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ABSTRACT

Understanding the evolutionary background of a bac-
terial isolate has applications for a wide range of
research. However generating an accurate species
phylogeny remains challenging. Reliance on 16S
rDNA for species identification currently remains
popular. Unfortunately, this widespread method suf-
fers from low resolution at the species level due
to high sequence conservation. Currently, there is
now a wealth of genomic data that can be used to
yield more accurate species designations via mod-
ern phylogenetic methods and multiple genetic loci.
However, these often require extensive expertise and
time. The Automated Multi-Locus Species Tree (au-
toMLST) was thus developed to provide a rapid ‘one-
click’ pipeline to simplify this workflow at: https:
//automlst.ziemertlab.com. This server utilizes Multi-
Locus Sequence Analysis (MLSA) to produce high-
resolution species trees; this does not preform multi-
locus sequence typing (MLST), a related classifica-
tion method. The resulting phylogenetic tree also in-
cludes helpful annotations, such as species clade
designations and secondary metabolite counts to aid
natural product prospecting. Distinct from currently
available web-interfaces, autoMLST can automate se-
lection of reference genomes and out-group organ-
isms based on one or more query genomes. This
enables a wide range of researchers to perform rig-
orous phylogenetic analyses more rapidly compared
to manual MLSA workflows.

INTRODUCTION

Identifying an unknown bacterial isolate is not only a ne-
cessity for academic classification but is an integral piece
of data for a variety of research. This information helps
guide growth requirements, downstream comparative anal-

ysis, and understanding a specific phenotype in context. For
drug discovery efforts, this is especially useful, as secondary
metabolite potentials are enriched in certain phyla, with dif-
ferences seen down to the species level (1). Species delin-
eation remains a challenge however due to factors such as
horizontal gene transfer (HGT), homologous recombina-
tion, and incomplete lineage sorting. Genome based meth-
ods have historically served as a powerful tool to discrimi-
nate species with the use of DNA-DNA hybridization meth-
ods (DDH). Currently this method has been largely sup-
planted by genomic sequencing of conserved areas, such as
the 16S ribosomal DNA sequences present in all bacteria
(2). Thanks to cheap sequencing and rapid processing using
tools such as BLAST, 16S sequence analysis has been the
workhorse of identifying bacterial isolates (3–6). Unfortu-
nately, complications such as using partial 16S sequences (7)
or multiple variants (8) can be a source of misleading desig-
nations. This highly conserved sequence may also result in
ambiguous designations due to similar sequence similarity
within genera (9). In light of this, additional similarity meth-
ods using whole genome data, such as Average Nucleotide
Identity (ANI) (10) or in silico DDH (11), have helped to
delineate species. These both provide a summary score for
the degree and extent of homology between two genomes.
Additionally, morphological and chemical data remains an
important step in defining a type strain - an isolate that rep-
resents a particular species; however this solution is unsuit-
able for high-throughput classification.

One issue with similarity-based approaches is that it is
difficult to interpret when no close relative exists in current
databases. A solution to this problem is to model evolu-
tionary history using phylogenetic methods. Initial imple-
mentations include similarity based tree construction us-
ing Neighbor-Joining (NJ) (12) or rapid k-mer approaches
such as CVTree3 (13,14); however these do not take into ac-
count parameters of evolution such as higher rates of transi-
tions compared with transversions. Computationally rigor-
ous character-based approaches, e.g. maximum-likelihood,
are alternatives that include these evolutionary parame-
ters and often yield more accurate results over similarity
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based approaches (15). Unfortunately, the variety of pro-
cessing techniques discourages widespread use as best prac-
tices are not immediately apparent to non-specialists. Re-
cently this barrier to use is being reduced through accessi-
ble web interfaces that utilize the computationally expensive
maximum-likelihood approaches, such as IQ-TREE (16,17)
and RaxML (18). Additional measures such as model find-
ing, included in IQ-TREE (19), ensure higher confidence in
evolutionary reconstruction as the choice of model can give
varied results (20). These advancements provide a more rig-
orous analysis over similarity methods, however this pro-
cess can often be insufficient in delineating species splits us-
ing 16S data alone due to limited phylogenetic signal in the
highly conserved sequence.

A solution to this issue is the use of Multi-Locus
Sequence Analysis (MLSA)––a technique that integrates
many genomic loci to increase phylogenetic signal. By an-
alyzing many conserved genes, often including 16S data,
a higher resolution species tree can be inferred (21). The
choice of genomic loci is important however, as many con-
siderations can impair accurate estimation (22). For exam-
ple, limiting to genes unlikely to be horizontally transferred
is an important consideration. Criteria such as using sin-
gle copy ubiquitous housekeeping genes and low evolution-
ary selection pressures have shown to help focus on those
with low phylogenetic noise (23). Another option is the use
of whole genome phylogenies, which carries the risk of in-
cluding genes with conflicting phylogenetic signal. Unfor-
tunately, these advantages come with the cost of computa-
tionally expensive workflows with an esoteric set of options
and processing steps. Even the seemingly trivial selection of
appropriate genomes to include can be a source of error;
for example, selecting an inappropriate out-group organism
will lead to misleading ancestral splits (24). The choice of
genomes will also impair gene selection, which may require
timely curation to identify appropriate single copy genes.
Other important downstream analyses, such as proper par-
titioning of alignments before tree inference (25), may also
lead to conflicting results and tree topologies.

To help remove these issues we created The Automated
Multi-Locus Species Tree (autoMLST), a free to use web-
server for generating high-resolution species trees. Unlike
currently available pipelines: EDGAR (26), Phylogeny.fr
(27) and GTDB (28), autoMLST automates all steps in
the process including organism and gene selection, offers
de novo construction of maximum-likelihood trees, and in-
cludes useful features such as model finding and tree an-
notations. Average Nucleotide Identity (ANI) estimates
are also provided and overlaid on the resulting tree using
MASH (29) to help delineate species boundaries and final
tree interpretation. To aid in the important application of
natural product drug discovery, autoMLST includes addi-
tional visualizations of secondary metabolite potential so a
quick assessment can be made on which isolates to focus
on. Other options such as bootstrap analysis and gene tree
consistency filtering are also included. One such option is
the use of coalescent theory to infer species trees. In addi-
tion to helping to corroborate an evolutionary hypothesis,
this can be beneficial for recent or rapidly diverging lineages
(30,31). In short, the server aims for an accessible ‘BLAST-

like’ workflow to obtain a rapid high-resolution species tree
and to identify closely related reference genomes.

METHODS AND IMPLEMENTATION

Workflow and inputs

Two provided pipelines for phylogenetic inference in au-
toMLST are available: ‘placement mode’, which leverages
pre-analyzed gene trees, and ‘de novo mode’, which au-
tomates Maximum-likelihood tree generation from scratch
(Figure 1). Up to 20 simultaneous genomes in Fasta, EMBL
or Genbank formats are used as input to the server; alterna-
tively NCBI accession numbers can be submitted. Each step
is automated by default but can also be manually curated
for organism and gene selection. All options and interpre-
tation of output results can be seen from the help section at:
https://automlst.ziemertlab.com/help

Reference and genome selection

Reference genomes were obtained from NCBI Refseq (32)
in September 2017 and incorporated into a SQL database
including taxon metadata. To reduce redundant strains the
top ten highest quality genomes were retained for genomes
of the same species. This was determined using the most
complete ‘assembly level’ and ‘taxid’ metadata. Genomes
marked as type strain or reference genome were added and
those with ambiguous genus designations were removed.

Using the MASH ANI estimator all query genomes are
compared to the collected database such that a total of 50
reference and query organisms are used. Reference genomes
are then selected by allotting half of the open positions to
genomes with the nearest average to the entire query set
with the other half devoted to references nearest to indi-
vidual queries. This results in a tree balanced with infor-
mative taxa spanning evolutionary gaps in queries. Type
strains are given priority by allowing for higher distances
(∼5% ANI) over non-type strains. For the placement mode
workflow, some of these genomes were used to produce ref-
erence alignments and gene trees. A total of 128 families
were found to have over 10 type strain genomes, ranging
from 11 to 313 members, which were then used to build each
of the family specific reference sets.

Gene selection

Searches for gene homologs are preformed using HMMER
(33) and essential gene models. These models were collected
from Pfam (34) and ‘equivologs’, orthologous genes with
confirmed conserved functions, from TIGRFAM (35). A
list of these models can be found in Supplemental S1. These
searches are added to a matrix of pre-identified homologs
present in reference organisms, which is then screened to
identify all single copy homologs; Genes that pass bit-score
trusted cutoffs of each model and show over 50% cover-
age of both model and query are added. This list is further
prioritized to focus on genes with stronger purifying selec-
tion using pre-calculated dN/dS values and a maximum of
100 genes are selected for downstream analysis. The Dn/Ds
values are averaged from codon alignments of reference or-
ganisms using Pal2Nal (36) and the PAML (37) application
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Figure 1. autoMLST workflow depicting placement and de novo mode. Estimated ANI values with reference genomes are found which is used for organism
selection. This set is then screened for single copy genes present in every genome and prioritized based on MLSA criteria. Multiple sequence alignments
are then obtained and trimmed. Final maximum-likelihood inference is calculated depending on the options and mode used.

‘yn00’. An optional filtering step is also provided, which
discriminates genes with larger median pairwise Robinson–
Foulds (RF) distances to all guide trees before preforming
species inference.

Alignment and tree construction

Placement mode leverages pre-built DNA alignments of all
selected single copy genes and their subsequent trees which
are combined using ASTRAL-III (38) to infer species trees.
Gene tree placement is done via the evolutionary place-
ment algorithm (EPA) in RAxML (39) using alignments
that have query organisms added with MAFFT (40). By de-
fault the rapid ‘FFT-NS-2’ alignment is used by both place-
ment and de novo modes; this can optionally run in local
iterative mode for improved accuracy. All alignments are
then trimmed using trimAl (41) using the ‘automated1’ set-
ting. DNA alignments are likewise produced using MAFFT
for de novo mode and extra options for bootstrap analysis
and model finding are provided via IQ-TREE (16,42); this
is also used to infer the final species tree via a partitioned
concatenated alignment of selected genes. Alternatively, the
coalescent pipeline can be applied in de novo mode which
will construct all gene trees with IQ-TREE before inferring
a final species tree with ASTRAL-III.

Additional tree annotations

The Biosynthetic Gene Cluster (BGC) coloring scheme il-
lustrates conservative counts of secondary metabolite po-
tential taken form an antiSMASH v4 (43) analysis of all
reference genomes in the database. BGCs found on contig
edges were given a count of 0.5 to avoid overestimation due
to those found on separated contigs. Five bins were then
defined for all counts with respect to various BGC types.
These were centered on the mean of non-zero counts from
all reference organisms with one standard deviation as the
width. Annotations for genome size and percent GC were
also added. These are taken from NCBI’s prokaryotic sum-

mary files and eight bins were selected to produce a his-
togram of relatively even amplitudes.

ANI clans and validation

Groups of organisms with closely matching ANI values,
‘clans’, were based on pairwise MASH distances of all ref-
erence genomes. All distances at various thresholds were
used as input for Markov clustering using the MCL ap-
plication (44) to assign unique clan IDs. These were done
at 97%, 95% and 90% ANI similarity thresholds such that
groups above these values were clustered. These group-
ings were also used to validate generated trees by check-
ing if related genomes clade together on tree branches; this
was done by using the Environment for Tree Exploration
(ETE3) python library (45) to identify the largest mono-
phyletic group (strictly homogeneous) for each ANI clan.
The proportion of maximum monophyletic members to the
total was then used to assess tree clades; a score of 100%
would be given if all members appear in one branch with
no other genomes included. This is done for every non-
singleton ANI clan and the average is reported for each tree
tested at various ANI clan definitions. Two additional val-
idations were also performed as detailed in the supplemen-
tal. Finally a comparison to a manual high-resolution phy-
logeny (46) was performed using the default de novo mode.

RESULTS

Here we introduce autoMLST a user-friendly, rapid web
tool to delineate bacterial species based on genomic data
from multiple loci (Figure 2). The server is publicly avail-
able at automlst.ziemertlab.com with no login requirement.
From the start page you can easily reach the intuitive anal-
ysis panel and begin by simply uploading up to 20 bacte-
rial genomes; Each genome is represented by exactly one file
in single or multi-record FASTA/EMBL/GenBank format.
The pipeline is fully automated by default but can option-
ally guide users through custom organism or gene selections
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Figure 2. Tree visualization provides options to toggle branch lengths, zoom, search and color the final tree. (A) ANI group coloring. (B) Secondary
metabolite coloring. (C) Sortable table of ANI values with search function. (C) Export functions to download trees, alignments, and supporting informa-
tion.

before processing the MLSA by selecting the appropriate
options.

Depending on chosen options, performance results
showed manageable runtimes between 4 and 5 min for the
default de novo workflow allowing for approximately 500
daily submissions on one server. Roughly, 4× more time is
needed when using model finding and bootstrap analysis,
whereas placement mode showed average runtimes of less
than a minute.

After processing, the generated species trees are presented
with a set of useful annotation and export functions to help
explore the results (Figure 2). For example, type strains and
query organisms are highlighted and ANI ‘clans’ are di-
rectly labeled on the tree to identify species boundaries. A
special application for the natural product community in-
cludes the estimation of BGC diversity from antiSMASH
analysis. Additionally, a reanalyze button in the final results
allows for manual curation options with greater ease, e.g. for
removal of organisms in the set that might be problematic.
All code for the webserver and workflow scripts are open
source and available at: https://bitbucket.org/ziemertlab/
automlst if extra throughput is required.

Tree validation

Multiple validation steps were taken in order to assess the
quality and accuracy of generated phylogenetic trees. First,
scoring of family trees via ANI clan definitions showed the
vast majority of trees, over 90%, had perfect grouping of
ANI clans into monophyletic clades for all grouping thresh-
olds (Figure 3). Similar results were seen for the coalescent
workflow with the exception of one tree showing an aver-
age score <0.75. Some trees could not be scored as they
only formed singleton ANI clans, which are not considered
as this inflates average scoring; therefore further validation
was performed using bootstrap analysis (Supplemental S2)
and branch length to ANI distance correlation (Supplemen-
tal S3).

Furthermore, we compared an automated Amycolatop-
sis tree with a previously defined MLSA from Adamek
et al. (46). This was compared to one generated with au-
toMLST using default parameters in de novo mode and was
found to contain all major clade definitions with subtle dif-
ferences in topology (Figure 4). Of these differences, varia-
tions in deep ancestry were seen in addition to strain level
ambiguities; Mainly these occur in areas of lower bootstrap
support and indicate uncertainty using either method (Sup-
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Figure 3. Histograms of monophyletic scoring of ANI clans at three thresholds: 97%, 95% and 90% ANI. (A) Concatenated workflow. (B) Coalescent
workflow.

Figure 4. Comparison of trees generated automatically with autoMLST (left) a manual MLSA (right) provided by Dr Adamek (46). Groups defined in
this study are indicated using the same color scheme and labels as in Adamek et al. Comparison was made using the tanglegram algorithm in dendroscope
(51). Further details can be seen in the Supplementary Figures S4 and S5.

plementary Figures S4 and S5). These differences are likely
the result of autoMLST using 85 genes compared to seven
selected in the manual procedure. Notably, the automated
gene selection overlapped with five of the manually selected
genes as well as 19 genes commonly used in the pubMLST
database (47)––a resource for sequence typing that uses well
characterized marker genes. A consequence of the larger

gene selection is fewer polytomies (unresolved bifurcation)
were seen in the autoMLST tree, e.g. A. mediterranei clade
(Supplemental S6). Despite these minor difference in diffi-
cult to resolve evolutionary splits, autoMLST was able to
highlight all major sub-clades in a fraction of the hands on
time of the Manual workflow.
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DISCUSSION AND CONCLUSIONS

As bacterial species definitions remain a challenge, with
known misnomers and ambiguous assignment due to hu-
man error (48), it is important to maintain a rigorous pro-
cedure for processing newly sequenced genomes. With the
expected rise of data, and eventual maturation of meta-
genome assembled genomes (MAGs) into high-quality
draft genomes, it is equally important to have rapid and
accessible procedures to process them. While 16S classifi-
cation has largely been a practical solution to taxonomic
profiling it can have the disadvantage of low resolution for
closely related species. Classification via ANI is becoming
a popular proposal to solve the taxonomy difficulties for
prokaryotes (49), however these similarity measures alone
may have trouble resolving closely related strains compared
to character-based methods. A viable alternative is the use
of MLSA methods that can leverage several evolutionary
markers from a simple draft genome.

One of the main motivations for designing this tool is to
not only make these methods more accessible but also re-
duce the hand on time so that many alternate approaches
and datasets can be explored. We also aimed to provide
helpful annotations for specific applications, one of which
is an active use case in our lab for natural product prospect-
ing. These methods are especially important when intra-
genus or intra-species differences are under consideration,
e.g. distinguishing promising organisms within a genus or
species for drug discovery (46). Thus, we have incorporated
counts of various BGC types of interest as an initial heuris-
tic to assess query organism potential by adding this color-
ing scheme directly on the resulting tree. Future efforts aim
to expand on these visualizations by illustrating overlap of
secondary metabolite potential using gene cluster network-
ing approaches such as BiG-SCAPE (50) so that product
diversity can also be estimated. This can potentially high-
light clades with high diversity of clusters despite low abso-
lute counts. We have added other additional properties of
interest such as genome size and GC content to help show
differences between clades. In addition to prioritizing query
genomes, the server aims to provide a rapid collection of re-
lated species for downstream comparative analysis or het-
erologous host selection.

autoMLST is shown to be a quick solution to perform-
ing these MLSA methods with the ease of current 16S anal-
ysis. While having an automated solution is beneficial we
also stress the importance of using high quality genomes
and performing manual confirmation of an evolutionary
hypothesis. Ensuring alignments are free of artifacts via the
export functions and comparing various organism and gene
sets is an important step, e.g. adding alternate organisms
and confirming little impact on original tree topology is
seen. Examining branch length variation and provided ANI
distance scores against tree topology is another important
quality control. This process of retesting is also encouraged
via the reanalyze function to allow researchers to test sev-
eral methods, organisms or gene sets if needed; this can
help to eliminate problematic data, such as poor quality
draft genomes that may reduce the number of informative
genes selected. In short, this server has greatly improved the
hands-on time in generating high-resolution species trees

and provides several optional processing steps to obtain a
more rigorous taxonomic classification.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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(2016) Phylogeny-aware identification and correction of
taxonomically mislabeled sequences. Nucleic Acids Res., 44,
5022–5033.

40. Katoh,K. and Standley,D.M. (2013) MAFFT multiple sequence
alignment software version 7: improvements in performance and
usability. Mol. Biol. Evol., 30, 772–780.

41. Capella-Gutiérrez,S., Silla-Martı́nez,J.M. and Gabaldón,T. (2009)
trimAl: a tool for automated alignment trimming in large-scale
phylogenetic analyses. Bioinformatics, 25, 1972–1973.

42. Hoang,D.T., Chernomor,O., Von Haeseler,A., Minh,B.Q. and
Vinh,L.S. (2018) UFBoot2: Improving the ultrafast bootstrap
approximation. Mol. Biol. Evol., 35, 518–522.

43. Blin,K., Wolf,T., Chevrette,M.G., Lu,X., Schwalen,C.J.,
Kautsar,S.A., Suarez Duran,H.G., de Los Santos,E.L.C., Kim,H.U.,
Nave,M. et al. (2017) antiSMASH 4.0-improvements in chemistry
prediction and gene cluster boundary identification. Nucleic Acids
Res., 45, W36–W41.

44. van Dongen,S. and Abreu-Goodger,C. (2012) Using MCL to extract
clusters from networks. Methods Mol. Biol., 804, 281–295.

45. Huerta-Cepas,J., Serra,F. and Bork,P. (2016) ETE 3: reconstruction,
analysis, and visualization of phylogenomic Data. Mol. Biol. Evol.,
33, 1635–1638.

46. Adamek,M., Alanjary,M., Sales-Ortells,H., Goodfellow,M.,
Bull,A.T., Winkler,A., Wibberg,D., Kalinowski,J. and Ziemert,N.
(2018) Comparative genomics reveals phylogenetic distribution
patterns of secondary metabolites in Amycolatopsis species. BMC
Genomics, 19, 426.

47. Jolley,K.A. and Maiden,M.C.J. (2010) BIGSdb: Scalable analysis of
bacterial genome variation at the population level. BMC
Bioinformatics, 11, 595.

48. Van Belkum,A., Welker,M., Dunne,W.M. and Girard,V. (2015) The
infallible microbial identification test: Does it exist? J. Clin.
Microbiol.,53, 1786.

49. Garrity,G.M. (2016) A New Genomics-Driven Taxonomy of Bacteria
and Archaea: Are We There Yet? J. Clin. Microbiol., 54, 1956–1963.
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