia 1; ERMES, ER-mitochondria encounter structure; GRP75, heat
shock protein family A (Hsp70) member 9; IP3R, inositol 1,4,5-trisphosphate receptor; MCU, mitochondrial calcium
uniporter; MFN, mitofusin; MICOS, mitochondrial contact site and cristae organizing system; OMM, outer mitochondrial
membrane; OPA1, mitochondrial dynamin-like GTPase or optic atrophy protein 1; PHB, prohibitin; SAM, sorting and
assembly complex; TOM, translocase complex; VDAC, voltage-dependent anion channel. Color images are available online.
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transcription factor A (TFAM) (2, 497). Mitochondrial bio-
genesis and the proportion of elongated mitochondria are
increased in co-ordination with the induction of oxidative
phosphorylation, but a transient oxidative stress is also de-
tected in the early phases of differentiation (2, 448, 463, 484).
In agreement with these observations, the induction of
antioxidant defenses is necessary for accurate neuronal dif-
ferentiation (2, 495). Cultures of primary neurons from Nrf2-
null mice present a delay in neurite outgrowth (495). The
transcription factor Nrf2 (nuclear factor, erythroid 2 like 2
also named NFE2L2) is a master regulator of the cellular
antioxidant response. Further, several reports suggest that the
transient higher ROS levels may act as an intracellular signal

of neuronal differentiation (2, 30, 430). The biological func-
tion of neurons, which is to signal transmission, is a tributary
of a sophisticated biochemical metabolism. Appropriately,
major regulators of neuronal differentiation and brain de-
velopment are also implicated in signaling metabolic chan-
ges, such as the PI3K-AKT-mTOR pathway (464), or are
redox sensitive, such as the Wnt-b-catenin pathway (137).
Notably, these signaling pathways are implicated in the
pathogenesis of BD, MDD, SZ, and ASD. However, although
not yet proven, it is strongly supposed that in a patient’s brain
the differentiating neurons have metabolic and/or redox al-
terations that could contribute to the neurodevelopmental
defects observed in psychiatric conditions.

FIG. 8. Energy metabolism differences between astrocytes and neurons. Preferential channeling of glucose toward
glycolysis in astrocytes and toward PPP in neurons is the result of multiple regulatory steps. The enzyme PFKFB3 is fully
active in astrocytes and constantly degraded in neurons. This enzyme generates fructose-2,6-bisphosphate, which is a strong
activator of PFK. Astrocytes express the pyruvate kinase PKM2, which upregulates the glycolytic flow toward pyruvate; in
contrast, neurons express PKM1, which shunts glycolytic intermediates to other pathways, including nucleotide biosyn-
thesis. Astrocytes express pyruvate dehydrogenase kinase PDK4, which phosphorylates PDH, causing inhibition of activity.
The LDH isoforms are also differentially expressed in astrocytes and neurons and influence the direction of the reaction.
Glucose is preferentially metabolized in neurons by the PPP, which generates reducing equivalents in the form of NADPH,
which are essential for reduction of GSSG and cellular antioxidant defense. Glycolysis generates MG, which is detoxified by
the GLO system that is highly expressed in astrocytes. Glycogen is a glucose storage molecule in astrocytes. GAPDH,
glyceraldehyde 3-phosphate dehydrogenase; GLO, glyoxalase; GSSG, oxidized glutathione; HK, hexokinase; LDH, lactate
dehydrogenase; MG, methylglyoxal; NADPH, nicotinamide adenine dinucleotide phosphate; PDH, pyruvate dehydrogenase
complex; PFK, phosphofructokinase; PFKFB3, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3; PGAM, phospho-
glycerate mutase; PGI, glucose-6-phosphate isomerase; PGK, phosphoglycerate kinase; PKM, pyruvate kinase; PPP,
pentose phosphate pathway; TCA, tricarboxylic acid; TPI, triosephosphate isomerase. Color images are available online.
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Astrocytes have functional mitochondria that are proficient
in oxidative phosphorylation (268). The preferential energy
metabolism toward glycolysis in astrocytes and toward oxi-
dative phosphorylation in neurons is the result of several
metabolic tunings and not the blockade of entire pathways
(Figs. 6 and 8). One of these is the differential expression of
NDUFS1 subunit previously mentioned (268). Neurons and
astrocytes differentially express pyruvate kinase (PKM)
isoforms generated by alternative splicing that catalyze the
last glycolysis step and pyruvate synthesis (493). Neurons
express PKM1, whereas astrocytes express PKM2, which
contains an inducible nuclear translocation signal that allows
the cell to upregulate the glycolytic flux in response to in-
creased energy demand. The entry of pyruvate into the TCA
cycle is determined by the pyruvate dehydrogenase complex
(PDH) activity, which is inhibited when the complex is
phosphorylated. The level of PDH phosphorylation in as-
trocytes is higher and correlated to a lower PDH activity
compared with neurons (171, 195), which favors pyruvate
deviation to lactate production in astrocytes. Further,
Herrero-Mendez et al. showed that the glycolysis regulator
enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase
3 (PFKFB3) is fully active in astrocytes and constantly de-
graded in neurons (182). Interestingly, they also showed
that activation of glycolysis in neurons by upregulation of
PFKFB3 reduced the amount of glucose metabolized by the
pentose phosphate pathway (PPP), causing oxidative stress
and cell death by apoptosis. The PPP generates reducing
equivalents in the form of NADPH (nicotinamide adenine
dinucleotide phosphate), which are essential for a reduction of
oxidized glutathione (GSSG) and cellular antioxidant defense.

Although neuron bioenergetics relies on oxidative phos-
phorylation, glycolysis is preferred in specific contexts,
generally in response to a sudden increase in ATP demand.
Cytosolic Ca2+ clearance after neuronal stimulation is critical
for survival and is performed by ATP-dependent mecha-
nisms. In acute slices, the fast clearance of Ca2+ in cerebellar
granule and purkinje cells is mainly executed by a plasma
membrane Ca2+-ATPase pump that is fueled by glycolysis
(196). Also, the fast axonal transport of vesicles requires a
continuous energy supply over long distance; this demand is
met by the presence of glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH) at the vesicular membrane and glycol-
ysis (491). Glycolysis is also necessary for synaptic vesicle
recycling at nerve terminals (358). Recently, Dı́az-Garcı́a
et al. used metabolic biosensors and reported that, in acute
hippocampal slices and in the brain of awake mice, neuronal
stimulation induces a transient increase in glycolysis (105).

B. Glucose metabolism and glutamatergic
neurotransmission

Brain glucose metabolism is remarkable in terms of met-
abolic specialization and co-ordination among the differ-
ent cell types. Neuronal energy demands are dynamic and
can change very rapidly depending on the activation state.
Functional hyperemia is the physiological response that
regulates the blood flow, ensuring that the neuronal energy
requirements are met despite the variations in activity. This
is achieved by the neurovascular coupling or signaling from
neurons to the vasculature, mostly through mediation of as-
trocytes, which are localized between the vasculature and the

neurons (328). Astrocytes have end-foot processes that cover
a significant area of the capillaries and fine processes that
ensheathe the synapses. The excitatory synaptic release of
glutamate causes oscillation in the intracellular Ca2+ con-
centration in astrocytes that trigger the release of vasoactive
compounds (500). Mishra et al. showed that, in adult rats,
different signaling cascades control blood flow at the level of
arterioles and capillaries (310). Arterioles dilation depends
on NMDAR (N-methyl-d-aspartate receptor or glutamate
receptor) activation and Ca2+-dependent nitric oxide (NO)
generation by interneurons. The astrocyte Ca2+ transients
evoked by postsynaptic ATP release and activation of pur-
inergic receptor P2X1 result in an enzymatic cascade that
leads to the release of prostaglandin E2 that relaxes pericytes,
which dilates the capillaries and increases the supply of glu-
cose and oxygen.

In 1994, Pellerin and Magistretti observed that gluta-
mate uptake by astrocytes stimulates glycolysis and they
proposed the astrocyte-neuron lactate shuttle (ANLS) model to
describe the connection between glutamatergic neurotrans-
mission and glucose utilization in the cortex (340). The ANLS
model predicts that astrocytes respond to a rise in neuronal
activity by increasing glucose uptake at end-feet that contact
the vasculature and by increasing glycolysis and lactate release
to the extracellular space that is used as a respiratory substrate
to sustain neuronal activity. This model provides the founda-
tion of our understanding of neuroenergetics by integrating
multiple metabolic and signaling pathways between neurons
and other cell types (284, 341). However, more recent evi-
dence, especially that obtained from in vivo studies, challenges
the ANLS model, as recently reviewed (284, 436).

In opposition to direct glucose uptake by astrocytes from
the blood vessels predicted by the ANLS model, glucose
diffuses across the endothelial membrane from the blood flow
into the extracellular fluid and is transported into the differ-
ent cell types, including neurons (271, 300). The facilitated
glucose transporter 1 (GLUT1) mediates glucose diffusion
from endothelial cells and into astrocytes and oligodendro-
cytes (300, 379). Neurons express a high-affinity glucose
transporter 3 (GLUT3), which ensures provision under low
glucose levels, and GLUT4, which is necessary for presyn-
aptic function (21, 403). Data obtained over the years, and
more recently using quantitative fMRI, showed that the rate
of neuronal glucose oxidation is proportional to the gluta-
matergic neurotransmission (191). However, Lundgaard et al.,
using a fluorescent glucose analog and two-photon micros-
copy, showed that stimulation causes higher glucose uptake
in neurons than in astrocytes in the brain of awake mice,
suggesting that on activation neuronal glycolysis is increased
(271). Another in vivo study also reported a transient increase
in glycolysis in neurons upon activation, leading the authors
to propose that glycolysis provides a prompt response to a
rise in energy demand that is followed by enduring oxidative
phosphorylation (105). At the same time, the astrocyte sup-
port of neuronal oxidative phosphorylation was confirmed
in vivo. Mächler et al. showed evidence of a lactate gradient
from astrocytes to neurons by using a biosensor for lactate
and two-photon microscopy (274). In addition, synaptic ac-
tivity induces changes in astrocyte gene expression of com-
ponents of metabolic pathways that include an increase in
glucose metabolism and lactate export (177). Interestingly,
there is in vivo evidence that oligodendrocyte NMDAR
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stimulation results in increased lactate export that supports
axonal energy metabolism (379). Therefore, to explain brain
bioenergetics, a more complex version of the ANLS model
is needed that incorporates neuronal rest/activity states, a
temporal component, and other cells types (such as oligo-
dendrocytes).

C. Bioenergetics and neurotransmission
in psychiatric disorders

There is no direct link between mitochondria and autism,
but the existing neuroimaging, in vitro and postmortem data
are consistent with mitochondrial dysfunction in ASD and
were recently reviewed (71, 186). The prevalence of mito-
chondrial disease in ASD children (below 20 years old) is
5%–7%, which is 500-fold higher than in the general popu-
lation (330, 375). However, only 23% of the autistic children
with diagnosed mitochondrial disease have mutations in
mtDNA, suggesting that for the majority of patients mito-
chondrial dysfunction is secondary to ASD (375). Accord-
ingly, the ASD children with mitochondrial disease may have
a phenotypic presentation indistinguishable from idiopathic
ASD or may present uncommon symptoms (375, 468).

In 1985, Coleman and Blass described four autistic pa-
tients with lactic acidosis and proposed the existence of a
subgroup of patients with deficiencies in carbohydrate me-
tabolism (79). Other evocative studies followed, but in 1993
an in vivo pilot study using 31P-MRS showed evidence of
alterations in brain energy and phospholipid metabolism in
patients’ prefrontal cortex (309). Notably, this study showed
that the decrease in phosphocreatine levels was correlated
with the neuropsychological and language deficits. However,
later studies using 1H-MRS showed variability in metabolites
and neurotransmitters across brain regions and patients’ age.
The results reported by these studies and their limitations,
regarding principally the 1H-MRS methodology and the pa-
tient spectrum heterogeneity, were accurately reviewed re-
cently (130). A decrease in N-acetyl-aspartate and creatine is
reproducibly and significantly observed in multiple regions
of the brain of ASD children but not in adults; adult reports
are scarce and inconclusive (130, 194).

A systematic review and meta-analysis of five studies re-
vealed that the levels of lactate were significantly higher in
ASD children compared with controls (375). Also indicative
of decreased mitochondrial function, Essa et al. found a pe-
ripheral reduction in ATP and NAD+/NADH levels and an
increase in oxidative stress markers in autistic children (123).
The activity of respiratory chain complexes (I, III, and IV) in
muscle biopsies was lower than normal in autistic patients
with evocative symptoms or those diagnosed with mito-
chondrial disease (164, 468) and in idiopathic patients (153).
A decrease in the oxidative phosphorylation capability was
also observed in the ASD brain. The activities of complex I,
ATP synthase and PDH were significantly reduced in 14
young autistic patients (mean, 10 years old) compared with
age-matched controls in postmortem prefrontal cortex sam-
ples (163). Further, Tang et al. reported reduced activity of
complexes I and IV in postmortem samples of Broadman area
21 (BA21) temporal lobe of young autistic children compared
with controls (438). Although the measures of enzymatic
activities in postmortem samples are questionable, the au-
thors also analyzed the samples by Western blot and showed

that the protein levels of complexes I, III, IV, and ATP
synthase were decreased compared with controls in young
children (<10 years) (438). However, for older ASD patients
(more than 45 years), only complex III protein expression
was lower in postmortem BA21 temporal lobe (438). Chau-
han et al. also found a decrease in protein expression of
complexes II, III, and ATP synthase in temporal cortex, of
complex I in frontal cortex, and of complex III and ATP
synthase in cerebellum of postmortem brains of young (4–
10 years) autistic children compared with controls (68). In
agreement with these data, a decrease in transcription of
genes related to mitochondrial oxidative phosphorylation
(complexes I, III and ATP synthase) was observed in the
BA19 occipital cortex of nine autistic patients (<60 years old)
compared with age-matched controls (152).

Given that only a small number of studies included adult
individuals, it is difficult to draw conclusions. However, the
available data suggest that major deficiencies in mitochondrial
energy metabolism occur early in life, are attenuated with
aging, and are close to normal in adults (68, 130, 438). If this
finding is confirmed in future studies, it indicates that de-
creased oxidative phosphorylation contributes to the etiology
and heterogeneity of the disorder. In addition, it implies that
brain adaptation to ASD and mitochondrial dysfunction during
development favored neuronal energetics over neurotrans-
mission and connectivity. The balance of neural excitation/
inhibition (E/I) is established during development and is me-
diated by the relative contributions of excitatory and inhibitory
synaptic inputs to a cortical neuron or a network (100). In-
creased excitatory activity caused by glutamate receptor acti-
vation or reduced GABAergic signaling result in excitotoxicity
and neuronal degeneration and seizures that are common in
autistic patients (45). Increased inhibitory activity disturbs
synaptic plasticity and the processes of learning and memory.
Alterations in the E/I balance have been suggested to be fun-
damental for ASD behavioral and cognitive phenotypes and
were critically reviewed recently (106). However, the imbal-
ance direction varies according to the cohorts studied; most
studies suggest that excitation is increased relative to inhibition
in ASD, but increased inhibition was also observed (106).

Evidence also suggests that alterations in excitatory and
inhibitory synapses contribute to the positive, negative, and
cognitive symptoms in SZ (306, 408). A prominent hypoth-
esis presents NMDAR hypofunction in the limbic system
during development as a major player in the emergence of the
disorder (408). A significant increase in glutamate levels was
observed by using MRS in several regions of the brain of SZ
patients (113, 301). However, a meta-analysis of 59 studies
found no association between glutamate levels and age of
patients, symptom severity, or antipsychotic dose (301). In-
terestingly, McCullumsmith et al. showed that gene expres-
sion of the major glutamate transporter in astrocytes (sodium-
dependent glutamate/aspartate transporter 2, EAAT2) is de-
creased in the mediodorsal nucleus of the thalamus of SZ
patients, which suggests that the capacity of astrocytes to
remove the glutamate from the synaptic clef and convert it to
the nontoxic glutamine may be compromised (290).

Likewise, alterations in glutamatergic neurotransmission
are taken into consideration in the etiology of mechanisms
and therapeutic opportunities for mood disorders (90, 321).
The first report of the antidepressant effect of ketamine, a
noncompetitive antagonist at NMDR, in a clinical trial (34)
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stimulated the fundamental research and investigation of the
therapeutic potential of this pathway for drug development.
Despite this upsurge of interest, only a small number of re-
ports with unconvincing results are available regarding the
state of glutamatergic transmission in the brain of MDD
patients (321). Nonetheless, imaging using 1H-MRS detected
a reduction in glutamate levels in the prefrontal cortex and
anterior cingulate cortex in MDD patients (22, 179, 400).
In contrast, an increase in glutamate levels was consistently
observed in vivo in the brain frontal areas in nonmedicated
BD patients compared with controls (88, 304, 409). This
increase was independent of the mood phase, but conflicting
results were obtained in patients treated with Li and VPA
(133, 409, 424). Proteomics and transcription studies using
postmortem brain tissue from BD patients substantiated the
MRS findings (116, 156, 178, 359).

Studies using in vivo imaging, postmortem brains, or other
models showed impaired oxidative phosphorylation and in-
creased glycolysis in SZ and BD patients, which were re-
cently reviewed (229, 427). A recent metabolome analysis
showed an increase in isocitrate in cerebrospinal fluid of BD
patients, suggesting impaired activity of the TCA cycle en-
zyme, isocitrate dehydrogenase (489). Fewer studies were
reported for depression but also point to alterations in bio-
energetics in patients (233). A review of PET studies revealed
that MDD patients have reduced blood flow and glucose
metabolism in the prefrontal cortex, anterior cingulate cortex,
and caudate nucleus (459). Interestingly, some reports sug-
gest that antipsychotic medication causes a decrease in the
activity of respiratory complexes that could be related to the
high prevalence of metabolic syndromes in patients under
SGA treatment (31, 371, 387).

Mertens et al. showed that dentate gyrus granule neurons
derived from iPSCs of BD patients have mitochondrial
abnormalities compared with neurons differentiated from
controls (302). This study also revealed that patient-derived
neurons displayed hyperactivity that was normalized with Li
treatment, but only in cells from patients who have a clinical
history of therapeutic Li response. These results were re-
produced recently by using a different patient cohort, dem-
onstrating that the hyperactivity phenotype of patient neurons
is robust and can be used to predict Li responsiveness (419).

Even though some findings are inconsistent, the largest
proportion of data reported converge to support the hypoth-
esis that mitochondrial dysfunction, with a reduction in
oxidative phosphorylation and an increase in glycolysis,
participates in the pathophysiology of ASD, SZ, BD, and
MDD. Alterations in glutamatergic neurotransmission are
also present in patients suffering from these disorders. These
cellular functions are intrinsically dependent on one another;
it would be interesting in the future to explore which is at
the source of the phenotypes, glutamatergic transmission, or
mitochondrial dysfunction.

IV. Mitochondrial Dysfunction in Psychiatric Disorders

Alterations in the mitochondrial genome have been de-
scribed in patients suffering from mental illness, which may be
significant to the pathophysiology of psychiatric disorders (18).
Another indication of the repercussions of mtDNA changes is
the observation that patients suffering from mitochondrial
diseases often present comorbidity of psychiatric symptoms,

such as mood disorder, cognitive impairment, psychosis, and
anxiety (17, 125). Patients with MELAS (mitochondrial en-
cephalomyopathy, lactic acidosis, and stroke-like episodes),
which is caused by mutations in several mitochondrial genes,
occasionally present SZ-like symptoms (216, 318).

The human mitochondrial genome is a circular double
16.6 kb DNA molecule composed of 37 genes and a variable
noncoding sequence of &1.1 kb named displacement-loop
(D-loop), which contains the initiation sites for replication
and transcription (12) (Fig. 9). Retrograde signaling is an
essential mitochondrial function necessary for commu-
nication of mitochondria not only with the rest of the cells
but also with cells in distant organs. The mtDNA encodes
mitochondria-derived peptides, such as humanin and MOTS-
c (mitochondria open reading frame of the 12S rRNA-c),
which act as systemic signals that protect neurons from insult
or mediate insulin and metabolic homeostasis (166, 252). The
mtDNA is maternally inherited and, although initial studies
suggested maternal transmission in SZ and BD, these findings
were not subsequently confirmed (248, 292, 317, 347, 477).

A. Alterations in nucleoid organization and replication

Each mitochondrion contains multiple copies of its ge-
nome tightly packaged with proteins into nucleoids (Fig. 10).
The nucleoid proteins associated with the mtDNA were not
conserved during evolution, and the ones found in human
mitochondria are different from those found in yeast or
other organisms (241). As the nucleoids are heritable units of
mitochondria (199), accurate replication and maintenance
of mtDNA, segregation and degradation of mutated DNA
molecules and transmission to the progeny are controlled by
nuclear genes and coupled to mitochondrial dynamics and
cellular metabolism. The nucleoids are small spherical
structures of &100 nm that are associated with the inner
membrane and distributed regularly in the mitochondrial
network (7, 74, 141, 350). The number of mtDNA copies per
nucleoid in mammalian cells is not fully elucidated. Most of
the studies report 3–10 copies of mtDNA per nucleoid in
human cells (7, 74, 193, 241), but data obtained using super-
resolution microscopy showed that in fibroblasts each nu-
cleoid carries a mean of 1.4 mtDNA molecules (242). The
organization of the nucleoids is multi-layered, with an inner
core composed of mtDNA and DNA-packaging proteins, also
necessary for transcription and replication, and an adaptable
outer layer with temporary recruited proteins that perform
specific functions (40).

In human cells, the TFAM is the architectural protein that
packages and organizes the mtDNA inside the nucleoid, at
an average of 1 TFAM per 10 nucleotides (6). Other major
proteins required for replication present in the inner core
are the DNA helicase Twinkle, the mitochondrial single-
stranded DNA binding protein mtSSB, and the mitochon-
drial DNA polymerase c (POLG) (141). The Lon peptidase
1 (LONP1) is also present in the inner core and degrades
phosphorylated TFAM, participating in the fine regulation of
mtDNA packaging and content (269).

Changes in the regulatory pathways and metabolism in a
patient’s cells may lead to alterations in the expression of the
proteins required for replication and stability of mtDNA. For
instance, TFAM is phosphorylated by the protein kinase A
(PKA) targeting the transcription factor for proteolysis by
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LONP1 (269). PKA levels are increased in the platelets of BD
patients, which may cause increased phosphorylation and
degradation of TFAM (439). An interesting study showed
that VPA increased the mtDNA copy number, the expression
of POLG, and the gene expression of the master mitochon-
drial biogenesis PGC-1a in fibroblasts from five patients
carrying pathogenic mutations in POLG gene (405). Recent
data showed the presence of deleterious POLG variants in
Japanese subjects with BD (212). Also, the protein levels of
POLG, TFAM, OPA1, and mitofusin (MFN)2 are decreased
in postmortem samples of the temporal lobe of ASD patients
compared with controls (438). More studies are needed to

evaluate the contribution of changes in the nuclear genes that
affect mtDNA stability to the pathogenesis of psychiatric
disorders; however, it is likely that mutations in these genes
may modulate the severity of the mitochondrial features and
the patients’ symptoms.

The number of mtDNA copies is correlated to the ex-
pression of bioenergetics and metabolism genes (87, 364) and
to increased oxidative stress (265). Likewise, it also varies
between cell types and tissues; whole-exome sequencing has
shown that the muscle and brain have more mtDNA copies
than less energy-demanding organs, such as the lungs (87).
Methylation of the POLG gene was also shown to be implicated

A

B

FIG. 9. Human mitochondrial genome and the respiratory chain. (A) Gene distribution in the genome and functional
categories. Genes MT-ND1, MT-ND2, MT-ND3, MT-ND4, MT-ND4L, MT-ND5, and MT-ND6 encode subunits of
NADH:ubiquinone oxidoreductase (CI); MT-CYB encode a subunit of ubiquinol-cytochrome c oxidoreductase (CIII); MT-
CO1, MT-CO2, and MT-CO3 encode subunits of cytochrome c oxidase (CIV); MT-ATP6 and MT-ATP8 encode subunits
of ATP synthase. The other genes encode ribosomal RNAs or transfer RNAs. For further information, the complete list of
mtDNA mutations and polymorphisms is available on the website mitomap.org (B) Schematic representation of the
mitochondrial respiratory chain. The reduced cofactors NADH and FADH2 donate electrons to complex I and complex II,
respectively, which are transferred to electron (e-) carriers, CoQ and Cytc, and to complexes III and IV. Electrons from
complex IV are accepted by oxygen with formation of water. The electron transfer is coupled to proton pumping from the
matrix to the IMS through complexes I, III, and IV, generating an electrochemical gradient that is used to synthesize ATP by
ATP synthase. ATP, adenosine triphosphate; CoQ, coenzyme Q; Cytc, cytochrome c; D-loop, mtDNA displacement loop.
Color images are available online.
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as it varies in cells with different metabolic activity and from
different tissues (221, 254). In healthy subjects, an increase in
mtDNA copy number is positively correlated with telomere
length (450). Numerous studies showed that telomere short-
ening is a natural result of aging that can be modulated by
recombination, genetic factors, and psychosocial and oxidative
stresses (122, 351). A direct link between telomere dysfunction
and the reduction of mitochondrial mass and energy produc-
tion has been reported (383). Therefore, it is not surprising that
the number of mtDNA copies tends to decrease in pathological
conditions that involve mitochondrial dysfunction (81).

For psychiatric disorders, reports investigating mtDNA
copy numbers and telomeres showed diverse and sometimes
conflicting results. Tyrka et al. observed significantly higher
mtDNA copy numbers and shorter telomeres in leukocytes
from individuals with depressive and anxiety disorders (451).
A large study conducted on 210 young subjects with MDD
and 217 healthy controls revealed no significant differences
between patients and controls in terms of leukocyte mtDNA

copy numbers (180). The opposite was observed in studies of
older cohorts; the mtDNA copy number of the MDD group
was significantly lower than that of the controls (65, 228).
Similarly, no change in mtDNA copy number was observed
in leukocytes from young, unmedicated patients having short
illness duration BD (96). However, a significant decrease in
leukocyte mtDNA copy number was observed in older eu-
thymic patients with BD when compared with controls (66).
Since no biochemical data were included in these studies, it is
not possible to make inferences about the mitochondrial
bioenergetics, but it is conceivable that MDD and BD dura-
tion and the age of the subjects have an impact on the
mtDNA copy number. Vawter et al. analyzed the mtDNA
copy number in dorsolateral prefrontal cortex in postmortem
brains from patients with MDD and BD and only found de-
creased mtDNA copy numbers in patients with BD compared
with controls after controlling for the effects of agonal du-
ration and pH (455). Other studies failed to show differences
in samples from the frontal cortex of BD and SZ subjects
compared with controls (207, 380). Unfortunately, there are
no reports on the effect of drug treatments on the mtDNA
copy number for MDD or BD. Studies showed a tendency for
decreased telomeres in MDD (187, 458) and BD (349). Li
et al. measured significantly lower mtDNA copy number and
identical telomere length in 134 first-episode, antipsychotic-
naive SZ patients compared with 144 healthy controls (259).
Of these, 89 patients followed an 8-week risperidone treat-
ment and, surprisingly, the findings suggest that the telomere
length and mtDNA copy number can be used as predictors of
antipsychotics response in SZ patients. In summary, available
data suggest a decrease in mtDNA copy number with illness
progression for SZ, BD, and MDD, which is in agreement
with a reduction in the expression of mitochondrial genes and
a decrease in energy metabolism. Regarding ASD, the telo-
meres were also shorter in leukocytes from adults with the
condition from childhood (260). Conversely, different stud-
ies showed an increased number of mtDNA copies in pe-
ripheral blood samples from children with ASD when
compared with nonaffected siblings or controls (69, 153, 487)
A significant increase in mtDNA copies was also found in the
prefrontal cortex of children with ASD (163). Giulivi et al.
also reported decreased oxidative phosphorylation and in-
creased generation of hydrogen peroxide (H2O2), in addition
to an increase in mtDNA copy number and deletions, in
lymphocytes from ASD children (153). The increased repli-
cation of mtDNA may be a compensatory mechanism for the
increased oxidative stress and mutation of the mitochondrial
genome in young children. It is possible that, similar to what
is observed for the other psychiatric disorders, the mtDNA
copy number decreases with age in ASD.

B. mtDNA polymorphisms and mutations

There is considerable mtDNA diversity between human
populations and among individuals that results from the ac-
cumulation of substitutions during evolution (462). The mi-
tochondrial oxidative phosphorylation activity can change
depending on the mtDNA variants. The 7028C>T poly-
morphism in the MT-CO2 gene causes a reduction in complex
IV (cytochrome c oxidase, CIV) activity and protein amount
in cybrids (155). Kazuno et al. showed alterations in mito-
chondrial pH and Ca2+ in cybrids containing the 10398A>G
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membrane contacts. Schematic representation of the nu-
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packaging, transcription, and replication (TFAM, TWKL,
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DNA polymerase c; TFAM, mitochondrial transcription
factor A. Color images are available online.
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and 8701A>G polymorphisms by whole mtDNA sequencing
(220). Interestingly, the 10398A>G polymorphism in MT-
ND3 gene was also associated with susceptibility to BD in the
Japanese population (218) and to Li response (466). In 2000,
Kato et al. reported a nominal association of 5178C genotype
(in MT-ND2 gene encoding a subunit of complex I, NAD-
H:ubiquinone oxidoreductase, CI) with BD (217). A com-
parison of the brain intracellular pH by 31P-MRS in bipolar
patients showed that the pH was significantly lower in the
5178C group, suggesting that this polymorphism may mod-
ulate vulnerability in the patients by altering mitochondrial
respiration. Another polymorphism, 3644T>C in MT-ND1
gene, was identified in six BD patients with comorbid
symptoms suggestive of mitochondrial disorders and affect-
ing CI activity and mitochondrial membrane potential in
cybrids (319). The variant 12027T>C in the gene MT-ND4
encoding another subunit of CI was associated with SZ and
superoxide (O2

�-) production in the brain (281).
A few other mtDNA variants were reported for BD, MDD,

and SZ in genetic studies without any correlation to the
potential biochemical changes and mitochondrial function
(18, 355, 395, 452, 457). In addition, many studies failed to
show any correlation between mtDNA variation and mental
disorders (18, 169). Therefore, current information is in-
sufficient to implicate specific mtDNA haplogroups in the
risk of developing any psychiatric disorder (36, 222, 291,
370, 395, 452).

The most common mutations observed in individuals with
conditions caused by mtDNA defects are point mutations
(single base substitution, deletion, or insertion) and large
deletions (422, 440). Mutations in mtDNA may be maternally
inherited or somatic, accumulating with age in the normal
brain and other organs (60, 393, 440). An increased mutation
rate may also be caused by inherited nuclear gene mutations
that impact mtDNA replication, transcription, and mainte-
nance of copy number (440). Interesting studies in transgenic
mice expressing a proofreading-deficient POLG specifically
in neurons suggested that increased somatic mtDNA muta-
tion affected mood, since the mice presented spontaneous and
recurrent episodes of depression (213). A comprehensive
anatomical search showed that the mtDNA mutations accu-
mulated at high level in the paraventricular thalamic nucleus
(PVT) in these mice. Further, inhibition of neural transmis-
sion in PVT neurons caused depression-like episodes, sug-
gesting that mitochondrial dysfunction in this specific
neuronal population affects mood. Indeed, postmortem
brains of patients with mitochondrial disorder and comorbid
mood symptoms also revealed accumulation of MT-CO1-
negative cells in the paraventricular thalamus (222). In an-
other study of brain-specific conditional knockout of
SLC25A4 or ANT1, a causal gene of mitochondrial disease
linked with BD that encodes an ADP, ATP carrier, the MT-
CO1-negative cells were preferentially observed in dorsal
raphe serotonergic neurons, which could explain the dimin-
ished delay discounting behavioral phenotype of these mice
(219). Although mtDNA mutations have been reported in
psychiatric disorders over the past 25 years in studies using
different technologies (18, 103, 157, 348, 395), the infor-
mation gathered did not clearly indicate that mtDNA muta-
tions participate in the etiology of these conditions. However,
it is possible that an accumulation of deleterious mutations
may occur in a specific neural circuit.

C. Mitochondrial dynamics and interaction
with the endoplasmic reticulum

Mitochondria are dynamic and motile organelles existing
in the form of reticular networks or small structures with
variable sizes. Optimal morphology, mass, and distribution
are necessary to provide energy, buffering Ca2+ waves, and
retrograde signaling, among other functions in the cell, and
are the result of tightly regulated biogenesis, degradation,
fusion, and fission (132, 345) (Fig. 11). These processes are
regulated by internal and external cues, such as energy de-
mand, nutrient availability, stress, and apoptosis (262, 426).
Balanced fusion and fission events are thus essential for
mitochondrial homeostasis and cell survival; excess in-
creases in fusion or fission are deleterious and lead to ATP
decrease and apoptosis (132, 345). Mitochondria are inter-
connected or aggregated in small regions of the cell when the
equilibrium is directed toward fusion. In contrast, when the
equilibrium is directed toward fission, mitochondria are frag-
mented, respiration-incompetent and tend to lose mtDNA.
Recently, Schmitt et al. used a combination of in vitro and
in vivo models and showed that a circadian clock controls
mitochondrial dynamics and metabolic flux via DRP1 (dyna-
min 1 like) phosphorylation (391). DRP1 is central in mito-
chondrial fission. Even more interesting, cyclic DRP1
phosphorylation is necessary for feedback regulation of the
core clock, suggesting that changes in mitochondrial dy-
namics may have repercussions in the regulation of circadian
rhythm. Considering the interconnection between mitochon-
drial bioenergetics, oxidative stress, mitochondrial dynamics,
and circadian regulation, it is not surprising that abnormalities
in the structure or number and/or changes in the expression of
proteins implicated in mitochondrial dynamics have been de-
scribed in ASD, SZ, and BD (63, 129, 367, 387, 438).

The sites of contact between the mitochondrion and the en-
doplasmic reticulum (ER) are important for mtDNA replication,
for maintenance of lipid and Ca2+ homeostasis, in the initiation
of autophagy and mitochondrial division, and in sensing met-
abolic shifts (256, 303, 354, 449) (Fig. 7). Mitochondria actively
participate in the intracellular regulation of Ca2+ signaling by
buffering the Ca2+ waves released by the ER or from the plasma
membrane. In general, intensification in energy demand is
correlated with an increase in Ca2+, but alterations in the mi-
tochondrial oxidative phosphorylation capacity are often asso-
ciated with poor handling of Ca2+ fluxes (37). Two regulators of
Ca2+ transfer at the ER-mitochondria contact sites described
recently are the ROS molecule, hydrogen peroxyde, and DISC1
(42, 336). Even though the gene CACNA1C (calcium voltage-
gates channel subunit a-1C) encoding a Ca2+ channel is com-
monly found to be associated with ASD, SZ, BD, and MDD,
very few studies have addressed this question (35, 85). Mi-
tochondria are subjected to multiple pathways of quality control
to ensure that damaged or unnecessary organelles are elimi-
nated. This can be achieved by different mechanisms, including
mitochondria-derived vesicles that transport damaged material
for degradation by the lysosomes and a selective form of au-
tophagy called mitophagy that eliminates whole mitochondria
(345, 488). Autophagy is a cellular response to nutrient star-
vation regulated by activation of autophagy-related genes by the
PI3K pathway and the repression of the mTOR kinase (234).
Recent findings suggest that autophagy is impaired in ASD, SZ,
and MDD (203, 227, 299, 437).
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FIG. 11. Mitochondrial dynamics and regulation by the core circadian clock. (A) Schematic representation of
mitochondrial biogenesis, fusion, fission, and mitophagy. Mitochondrial mass is regulated by biogenesis and mitophagy,
among other degradation processes. Fusion and fission processes are necessary for mtDNA replication and maintenance and
optimal functioning of oxidative phosphorylation. Mitofusins MFN1–2 and OPA1 are localized in the outer and inner
membrane, respectively, and are responsible for successive fusion of these membranes. Active nonphosphorylated DRP1
oligomerizes and causes constriction of outer membrane and mitochondrial fission with the participation of other proteins
(hFIS1, MFF, MIEF1–2). Mitochondrial dysfunction (e.g., depolarization of the internal membrane) induces fission, and
defective mitochondria are targeted for mitophagy by PINK and PARKIN. (B) The circadian clock controls the rhythmic
mitochondrial dynamics and metabolic fluxes by DRP1 phosphorylation at amino acid S637. The DRP1 phosphorylation
cycles also regulate the core clock. Circadian rhythm, metabolism, and mitochondrial dynamics are connected and regulated
by anterograde and retrograde signaling. DRP1, dynamin 1 like. Color images are available online.
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V. Oxidative Stress and Antioxidant Defense
in Psychiatric Disorders

The brain is particularly susceptible to oxidative damage
caused by what Halliwell meticulously described in 13
‘‘problems’’ (172). Cobley et al. revisited these recently (75).
Major reasons are that brain function is dependent on redox
signaling for synaptic plasticity and memory (231, 417),
action potentials cause Ca2+ fluxes that are redox regulated
and latent oxidative stress inducers (42, 183), and neuro-
transmitter metabolism and auto-oxidation generate ROS
(75, 172). A possible role for oxidative stress in the patho-
physiology of psychiatric disorders has been sought for more
than 30 years with occasionally conflicting results (78, 118,
361). Although we are far from having validated oxidative
stress biomarkers that could be used in the clinic for diag-
nostics and prognostics, the accumulated research data point
to the involvement of oxidative stress in the pathophysiology
of psychiatric disorders.

A. Redox mechanisms and signaling in the brain

Aerobic life and energy metabolism are indissociable from
the production of oxidant molecules. However, ROS are not
only an undesirable consequence of metabolic activity, pro-
duced as a side product of mitochondrial respiratory com-
plexes, dehydrogenases, and oxidases; some of these
molecules have important signaling functions (2, 42, 43, 75).
Cellular oxidative stress state occurs when an imbalance
between ROS generation and antioxidant defenses cause ir-
reparable oxidative damage. It was shown 20 years ago that
treatment of bacteria and yeast cultures with low concentra-
tions of H2O2 induced an adaptive response to oxidative
stress, making cells more resistant to subsequent insults (62).
More recently, Calabrese et al. proposed the concept of
hormetic dose response or hormesis (a term coined in 1943
by Southam and Ehrlich) as a primary reponse of biological
systems to stress conferring resistance and promoting health
and its implication in neurodegenerative and psychiatric
disorders (54, 57, 58). At low concentrations, in physiologi-
cal conditions, ROS and reactive nitrogen species (RNS)
reversibly modify proteins in thiol groups, acting as redox
switches regulating the activity of transcription factors and
signaling pathways, such as Nrf2 and heat shock factor 1 (3,
311, 366). More generally, the hormetic adaptive response to
different stresses is mediated by the vitagene network, which
encodes among others heat shock proteins, heme oxygenase
1, the thioredoxin system, and sirtuins (55, 59, 360). Inter-
estingly, the neuroprotective effect of dietary antioxidant
molecules such as resveratrol, sulforaphane, or carnosine, is
also mediated by the activation of hormetic mechanisms (56).
Evidence accumulates on the beneficial effects of low doses
of oxidants in health, providing new therapeutic targets
(55, 366).

NADPH oxidases (NOXs) are a significant source of ROS
in the brain. These enzymes regulate activation of microglia
and inflammatory response, and neuronal development (411).
NOXs are membrane enzymes that produce bursts of ROS in
the extracellular space or the lumen of organelles in a regu-
lated manner (411). NOX2 (also known as gp91phox because
it is expressed in phagocytic cells) is the best studied and
generates superoxide from NADPH by electron transfer to
oxygen at the plasma membrane. NOX2 interacts with the

transmembrane p22phox protein forming an inactive complex,
which is activated by multiple regulatory cytosolic proteins
(411). ROS generated by NOXs contribute to distinct phases
of neuronal differentiation and function: neurogenesis, axo-
nal outgrowth and guidance, NMDAR-mediated plasticity,
long-term potentiation, and memory (43). Therefore, strict
regulation of NOX enzymes is essential for normal brain
development and function and changes were detected in
psychiatric disorders (192, 389, 396, 465).

B. Antioxidant response in brain cells

O2
�- is converted enzymatically into the membrane-

permeant H2O2 by superoxide dismutase (SOD) (Fig. 12).
Excess superoxide causes an increase in the intracellular free
iron pool by releasing iron from iron-sulfur clusters. This is
dangerous because it favors the Fenton reaction, leading to
the generation of hydroxyl radical (HO�), which is extremely
reactive and can damage any biological macromolecule.
Excess O2

�- can also react with NO to generate the delete-
rious peroxynitrite (ONOO-). Although highly toxic, the only
cellular protection against HO� and ONOO- is the removal of
O2
�- by SODs. Detoxification of H2O2 relies on the action of

multiple scavenging enzymes, such as catalases, glutathione
peroxidases (GPXs), and peroxiredoxins (475). Peroxides
(mostly formed from oxidized lipids and proteins) are re-
duced by GPXs using reducing equivalents from reduced
glutathione (GSH), which is simultaneously oxidized to
GSSG. GSH is regenerated from GSSG by glutathione re-
ductase by using NADPH as the electron donor. The cellular
thiol redox status is maintained by the glutathione/glutar-
edoxin (GRX) and thioredoxin/thioredoxin reductase sys-
tems, which reduce the oxidized sulfydryl groups of proteins
(33). The damaged bases are removed from the DNA by the
base excision repair pathway to maintain DNA integrity
(469). The master regulator of phase II antioxidant response
is Nrf2, which activates genes containing the antioxidant
response element in the promoter (Fig. 13). In oxidative stress
conditions, the Nrf2-mediated transcription program induces
adaptive metabolic changes that are necessary for survival,
including increases in the expression of detoxifying mecha-
nisms and repair systems (208). In normal conditions, Nrf2
is a cytoplasmic protein associated with KEAP1 (Kelch-like
ECH-associated protein 1), which is an adaptor subunit of
Cullin 3-based E3 ubiquitin ligase, which efficiently pro-
motes Nrf2 ubiquitination and degradation by the proteasome
(431). Under oxidative stress conditions, KEAP1 is modified,
releasing Nrf2 that is phosphorylated at Ser40 by protein
kinase C (PKC) and translocated to the nucleus (190). PI3K is
also implicated in the nuclear translocation of Nrf2 by con-
trolling actin reorganization and cytosolic Ca2+ rise (208).

Methylglyoxal (MG) is predominantly formed by glycol-
ysis by fragmentation of glyceraldehyde-3-phosphate and
dihydroxyacetone phosphate (8). It is a cell-permeant, highly
reactive dicarbonyl compound that generates advanced gly-
cation end products (AGEs) from proteins, lipids, and nucleic
acids. The formation of AGEs constitutes a biochemical
complication of diabetes causing vascular inflammation and
is also implicated in aging, neurodegenerative disorders, and
possibly autism (101, 277, 285). MG is mostly detoxified by
the glyoxalase system (Fig. 8). The product of the sponta-
neous reaction between MG and GSH is detoxified by the
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glyoxalase 1 (GLO1) generating S-d-lactoylglutathione,
which is converted into d-lactate by the glyoxalase 2 (GLO2)
regenerating GSH (8). The two reactions are impor-
tant: GLO1 rapidly transforms MG into the nontoxic S-d-
lactoylglutathione, and GLO2 regenerates reduced GSH that
is necessary for antioxidant protection. Bélanger et al. re-
ported that, in mouse primary cortical cultures, enzymatic
activity of glyoxalases is significantly higher in astrocytes
compared with neurons, 9.9-fold for GLO1 and 2.5-fold for
GLO2 (29). GLO1 enrichment in astrocytes was also con-
firmed in vivo and is consistent with a lower accumulation
of AGEs in astrocytes compared with neurons, despite their
higher glycolysis rate (29). Neurons are highly sensitive to
MG toxicity, which is associated with AGE accumulation
and oxidative stress (29, 104). Interestingly, astrocytes pro-
tect neurons against MG toxicity in co-cultures (29). There-
fore, these differences show that the antioxidant defenses are
adapted to the type of metabolism of brain cells.

In a counterintuitive manner considering the high oxida-
tive metabolism and signal transmission, neuronal antioxi-
dant defenses are apparently frail (41, 111). The GSH and
NADPH levels are lower in neurons than in astrocytes (29,
111). In agreement with these data, Jimenez-Blasco et al.

showed that Nrf2 is highly unstable and continuously de-
graded in neurons but remarkably stable in astrocytes in rat
primary cortical cultures (204). It is possible that other an-
tioxidant defense mechanisms operate in neurons. The syn-
aptic activity at NMDAR is coupled with transcriptional
increase in glutathione and thioredoxin-peroxiredoxin anti-
oxidant systems in neurons (28, 334) (Fig. 14). In astro-
cytes, NMDAR-mediated transduction pathway leads to
Nrf2-dependent increase in GSH synthesis through a com-
plex mechanism not involving KEAP1/CUL3. Stimulation of
glutamate receptors results in Ca2+ release from the ER and
activation of PKCd that phosphorylates and activates the p35/
cyclin-dependent kinase 5 (CDK5) complex, which, in turn,
phosphorylates Nrf2 that is sufficient for nucleus transloca-
tion and transcriptional activation of antioxidant genes (204).
In these conditions, astrocytes secrete precursors that are
used by the neurons for de novo GSH biosynthesis (astrocyte-
neuronal glutathione shuttle) (41, 112, 204). These results
show that the coupling of glutamatergic neurotransmission
and metabolic adaptation in astrocytes ensures redox pro-
tection of active neurons. However, the adverse conse-
quences of this coupling are that low NMDAR activity leads
to deficits in glutathione systems and neuronal death (28).

FIG. 12. ROS generation
and cellular antioxidant
defense enzymes. Super-
oxide (O2

�-) is produced by
complexes I and III of the
electron transport chain and
converted into H2O2 by SODs
or into ONOO- by reacting
with NO. H2O2 can react
with ferrous iron to produce
the HO�. H2O2 and other
peroxides are detoxified by
GPXs, which oxidizes gluta-
thione. H2O2 is also scavenged
by catalases and PRX. Per-
oxiredoxins can also scavenge
ONOO-. GSSG is reduced to
GSH by GR using electrons
from NADPH. The cellular
thiol redox status is main-
tained by the TRX/TR and
glutathione/glutaredoxin sys-
tems by reducing the oxi-
dized sulfydryl groups of
proteins. GPXs, glutathione
peroxidases; GR, glutathione
reductase; GSH, reduced glu-
tathione; HO�, hydroxyl radi-
cal; H2O2, hydrogen peroxide;
NO, nitric oxide; ONOO-,
peroxynitrite; PRX, peroxir-
edoxins; SODs, superoxide
dismutases; TR, thioredoxin
reductase; TRX, thioredoxin.
Color images are available
online.
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FIG. 13. Nrf2 regulation in normal and oxidative stress conditions. In normal conditions, Nrf2 is a cytoplasmic protein
associated with KEAP1 and CUL3-based E3 ubiquitin ligase, which efficiently promotes Nrf2 ubiquitination and degra-
dation by the proteasome. Under oxidative stress conditions, KEAP1 cysteines are oxidized and Nrf2 is released, phos-
phorylated by PKC, and translocated to the nucleus. KEAP1, Kelch-like ECH-associated protein 1; Nrf2, nuclear factor,
erythroid 2 like 2; PKC, protein kinase C. Color images are available online.

FIG. 14. Glutamatergic transmission regulates antioxidant defense in astrocytes and neurons. In neurons, synaptic
activity at NMDAR is coupled with a transcriptional increase in glutathione and thioredoxin-peroxiredoxin antioxidant
systems independently of Nrf2. In astrocytes, stimulation of glutamate receptors (NMDAR) results in Ca2+ release from the
ER and activation of PKCd that phosphorylates and activates the p35/CDK5 complex, which, in turn, phosphorylates Nrf2,
which is sufficient for nucleus translocation and transcriptional activation of antioxidant genes. Astrocytes secrete pre-
cursors and GSH that are used by the neurons. CDK5, cyclin dependent kinase 5; NMDAR, N-methyl-d-aspartate receptor
or glutamate receptor. Color images are available online.
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The opposite was also observed; chemical-induced reduction
of GSH synthesis causes NMDR hypofunction in rat CA1
pyramidal neurons (421). In addition, glutathione modulates
the redox-sensitive sites in NMDAR (425). These observa-
tions suggest that, in normal homeostatic conditions, a vir-
tuous cycle ensures synaptic activity and antioxidant
protection. Dysfunctions in either of these functions have
negative effects and are implicated in several neurodeve-
lopmental disorders, particularly in schizophrenia but also in
autism and mood disorders (149, 174, 253).

C. Oxidative stress and antioxidants
in psychiatric disorders

Oxidative stress can be identified in patients by biochem-
ical indicators of the extent of damage (89, 134, 283) or by
glutathione brain imaging (353). ROS/RNS direct detection
is usually not used in biomedical research (107). The bio-
markers of oxidative stress generally used are the products of
oxidation of proteins, amino acids, lipids or nucleic acids, and
antioxidant defense enzymatic activities. The analysis of the
published data, including meta-analyses, of biomarkers in
peripheral tissues of patients with psychiatric disorders is
frequently inconclusive regarding the oxidative stress status
of these patients. This is related to drawbacks in the choice of
biomarkers and in the detection methods (89, 134, 283).
Biomarker detection is problematic; some methods are not
specific, and others that are specific are too complex to use for
clinical diagnostic. Efforts are being made to select bio-
markers that can be measured easily and specifically and are
good indicators of oxidative stress (89, 118). The measure-
ment of brain glutathione in vivo using 1H-MRS may also
vary depending on the method used (353). Adding to these
difficulties, other parameters, such as the length of disease
and drug treatments, can add intricacy to the evaluation.
Another important concern is that the activation of antioxi-
dant protection in brain cells is different from other tissues
and the correlation between peripheral and brain oxidative
status is poorly known in health and disease conditions.
However, this information is crucial for the selection of pe-
ripheral oxidative stress biomarkers that are predictors of
disease. Regardless of all these obstacles, the combination of
evidence obtained from peripheral tissues and central ner-
vous system indicates the involvement of oxidative stress in
autism, SZ, BD, and MDD (136, 143, 162, 353, 407, 413).
Oxidative and antioxidant defense biomarkers were also re-
ported in multiple animal models for these disorders and were
reviewed recently by Smaga et al. (407). Hopefully, future
studies using iPSC-derived cell models will also improve our
understanding of the underlying mechanisms of ROS/RNS
generation and detoxification in the pathophysiology of
psychiatric disorders.

1. Autism spectrum disorder. A recent proposal to inte-
grate the risk factors of ASD considers that genetic suscep-
tibility and environmental factors may be linked by oxidative
stress (279, 298). Multiple studies have shown the presence
of molecules indicative of oxidation in blood samples of
autistic patients (73, 117, 123, 162, 200, 225). In 2012,
Frustaci et al. did a meta-analysis of 39 original reports that
compared antioxidant biomarkers and confirmed a signifi-
cantly lower level of GSH and GPX activity and higher level

of GSSG in the plasma of fasting autistic children than in
controls (136). The plasma decrease in GSH in autistic
children was replicated in recent studies and is one of the
most reproducible oxidative stress measures (332, 373).

Two studies reported the postmortem glutathione redox
status in various regions of the brain of autistic patients
compared with age-matched controls (67, 374). Chauhan
et al. showed a reduction in glutathione antioxidant capacity,
specifically in patients’ temporal cortex and cerebellum, as
evidenced by the increase in GSSG and the decrease in GSH,
GSH/GSSG, and total glutathione (67). No difference was
observed between autistic children and controls in the frontal,
parietal, and occipital cortex regions (67). Interestingly, lipid
peroxidation was detected in the same brain regions (68) and
the activities of GPX and glutathione-S-transferase (GST)
antioxidant enzymes were decreased in the cerebellum (162).
In agreement with these data, Rose et al. also observed the
increase in GSSG and the decrease in GSH and GSH/GSSG
levels in young and adults with ASD (374). In addition, their
results showed evidence of protein and DNA damage and
chronic inflammation in those same regions of the brain using
the biomarkers 3-nitrotyrosine, 8-oxo-deoxyguanine, and 3-
chlorotyrosine, respectively. No alteration of glutathione
metabolism was detected in vivo in the brain of adult patients
using 1H-MRS, but the imaged areas (basal ganglia, dor-
somedial prefrontal cortex, dorsolateral prefrontal cortex,
and dorsal anterior cingulate cortex) were not exactly the
same as those analyzed earlier in postmortem samples (114,
120). The identification of genetic variation in several genes
necessary for glutathione synthesis (glutamate-cysteine li-
gase [GCL] and cystathione gamma-lyase) and antioxidant
glutathione-dependent pathways (GPX, GST, and GRX) that
confer susceptibility to ASD supports the hypothesis that
glutathione metabolism is disturbed in this disorder (44, 200,
308, 471, 479).

The rs2736654 SNP (C>A) in the GLO1 gene that causes
an Ala111Glu change in the enzyme was identified in 2004 as
a risk factor for ASD (206). Barua et al. found that Glu-Glo1
enzyme activity is lower than the Ala-isoform and leads to
accumulation of MG in lymphoblastoid cells (26). The as-
sociation between GLO1 variants was observed in a few of
the following studies, but not all (138, 238, 362, 481). Since
glutathione metabolism and GLO1 are among the susceptibility
genes for ASD, Maher proposed that this genetic vulnerability
that affects redox status coupled with toxic diet-derived MG
and AGEs may provide a link between oxidative stress, in-
flammation, and mitochondrial dysfunction and be the source
of the neurodevelopmental and neuropathological changes in
autistic brain (277).

The accumulated evidence pointing to oxidative stress as
an important factor in the etiology of ASD raised the question
of the potential therapeutic benefits of antioxidants. N-
acetylcysteine (NAC) was tested in a pilot double-blind,
randomized, placebo-controlled study and showed a reduc-
tion in irritability (173); however, these results were not
replicated in recent clinical trials (98, 474). Nevertheless,
another clinical trial showed that the association of NAC with
risperidone was more efficient than risperidone alone in de-
creasing irritability in children and adolescents (148). A 3-
month treatment with coenzyme Q10, which is a component
of the electron transport chain with antioxidant properties,
improved behavior in ASD children (167). Other interesting
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natural molecules tested in clinical trials with beneficial re-
sults in behavior and social interaction were sulforaphane and
luteolin (404, 435), although the effect of these molecules
may be more related to an adaptive response to stress than to
antioxidant properties (55, 56). These studies showed that all
these drugs are well tolerated and have no major adverse
effects, suggesting that their use as supportive therapies may
magnify the beneficial results of primary treatments.

2. Schizophrenia. Oxidative stress and inflammation are
proposed to be at the center of SZ etiology, integrating ge-
netic and environmental factors (such as prenatal infections,
hypoxia at birth, and malnutrition) early in neurodevelop-
ment and contributing to NMDAR hypofunction and onset of
psychosis (25, 272, 306, 420). In 2013, a meta-analysis of 44
studies of oxidative stress markers in serum, plasma, and
erythrocytes in patients with SZ or related psychotic disor-
ders showed that the changes in specific parameters were
largely correlated with the clinical status (128). Therefore,
the authors described their findings as state markers, if
symptom dependent, or as trait markers, if symptom inde-
pendent. The levels obtained in cross-sectional studies sup-
port total antioxidant status, catalase, and plasma nitrite as
state markers and red blood cells SOD as a trait marker for SZ
(128). A recent review extensively lists the 100 studies that
identified an association between oxidative stress and SZ
(236). Glutathione levels were consistently decreased in pe-
ripheral samples, in cerebrospinal fluid, and in postmortem
caudate nucleus and prefrontal cortex from drug-naive or
treated patients compared with controls (108, 143, 236, 483,
486). In vivo measurements of brain GSH using 1H-MRS
gave mixed results, possibly related to the heterogeneity of
symptoms and medications of the patients involved in these
analyses (108, 287, 441, 478). Nonetheless, Matsuzawa et al.
found a significant negative correlation between GSH levels
in the posterior medial prefrontal cortex and the severity of
negative symptoms in patients (287). The search for poly-
morphisms and CNVs in glutathione-antioxidant defense
genes in worldwide populations also gave inconsistent results
(72, 158, 286, 447). However, it was shown that specific
trinucleotide polymorphisms in the GCLC gene, encoding the
catalytic subunit of GCL, are more frequent in SZ patients
and cause lower GCL expression and activity and a decrease
in the total glutathione content (168). Interestingly, the GCL
activity in patients’ fibroblasts increases to lower levels than
those observed in control cells after treatment with the oxi-
dant tert-butylhydroquinone (168), suggesting that impaired
glutathione synthesis may disturb the patient’s cells redox
status and be a risk factor for SZ (168, 447).

Deficits in fast-spiking parvalbumin-positive interneurons
(PVIs) and impaired myelination are two pathological fea-
tures of SZ that are believed to contribute to altered brain
connectivity and psychotic symptoms (25, 174, 272, 420). A
recent mechanistic hypothesis proposes that early-life
NMDAR hypofunction, redox imbalance, and neuroin-
flammation converge to cause impaired development of oli-
godendrocytes and PVIs and dysfunction of the associated
networks (25, 272, 420). Monin et al. demonstrated that
glutathione is necessary for normal myelination and white
matter maturation in the human and mouse prefrontal cortex
(312). The GABAergic PVIs are crucial for the synchroni-
zation of pyramidal neurons firing during sensory and cog-

nitive tasks. Animal studies using different models (such as
genetic deficit of GSH synthesis or knockdown of the mito-
chondrial biogenesis regulator PGC-1a) showed that PVIs
are particularly vulnerable to oxidative stress during the early
phases of development that lead to long-term impairments in
the prefrontal cortex (53, 61, 270). Cabungcal et al. showed
that in a developmental SZ rodent model (neonatal ventral
hippocampal lesions) antioxidant treatment with NAC of
young and adolescent animals prevented the prefrontal cor-
tex reduction in PVIs and the electrophysiological and
behavior deficits (52). It was shown in vitro that the anti-
psychotic drugs clozapine and olanzapine have good anti-
oxidant properties and ziprosidone, risperidone, quetapine,
and haloperidol have reduced or no antioxidant activity (47,
382). However, there are no reports on the redox status of
SZ patients treated specifically with clozapine or olanzapine.

The authors of a recent review of 22 randomized controlled
trials on the effect of antioxidant add-on to antipsychotic
therapy in adult SZ patients concluded that the results ob-
tained were limited and that there was a need for larger trials
and longer follow-up periods for evaluation of improvement
of acute psychotic episodes and core symptoms and pre-
vention of relapse (275). Nonetheless, from all the molecules
tested (Ginkgo biloba extract, NAC, allopurinol, dehydro-
epiandrosterone, ascorbic acid, a-tocopherol, and selegiline),
G. biloba extract and NAC gave promising results. Another
review study of 29 clinical trials that tested NAC, several
fatty acids, a-lipoic acid, ascorbic acid, a-tocopherol, and
aspirin also revealed the promising effects of NAC (236).
Unfortunately, according to the preclinical data obtained with
animal models, the most beneficial temporal window for
antioxidant treatment would be before psychotic symptoms
appear, meaning before diagnosis.

3. Mood disorders. Oxidative stress and inflammation
markers were reported for mood disorders in depression and
manic phases in multiple studies and meta-analyses. A sig-
nificant increase in lipid peroxidation, NO levels, and DNA/
RNA damage was found in BD patients compared with
controls, irrespective of disease phase and treatments, in 2
meta-analyses of 13 and 29 studies using peripheral and
postmortem brain samples (15, 49). Other meta-analyses also
identified lipid peroxidation and DNA damage increases in
patients with depression (depressive symptoms, BD, and
MDD) compared with controls (39, 266). Sowa-Kućma et al.
compared seven immune and oxidative biomarkers in BD and
MDD patients (in acute depressive or euthymic phase) and
found no difference between the two pathologies (413). In
addition, they showed that lipid peroxidation was signifi-
cantly associated with immune activation and that it was a
good predictor of mood disorders, atypical depression, mel-
ancholia, and suicidal thoughts (413). By contrast, another
study showed a positive correlation between lipid peroxida-
tion and anxiety, but not depression, in medication-free MDD
patients (416). The SOD activity increased in medicated
manic and depressed patients compared with euthymic pa-
tients and controls, suggesting that antioxidant defense may
oscillate depending on the BD phase and independently of
medication (13, 243).

Unlike ASD and SZ, where low glutathione levels are the
most significant oxidative stress biomarkers, in BD and MDD
only a few studies measured the glutathione redox status.
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Total and GSH concentration was decreased and GSSG was
increased in the plasma of medicated BD patients compared
with healthy controls (372). A decrease in total plasma glu-
tathione was also detected in the plasma of BD patients who
had experienced at least one psychotic episode compared
with healthy controls (329). In agreement with these obser-
vations, Gawryluk et al. found low levels of GSH and GSSG
in postmortem samples of prefrontal cortex of BD patients
compared with controls (143). In addition, the authors did not
observe any change in the enzymes GCL, glutathione re-
ductase, GPX, and GST of the glutathione-dependent anti-
oxidant pathway (142, 143). In vivo 1H-MRS studies were
performed in young BD patients and revealed no change in
GSH in several cortical regions relative to healthy controls
(154, 245). However, low levels of GSH were detected by
using 1H-MRS in MDD patients compared with controls
(402). Data are largely missing on oxidative stress evolution
during progression of BD and MDD, but they seem to be
reliably detected at later stages (14, 97, 154, 402). This
finding distinguishes ASD and SZ from BD and MDD; for the
former, oxidative stress is an important factor in the etiology
of the disorders whereas for the latter it seems to be a sec-
ondary factor in the pathology.

Mood stabilizers and SSRIs have antioxidant properties.
Several studies showed a decrease in redox biomarkers in
cellular and animal models and in BD patients treated with Li
and VPA (16, 32, 86, 273). However, the results reported for
SSRIs effect in MDD patients are variable; some studies
found antioxidant qualities (38, 224) and others not (139). A
meta-analysis of five double-blind, randomized, placebo-
controlled trials using NAC for depressive patients with di-
verse conditions concluded that there was an improvement in
the symptoms (126). Another recent meta-analysis of ran-
domized controlled trials assessed the efficacy and safety of
adjunctive NAC, showing its usefulness in SZ but not in BD
and MDD (496). Although the data obtained with classical
antioxidant molecules are mainly unsatisfactory, recent
studies showed that ketamine and minocycline, which inter-
fere with glutamatergic neurotransmission, are promising
drugs for treatment of depression (77). Interestingly, it has
recently been shown that ketamine used in treatment-
resistant depression affects energy metabolism and antioxi-
dant capacity in the hippocampus of treated mice (467).
Minocycline is an antibiotic that crosses the blood–brain
barrier and has antioxidant and anti-inflammatory properties.
The recent results of a pilot study suggest that minocycline
treatment increases GSH levels in the brain of BD patients,
reduces depression symptoms, and is well tolerated (322).

VI. Toward a Specific Pathophysiology for Individual
Psychiatric Disorder

Mitochondrial dysfunction and impaired redox signaling
are not specific to mental disorders but are also implicated in
multiple disorders, such as diabetes mellitus and Parkinson’s
disease. In the case of these diseases, pancreatic b cells or
dopaminergic neurons are affected. Thus, mitochondrial and
redox impairment are not at all specific to any disease, but the
affected cells are specific to each disorder. As mentioned
earlier, alterations in mitochondrial bioenergetics and redox
signaling are common features of the four psychiatric dis-
orders, ASD, SZ, BD, and MDD. Although recent genetic,

neuroimaging, and iPSC studies pointed out that these dis-
orders share some common biological background, these
disorders have been well characterized and have clinically
distinctive features.

Why do these common cellular deficiencies in mitochon-
drial metabolism and redox regulation cause distinctive
clinical features? We propose that: the timing of its role in the
pathophysiology (such as early in life in ASD or aging in
BD), the affected cell types (such as parvalbumin neurons in
SZ), and the affected brain area (such as PVT or dorsal raphe
in BD or MDD) by these deficiencies may be specific and
contributing to each psychiatric disorder. The next step of
research in this field would be the identification of the af-
fected brain regions and cell types, and the timing of the
mitochondrial and redox dysfunction in each of the psychi-
atric disorders.

VII. Concluding Remarks

The studies reviewed here aimed at describing recent
views about the regulation pathways and mechanisms of
mitochondrial bioenergetics in brain cells and at shedding
light on the role of mitochondrial dysfunction and redox al-
terations in the pathophysiology of psychiatric disorders.
From the data presented, it is clear that these dysfunctions are
present in the patients and also suggest that they play a more
prominent role in the development and progression of ASD
and SZ than of BD and MDD.

The heterogeneity and spectral nature of psychiatric dis-
orders lead frequently to results that lack specificity to make
statistically significant conclusions with the risk of missing
relevant features. The search for common biological defects
may be a way to circumvent this obstacle and give momen-
tum to research in the field to achieve better knowledge,
better models, and better therapies for psychiatric disorders.
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CA. Serum S100B and antioxidant enzymes in bipolar
patients. J Psychiatr Res 41: 523–529, 2007.

14. Andreazza AC, Kapczinski F, Kauer-Sant’Anna M, Walz
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242. Kukat C, Wurm CA, Spåhr H, Falkenberg M, Larsson NG,
and Jakobs S. Super-resolution microscopy reveals that
mammalian mitochondrial nucleoids have a uniform size
and frequently contain a single copy of mtDNA. Proc Natl
Acad Sci U S A 108: 13534–13539, 2011.

243. Kunz M, Gama CS, Andreazza AC, Salvador M, Ceresér
KM, Gomes FA, Belmonte-de-Abreu PS, Berk M, and
Kapczinski F. Elevated serum superoxide dismutase and
thiobarbituric acid reactive substances in different phases
of bipolar disorder and in schizophrenia. Prog Neu-
ropsychopharmacol Biol Psychiatry 32: 1677–1681, 2008.

244. Kupfer DJ. The increasing medical burden in bipolar
disorder. JAMA 293: 2528–2530, 2005.

245. Lagopoulos J, Hermens DF, Tobias-Webb J, Duffy S,
Naismith SL, White D, Scott E, and Hickie IB. In vivo
glutathione levels in young persons with bipolar disorder:
a magnetic resonance spectroscopy study. J Psychiatr Res
47: 412–417, 2013.

246. Lamia KA, Storch KF, and Weitz CJ. Physiological sig-
nificance of a peripheral tissue circadian clock. Proc Natl
Acad Sci U S A 105: 15172–15177, 2008.

247. Lamont EW, Coutu DL, Cermakian N, and Boivin DB.
Circadian rhythms and clock genes in psychotic disorders.
Isr J Psychiatry Relat Sci 47: 27–35, 2010.

248. Lan TH, Beaty TH, DePaulo JR, and McInnis MG. Parent-
of-origin effect in the segregation analysis of bipolar af-
fective disorder families. Psychiatr Genet 17: 93–101,
2007.

306 KIM ET AL.



249. Lane JM, Liang J, Vlasac I, Anderson SG, Bechtold DA,
Bowden J, Emsley R, Gill S, Little MA, Luik AI, Loudon
A, Scheer FAJL, Purcell SM, Kyle SD, Lawlor DA, Zhu
X, Redline S, Ray DW, Rutter MK, and Saxena R.
Genome-wide association analyses of sleep disturbance
traits identify new loci and highlight shared genetics with
neuropsychiatric and metabolic traits. Nat Genet 49: 274–
281, 2017.

250. Lapuente-Brun E, Moreno-Loshuertos R, Acı́n-Pérez R,
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Abbreviations Used

AGE¼ advanced glycation end-product
AKT¼ protein kinase B

ANLS¼ astrocyte-neuron lactate shuttle
ASD¼ autism spectrum disorder
ATP¼ adenosine triphosphate

BA¼Broadman area
BD¼ bipolar disorder

BMAL1/ARNTL¼ aryl hydrocarbon receptor nuclear
translocator like

Ca2+¼ calcium
CDK5¼ cyclin-dependent kinase 5

CI¼NADH:ubiquinone oxidoreductase
CII¼ succinate:ubiquinone oxidoreductase

CIII¼ ubiquinol-cytochrome c oxidoreductase
CIV¼ cytochrome c oxidase

CLOCK¼ clock circadian regulator

CNV¼ copy number variant
CRY¼ cryptochrome

D-loop¼mtDNA displacement loop
DISC1¼ disrupted in schizophrenia 1
DRP1¼ dynamin 1 like

E/I¼ excitation/inhibition
ER¼ endoplasmic reticulum

fMRI¼ functional magnetic resonance
imaging

GABA¼ c-aminobutyric acid
GAPDH¼ glyceraldehyde 3-phosphate

dehydrogenase
GCL¼ glutamate-cysteine ligase
GLO¼ glyoxalase

GLUT¼ facilitated glucose transporter
GPX¼ glutathione peroxidase
GRX¼ glutaredoxin
GSH¼ reduced glutathione

GSSG¼ oxidized glutathione
GST¼ glutathione-S-transferase

GWAS¼ genome-wide association study
HO�¼ hydroxyl radical

H2O2¼ hydrogen peroxide
Hsf1¼ heat shock factor 1
IMM¼ inner mitochondrial membrane
iPSC¼ induced pluripotent stem cell

KEAP1¼Kelch-like ECH-associated protein 1
Li¼ lithium

LONP1¼Lon peptidase 1
MDD¼major depressive disorder
MFN¼mitofusin

MG¼methylglyoxal
MICOS¼mitochondrial contact site and cristae

organizing system
MRS¼magnetic resonance spectroscopy

mtDNA¼mitochondrial DNA
mTOR¼mammalian target of rapamycin
mtSSB¼ single-stranded DNA binding protein

NAC¼N-acetylcysteine
NAD+¼ nicotinamide adenine dinucleotide

NADPH¼ nicotinamide adenine dinucleotide
phosphate

NDUFS1¼NADH:ubiquinone oxidoreductase core
subunit S1

NMDAR¼N-methyl-d-aspartate receptor
or glutamate receptor

NO¼ nitric oxide
NOX¼NADPH oxidase

NPAS2¼ Per-Arnt-Sim domain-containing
protein 2

NR1D¼ nuclear receptor subfamily 1 group D
Nrf2¼ nuclear factor, erythroid 2 like 2
O2
�-¼ superoxide

OMM¼ outer mitochondrial membrane
ONOO-¼ peroxynitrite

OPA1¼mitochondrial dynamin-like GTPase
or optic atrophy protein 1

PDH¼ pyruvate dehydrogenase complex
PER¼ period
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Abbreviations Used (Cont.)

PET¼ positron emission tomography
PI3K¼ phosphoinositide-3-kinase

PFKFB3¼ 6-phosphofructo-2-kinase/fructose-
2,6-biphosphatase

PGC-1a¼ peroxisome proliferator-activated
receptor c coactivator 1a

PKA/C¼ protein kinases A/C
PKM¼ pyruvate kinase

POLG¼DNA polymerase c
PPP¼ pentose phosphate pathway
PVI¼ parvalbumin-positive interneuron

PVT¼ paraventricular thalamic nucleus
RNS¼ reactive nitrogen species

ROR¼ retinoic acid receptor-related orphan
receptors

ROS¼ reactive oxygen species
SCN¼ suprachiasmatic nucleus

SGAs¼ second-generation antipsychotics
shRNA¼ short-hairpin mediated RNA interference

SIRT¼ sirtuin
SNP¼ single-nucleotide polymorphism
SOD¼ superoxide dismutase
SSRI¼ selective serotonin reuptake inhibitor

SZ¼ schizophrenia
TCA¼ tricarboxylic acid

TFAM¼mitochondrial transcription factor A
VPA¼ valproic acid
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