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ABSTRACT

Super-enhancers (SEs) have prominent roles in bi-
ological and pathological processes through their
unique transcriptional regulatory capability. To date,
several SE databases have been developed by us
and others. However, these existing databases do not
provide downstream or upstream regulatory analy-
ses of SEs. Pathways, transcription factors (TFs),
SEs, and SE-associated genes form complex regu-
latory networks. Therefore, we designed a novel web
server, SEanalysis, which provides comprehensive
SE-associated regulatory network analyses. SEanal-
ysis characterizes SE-associated genes, TFs bind-
ing to target SEs, and their upstream pathways.
The current version of SEanalysis contains more
than 330 000 SEs from more than 540 types of
cells/tissues, 5042 TF ChIP-seq data generated from
these cells/tissues, DNA-binding sequence motifs
for ∼700 human TFs and 2880 pathways from 10
databases. SEanalysis supports searching by either
SEs, samples, TFs, pathways or genes. The com-
plex regulatory networks formed by these factors can
be interactively visualized. In addition, we developed
a customizable genome browser containing >6000
customizable tracks for visualization. The server is
freely available at http://licpathway.net/SEanalysis.

INTRODUCTION

Super-enhancers (SEs), composed of clusters of enhancers,
regulate cell-type-specific expression programs through a
unique transcriptional activity to drive expression of genes

that define cell identity (1–3). Because of their prominent
functions in transcriptional regulation, SEs have been anno-
tated in numerous cell/tissue types. As a hallmark of cancer,
the alterations of signaling pathways converge on regulat-
ing terminal DNA-bound transcription factors (TFs) (4,5).
Importantly, SEs are more frequently occupied by termi-
nal TFs of pathways than typical enhancers. Concordantly,
SE-associated genes are also more responsive to signalling
cues than typical enhancers (5). Pathways, TFs, SEs and
SE-associated genes form complex regulatory networks (5–
7). These regulatory networks allow SEs to act as a crucial
platform for pathways to regulate gene expression programs
with much higher potency than typical enhancers. Notably,
the functional interplay between oncogenic pathways and
SEs is particularly prominent in regulating cancer biology,
which have been highlighted by numerous reports (5,8–10).

Several SE databases have been developed, including db-
SUPER (11), SEA (12) and SEdb (13). These databases
summarize and catalog SE regions for various tissue and
cell types using an H3K27ac signal-based ranking method
(ROSE) (14). However, none of the databases provide
downstream or upstream regulatory analysis involving SEs.
To address this need, we developed the SEanalysis web
server to provide SE-associated regulatory analyses. Users
can perform several SE-associated analyses in our web
server. I. Pathway downstream analysis: with the input of
a set of genes of interest, SEanalysis will identify path-
ways that they are significantly enriched in, the terminal
TFs that are downstream of the identified pathways, the
SEs and SE-associated genes occupied by the terminal TFs
( → → → in Figure 1A). II. Upstream regulatory
analysis: with the input of gene(s) of interest, SEanaly-
sis will identify associated SEs and determine which TFs
occupy these SE regions and the upstream pathways of
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Figure 1. Main functions of SEanalysis. (A) Schematic diagram of SEanalysis core functions. (B) Input and parameter page of ‘Pathway downstream
analysis’. (C) Results page of ‘Pathway downstream analysis’. (D) Detailed interactive table of results of ‘Pathway downstream analysis’.
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the identified TFs ( → → → in Figure 1A). III.
Genomic region annotation: users can input genomic re-
gion(s) of interest in bed format to discover SEs overlap-
ping the region(s), SE-associated genes and TFs occupying
the SE regions and the upstream pathways of identified TFs
( ← ← → in Figure 1A).

DESCRIPTION OF WEB SERVER

Annotation of SEs and SE-associated genes

We obtained more than 330 000 SE regions involving
542 cells/tissues from the SEdb database (13) that was
developed by our group using H3K27ac ChIP-seq data
from NCBI GEO/SRA (15), ENCODE (16), Roadmap
(16,17) and GGR (Genomics of Gene Regulation Project)
(16). Raw sequencing reads were aligned to hg19 reference
genomes with Bowtie (v0.12.9) (1,18), peaks were called
using MACS14 (v1.4.2) (19), and SE regions were anno-
tated using ROSE (14) software. Four different strategies
were used to annotate SE-associated genes: closest active
genes (20), overlapping genes, proximal genes and the clos-
est genes (14).

Identification of TF occupancy in SE regions

To identify TFs binding to SEs, we collected a total of
5042 TF ChIP-seq datasets from ENCODE (16), Remap
(21), Cistrome (22), ChIP-Atlas (http://chip-atlas.org) and
GTRD (23) (Figure 2, top panel). For the uniformity of
format and version, these peak datasets were converted to
the hg19 genome using liftOver (http://genome.ucsc.edu/
cgi-bin/hgLiftOver) tool of UCSC (24), and peaks that were
failed to be converted were discarded. We used the ‘cat’
shell command to merge files of different samples for the
same TF from the same tissue to generate union sets of
peaks. TF binding peaks overlapping with constituent en-
hancers of SEs in matched cell/tissue types were identi-
fied using BEDTools (v2.25.0) (25). Motif occurrences in
constituent enhancers of SEs for ∼700 TFs were identi-
fied using FIMO (Find Individual Motif Occurrences) (26)
from the MEME (Multiple Em for Motif Elicitation) suite
(27). More than 3000 DNA binding motifs for ∼700 TFs
were compiled from the TRANSFAC (28) and MEME suite
(20,27), based on the following collections: JASPAR CORE
2014 vertebrates (29), Jolma2013 (30), Homeodomains (31),
UniPROBE (32), Wei2010 (33). Finally, TF motif occur-
rence within SE constituents was identified with a P-value
threshold of 1e–5.

Identification of master TFs and classification of TFs

Saint-André et al. developed CRC Mapper program to ef-
ficiently reconstruct cell-type-specific core regulatory cir-
cuitry (CRC) models based on the identification of SE-
associated master TFs in a number of cell types (20). In this
program, master TFs are defined as auto-regulated TFs en-
coded by SE-associated genes (1,2,20) that bind to at least
three DNA sequence motifs at SEs associated with their
own gene, and form fully interconnected auto-regulatory
loops with other auto-regulated TFs by binding to SEs asso-
ciated with other TFs within the loop (34–37). We identified

master TFs for each cell/tissue using this program and pro-
vided interactive visualization of the CRC model. In addi-
tion, we manually assigned four generic level classifications
(superclass, class, family and subfamily) of TFs according
to TFClass database (38), based on their DNA-binding do-
mains.

Construction of SE-associated regulatory networks

The data above were combined to construct an SE-
associated regulatory network (Figure 2, top panel). Nodes
of this network were composed of pathways, TFs, SEs and
SE-associated genes. First, we established relationships be-
tween SEs and occupying TFs by either direct evidence gen-
erated from TF ChIP-seq data or by prediction based on
motif analysis. Next, we obtained 2880 pathways with their
pathway components from 10 pathway databases: KEGG,
Reactome, NetPath, WikiPathways, PANTHER, PID, Hu-
manCyc, CTD, SMPDB and INOH (39,40). We built re-
lationships between a TF and a pathway if the TF was
a component of the pathway. Finally, we constructed SE-
associated regulatory networks by merging all relationships
between all nodes, including (i) SEs-TFs, (ii) pathways-TFs
and (iii) SEs-genes.

SEanalysis core functions

We designed three types of analyses to determine SE-
associated regulatory networks (Figure 2, middle panel):

I. Pathway downstream analysis ( → → → in Figure
1A). With the input of a set of genes of interest and the
selection of at least one pathway database (e.g. KEGG),
SEanalysis will identify significantly enriched pathways,
downstream TFs, SEs occupied by TFs and SE-associated
genes (Figure 1B–D). SEanalysis will begin with the iden-
tification of the pathways in which these genes are signif-
icantly enriched using hypergeometric test (41). For each
pathway assuming the entire genome has a total of n genes,
of which k are components of the pathway under investiga-
tion, and the set of genes of interest has a total of s genes,
of which i are involved in the same pathway, the enrich-
ment significance P-value for that pathway is calculated
as:

p = 1 −
i−1∑

x = 0

(
k
x

) (
n − k
s − x

)
(

n
s

)

The false discovery rate (FDR) method is used to correct
for multiple testing. Users can adjust the number of genes
required to be enriched and set thresholds of P-values or
FDRs to control the stringency of analysis. SEanalysis of-
fers a ‘FIMO’ option to allow users to set different sta-
tistical thresholds to control for false positivity. The ‘SE-
Gene Linking Strategies’ option allows users to select dif-
ferent annotation strategies to link SEs with target genes.
In addition, ‘Tissue Type’ option allows user to perform
targeted analysis in tissues of interest.
The output table contains basic information of identified
pathways (Pathway ID, Pathway name, Pathway source,

http://chip-atlas.org
http://genome.ucsc.edu/cgi-bin/hgLiftOver
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Figure 2. SEanalysis content and construction. SEanalysis contains a large number of SEs, TF ChIP-seq data, and DNA-binding sequence motifs as well as
pathway information. Users can perform the following SE-associated analyses in our web server: I. Pathway downstream analysis, II. Upstream regulatory
analysis, and III. Genomic region annotation. SEanalysis supports five searching modes, including ‘Searching by SE’, ‘Searching by Sample’, ‘Searching
by TF’, ‘Searching by Pathway’ and ‘Searching by Gene’.
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Annotated gene, Annotated gene number, Total gene num-
ber, The terminal TF and TF number), P-value and FDR
of the enrichment score (Figure 1C). Pathways can be fur-
ther displayed by clicking the ‘Pathway ID’ button. The
TF related statistics will be further viewed by clicking the
‘+’ button, including the number of SEs bound by TF
(based on either ChIP-seq data or predicted by motif anal-
ysis), the number of genes associated with these SEs and
visualization of regulatory networks based on the TF (Fig-
ure 1C and D). Furthermore, the ‘detail’ page provides the
detailed description of the regulatory relationship between
TFs involved in the current pathway, SEs bound by these
TFs, and genes associated with SEs (Figure 3).

II. Upstream regulatory analysis ( → → → in Figure
1A). With the input of gene(s) of interest and the setting
of ‘Tissue Type’, ‘SE-Gene Linking Strategies’, ‘FIMO’
and ‘Pathway Enrichment Threshold’ options, SEanaly-
sis will first identify the associated SEs, then determine
the TFs occupying the SE regions and the enriched up-
stream pathways of the TFs. The output table will show:
(i) the relationships between input genes and identified
SEs, (ii) the number and names of TFs binding to the SEs
(based on either ChIP-seq data or predicted by motif anal-
ysis), (iii) master TFs binding to these SEs (predicted by
CRC Mapper) (20) and (iv) upstream pathways and the
sample information. The regulatory network base on SEs
can be interactively visualized. The ‘detail’ page provides
the full description of the regulatory relationship.

III. Genomic region annotation ( ← ← → in Figure
1A). Users can upload either a ‘bed’ format file or a list
of genomic regions to identify SEs overlapping with the
queried regions using Bedtools (25). Furthermore, users
can set multiple options, including ‘Tissue Type’, ‘SE-
Gene Linking Strategies’, ‘FIMO’ and ‘Pathway Enrich-
ment Threshold’. The output table includes: (i) the iden-
tified SEs overlapping with the queried regions and SE-
associated genes, (ii) the number and names of TFs bind-
ing to the identified SEs (based on either ChIP-seq data or
predicted by motif analysis), (iii) the number and names
of master TFs binding to the identified SEs and (iv) the
number and names of upstream pathways and sample in-
formation. The detailed description of the regulatory re-
lationship is provided in the ‘detail’ page.

Case studies

We used the experimental data from two different studies
to validate the key predictions of SEanalysis. For ‘Pathway
downstream analysis’ (Figure 3A), we re-analyzed the work
wherein a colon cancer cell line (HCT116, known to be de-
pendent on Wnt activation for proliferation) was treated
with Wnt inhibitor or stimulator followed by RNA-seq (5).
We first obtained 943 differentially expressed genes upon
treatment with Wnt modulators from Array Express exper-
iment E-MTAB-651 (P-value < 0.001, |log2(Foldchange)|
> 1, Figure 3B) (5,42). These genes were used as input for
our webserver for ‘Pathway downstream analysis’ (param-
eters: Databases: KEGG and NetPath, Threshold: P-value
< 0.001, GeneNumber: Min: 10 and Max: 300, Tissue Type:
Colon, SE-Gene Linking Strategies: Closest active and
FIMO: 1e–9). The output table showed that Wnt pathway

was not only significantly enriched (Hypergeometric test; P-
value = 5.32e–06) but it was also the sole pathway identified
by both pathway sources (KEGG and NetPath), and fur-
thermore, it ranked highly as fifth and seventh among all
pathways identified (Figure 3C). The webserver next identi-
fied a number of terminal TFs downstream of Wnt signaling
pathway, including TCF7L2, TCF3, TCF4 and FOSL1. Im-
portantly, using TCF7L2 ChIP-seq generated in HCT116
cells, our analysis showed that TCF7L2 occupied the vast
majority of HCT116 SEs (98% of total SEs) (histogram in
Figure 3D), which is consistent with the result of Hnisz et al.
(5) and validated the prediction of webserver. Compared to
other terminal TFs of Wnt pathway, TCF7L2 occupied a
greater percentage of SEs in both KEGG and NetPath (his-
togram in Figure 3D). Lastly, we tested whether these SE-
associated genes occupied by TCF7L2 were responsive to
the manipulation of the Wnt pathway. Notably, these SE-
associated genes occupied by TCF7L2 were significantly
enriched in those exhibiting expression changes after dis-
ruption of Wnt pathway (Hypergeometric test; P-value =
6.76e–55) (Figure 3E), again confirming the previous re-
port (5). Some of these TCF7L2-occupied, SE-associated
genes included well-established Wnt targets, such as MYC,
CCND1 and EGFR. Considering the well-established role
of TCF7L2 in mediating Wnt signaling pathway through
occupying super-enhancers, these results suggest the value
and usefulness of our webserver in linking pathways, termi-
nal TFs and super-enhancer activity.

To validate the prediction of ‘Upstream regulatory analy-
sis’ (Supplementary Figure S1A), we studied luminal breast
cancer which is known to be highly and uniquely depen-
dent on estrogen signaling (5). Specifically, we used an
ER-positive cell line, MCF-7, wherein a super-enhancer of
ESR1 gene has been shown to be occupied by the TF es-
trogen receptor alpha (ER�). With input of the ESR1 gene
in the ‘Upstream regulatory analysis’ (parameters: Tissue
Type: Mammary Gland, SE-Gene Linking Strategies: Clos-
est active, FIMO: 1e–9 and Pathway Enrichment Thresh-
old: FDR corrected P-value < 0.001) (Supplementary Fig-
ure S1B), the output table predicted that the SEs associated
with ESR1 gene were indeed occupied by estrogen recep-
tor ER� in almost all ER-positive breast cancer cell lines
(Supplementary Figure S1C). Moreover, ER� was further
identified as a master TF in multiple ER-positive breast
cancer cell lines, along with other well-established ER� in-
teracting TFs, such as XBP1, FOXA1 and GATA3 (Sup-
plementary Figure S1C and D). In the next step of pre-
diction of enriched pathways, the webserver identified that
the TFs associated with this ESR1 SE were significantly en-
riched in pathways including ‘Nuclear receptor transcrip-
tion pathway (ranked second of all pathways, Hypergeo-
metric test; FDR corrected P-value = 5.7e–11)’ and ‘Val-
idated nuclear estrogen receptor alpha network (ranked
sixth of all pathways, Hypergeometric test; FDR corrected
P-value = 5.62e–07)’ (Supplementary Figure S1D, bottom
panel). These predictions are congruent with the key role
of ER� in mediating nuclear estrogen receptor signaling to
the regulation of super-enhancer activity in luminal breast
cancer.

Taken together, these data validated all of the key web-
server predictions including: (i) pathway enrichment; (ii)
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terminal TF ranking; (iii) identification of downstream SEs
and (iv) annotation of SE-associated genes.

User-friendly searching and browsing functions

SEanalysis supports five different searching modes: ‘Search-
ing by SE’, ‘Searching by Sample’, ‘Searching by TF’,
‘Searching by Pathway’ and ‘Searching by Gene’. SEanal-
ysis provides data browsing, which is an interactive table
with a sorting function that allows users to quickly search
for samples and customize filters including ‘Data Sources’,
‘Biosample Type’, ‘Tissue Type’ and ‘Biosample Name’. To
further view the SE of a given sample, users can click ‘Sam-
ple ID’ button.

Visualization of regulatory network and customizable
genome browser

As mentioned above, SEs, SE-associated genes, TFs bind-
ing to SEs and upstream pathways of TFs form complex
networks. To facilitate the understanding of the network,
SEanalysis supports interactive visualization of networks
using the visualization plugin Echarts (http://echarts.baidu.
com).

To view SEs along the genome, we developed a customiz-
able genome browser using JBrowse (http://jbrowse.org)
(43) containing more than 6,000 tracks. This browser allows
viewing the genomic coordinates of SEs, TF binding sites
(TFBS) identified by ChIP-seq, SNPs, DHSs and conserva-
tion score. SEanalysis can also link the data to the UCSC
genome browser (24).

Implementation

SEanalysis is freely available to the research community
at http://www.licpathway.net/SEanalysis and requires no
registration or login. The main framework of SEanaly-
sis was developed based on Java 1.8.0 (https://www.oracle.
com/technetwork/java/) and MySQL 5.7.16 (https://www.
mysql.com/). JQuery 3.3.1 (http://jquery.com) and Boot-
strap 3.3.7 (https://getbootstrap.com/) (an open source
front-end framework) were used to design the front-end web
interface. Google Chrome, Mozilla Firefox, Opera and Sa-
fari are the preferred browsers for display.

SUMMARY

To provide comprehensive analysis of SE-associated regu-
latory networks, we designed and developed a novel web
server, SEanalysis, with the following functions: (i) Path-
way downstream analysis, (ii) Upstream regulatory analy-
sis, (iii) Genomic region annotation. Compared with other
SE databases, this webserver focuses on constructing and
analyzing the networks between pathways, TFs, SEs, and
SE-associated genes. SEanalysis also allows users to read-
ily download SEs for different cells/tissues, in both bed and
csv format. The output results of analyses can also be down-
loaded. In addition, SEanalysis supports external analytical
tools of genomic regions such as GREAT (44) and UCSC
(24). SEanalysis also links to additional external resources
including NCBI Gene (45), GeneCards (46) and UniProt
(47).

The rapid development of high-throughput sequencing
technology leads to the accelerated accumulation of a large
number of epigenomic datasets. SEanalysis will be updated
and maintained accordingly. Our effort to establish this web
server was prompted by the great need of researchers to
understand the biology of epigenomic network regulation.
These researchers include cell and molecular biologists, ge-
neticists and data scientists. Moreover, the field of epige-
nomics is rapidly progressing, and the integrative analysis
of epigenomic regulatory networks is one of the most in-
vestigated areas. Therefore, SEanalysis will be a valuable re-
source for experimental and computational biologists in the
field of epigenomics.
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