
Published online 6 June 2019 Nucleic Acids Research, 2019, Vol. 47, Web Server issue W121–W126
doi: 10.1093/nar/gkz457

MTR-Viewer: identifying regions within genes under
purifying selection
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ABSTRACT

Advances in genomic sequencing have enormous
potential to revolutionize personalized medicine,
however distinguishing disease-causing from be-
nign variants remains a challenge. The increasing
number of human genome and exome sequences
available has revealed areas where unfavourable
variation is removed through purifying selection.
Here, we present the MTR-Viewer, a web-server en-
abling easy visualization at the gene or variant level
of the Missense Tolerance Ratio (MTR), a measure
of regional intolerance to missense variation cal-
culated using variation from 240 000 exome and
genome sequences. The MTR-Viewer enables ex-
ploration of MTR calculations, using different slid-
ing windows, for over 18 000 human protein-coding
genes and 85 000 alternative transcripts. Users can
also view MTR scores calculated for specific ethnic-
ities, to enable easy exploration of regions that may
be under different selective pressure. The spatial
distribution of population and known disease vari-
ants is also displayed on the protein’s domain struc-
ture. Intolerant regions were found to be highly en-
riched for ClinVar pathogenic and COSMIC somatic
missense variants (Mann–Whitney U test P < 2.2
× 10−16). As the MTR is not biased by known do-
mains and protein features, it can highlight func-
tionally important regions within genes overlooked
or inaccessible by traditional methods. MTR-Viewer
is freely available via a user friendly web-server at
http://biosig.unimelb.edu.au/mtr-viewer/.

INTRODUCTION

Exome sequencing is becoming a routine tool to guide per-
sonalized medicine of genetic diseases (1,2), including in
the diagnosis of many Mendelian genetic diseases and to
guide cancer treatment decisions (3). While this has lead to
a growing library of variants with evidence of pathogenicity
(4–6), many variants in a patient’s exome remain of uncer-
tain significance. In silico predictors of deleteriousness are
used to prioritize likely candidate variants, but it remains
a major challenge to discriminate pathogenic from benign
variants (7).

Large exome (8) and genome (9) sequencing projects
have yielded references of variation across the human
genome providing the means to measure patterns of vari-
ability within genes (10,11). It has been demonstrated previ-
ously that measuring depletion of standing variation within
genes can be used to identify novel disease-associated genes
(10,11). With the current sample sizes of sequenced indi-
viduals, we can begin to measure depletion of variation at a
regional level within these genes.

We have shown that the Missense Tolerance Ratio
(MTR), a measure of regional intolerance to missense vari-
ation, can capture this regional level information (12). The
MTR is a direct measure of purifying selection of missense
variation within a gene, calculated as a ratio between the
observed proportion of missense variants compared to an
expected proportion, estimated under the assumption of no
selection occurring on that sequence context. A sliding win-
dow summation is used to provide accurate regional mea-
surements. We have previously shown that regions measured
as intolerant to missense variation are significantly enriched
for pathogenic missense variants in epilepsy genes (12).

We introduce the MTR-Viewer, a web-server for evaluat-
ing missense variant deleteriousness by examining its sur-
rounding regional intolerance. Missense variants that ex-
ist within regions that are measured as being intolerant re-
gions are more likely to be pathogenic. The MTR-Viewer
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provides an easy-to-use interface for viewing a selected
gene/transcript MTR estimates, also supporting ethnicity-
based differences in purifying selection as well as the abil-
ity to query individual variants, including via an API, and
view disease and background variants on the protein do-
main structure (http://biosig.unimelb.edu.au/mtr-viewer).

MATERIALS AND METHODS

Data sets

Population variation was sourced from gnomAD (8), the
DiscovEHR dataset (13) and the UK Biobank (14), collab-
orative efforts to aggregate human exome and genome se-
quences. The amalgamated datasets from a total of 240 000
exome and genome sequences were filtered for only single-
point variation with a quality control ‘PASS’ flag, as previ-
ously described (12).

Gene and protein sequences were acquired from the
Ensembl database (v95) (15) using the R Bioconductor
biomaRt package (16). Transcripts were only used where
they contained at least one single-point variant in gno-
mAD and had non-ambiguous sequences. Ensembl tran-
script ID’s were queried for their matching HGNC gene
symbols (17) and Refseq transcript ID’s (18) using the
biomaRt package.

The observed proportion of missense variation was com-
pared to an expected proportion of missense variation
calculated under the assumption of neutrality where no
positive/negative selection is occurring. All possible single-
point mutations within all gene transcripts were labelled by
the Variant Effect Predictor (Release 95) (15) as either mis-
sense or synonymous.

For validation purposes, the MTR scores were also cal-
culated in the absence of the DiscovEHR dataset. Discov-
EHR missense variants not reported in gnomAD or the UK
Biobank, and thus independent of the formulation of the
MTR, were used as a control set of neutral variants.

For validation, ClinVar (19) missense variants were re-
trieved from the NCBI FTP database at ftp://ftp.ncbi.
nlm.nih.gov/pub/clinvar/ and subset to pathogenic / likely
pathogenic and benign / likely benign variants with no con-
flicting evidence.

For validation, COSMIC (20) missense variants were
retrieved from their website at https://cancer.sanger.ac.uk/
cosmic/download and filtered for confirmed somatic mis-
sense variants.

For further validation, the MTR scores were exam-
ined using the FATHMM inherited disease variant dataset
and FATHMM cancer-associated missense variants dataset
(21). These were compared to the results from the MPC
(V2), a prediction of missense variant deleteriousness com-
bining functional and regional missense intolerance infor-
mation, downloaded from ftp://ftp.broadinstitute.org/pub/
ExAC release/release1/regional missense constraint/.

Calculation of the missense tolerance ratio

The proportion of missense variants to synonymous vari-
ants was calculated for both the observed variation in gno-
mAD and the expected variation under neutrality using the
annotations from all possible variants in a given transcript,

as previously described (12). This was calculated over each
Ensembl transcript using a sliding window of 21-, 31- and
41-codons. While using smaller window sizes can provide
finer resolution, they can suffer from jitter caused by limited
information per window. For this reason we recommend to
use 31-codon as the default (12).

For a given window WH,J
i and with selected window size

w,

where i = amino acid position
H = max (1, i − (w − 1) /2)
J = min (transcript length, i + (w − 1) /2) ,

(1)

Within each window (Equation 1), the missense and syn-
onymous variants are each summed at each amino acid po-
sition yi for both the observed and expected datasets (Equa-
tion 2).

yi =
∑

xm∈WH,J
i

xm (2)

∀x ∈ {missense obs, synonymous obs,

missense exp, synonymous exp}
Thus for each amino acid position, the MTR is calculated

as follows.

MTRi = missense obsi / (missense obsi + synonymous obsi )
missense expi / (missense expi + synonymous expi )

(3)

FDR-adjusted binomial exact test

To identify significantly intolerant regions, an exact bino-
mial test was performed at each residue position to test
whether the regional observed proportion of missense vari-
ants significantly deviates from the expected proportion.

P(X) = n!
(n − x)!x!

(p)x (q)n−x (4)

where n = missense obs + synonymous obs
x = missense obs
p = missense exp/(missense exp + synonymous exp)
q = 1 − p

The exome-wide binomial exact test was then adjusted
for False Discovery Rate (FDR) using the Benjamini–
Hochberg method (22,23). FDR <0.1 was selected through
empirical observation as accurately identifying intolerant
regions.

WEBSERVER

We have implemented the MTR-Viewer as a user-
friendly and freely available web-server (http:
//biosig.unimelb.edu.au/mtr-viewer/). The webserver
was developed using Python Flask (v1.0.2), formatted us-
ing Bootstrap (v4.1.3) with data stored using PostgreSQL
10.5. The Pfam API (24) is used to provide graphical do-
main representations for the accompanying Lollipop plots
(25), obtained by translating the HGNC gene symbols (17)
to UniProt accession numbers using the UniProt REST
API (26). The web application is hosted on an Apache2
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web-server running Ubuntu 16.04. MTR calculations were
performed in R and plotting within the web application is
performed using Python Bokeh (v1.0.1) (27).

Input

The MTR-Viewer can be used in two different ways: either
as a gene transcript viewer for MTR estimates across the
entire protein-coding sequence or to query specific missense
variants for the MTR scores at their position.

The gene viewer query page (Supplementary Figure S1)
allows a user to input a specific HGNC gene symbol, which
will default to our canonical-selected transcript, or to di-
rectly enter an Ensembl transcript ID or Refseq transcript
ID. Names are not case sensitive.

The variant query page features a text box for users to
input one or multiple missense variants on separate lines
in formats chromosome-position-reference-alternative al-
lele, chromosome-position or transcript-protein position.
Positions are based on the GRCh37 reference genome. A
query can also be performed using an API at http://biosig.
unimelb.edu.au/mtr-viewer/api?q=〈query〉 or as a CSV file
upload.

Users may also search for a gene or transcript using an
input box in the navigation bar on the results page, which
will assume a gene is being queried unless formatted as a
variant using delimiters.

Output

The gene viewer results page (Figure 1) displays the MTR
scores across the gene transcript as a line-graph. Line sec-
tions are coloured red where the FDR-adjusted binomial
exact test <0.1, quantifying MTR deviation from neutral-
ity (MTR = 1). Window sizes of 21 codons, 31 codons (de-
fault) and 41 codons can be displayed. Ethnicity-specific
MTR estimates, calculated by filtering observed variation
by ethnicity, can be overlaid. These are available only for
ethnicities with over 15 000 exomes and for window sizes
of 31 and 41 codons to account for the smaller sample size.
Currently, this includes European Non-Finnish, Latino and
South Asian populations. Hovering over the MTR line dis-
plays the amino acid position and corresponding MTR
estimate. Buttons are available to drag-to-zoom, pan and
download the table of raw data for the current transcript in
flat file form (MTR estimates for individual genomic vari-
ants) or as an MTR table (MTR scores for amino acid po-
sitions) (see Figure 1).

Lollipop plots are also shown for the canonical transcript
of the selected gene if a matching Pfam graphical represen-
tation is available (Figure 1). A lollipop plot is displayed
to show the underlying distribution of gnomAD missense
(yellow) and synonymous (green) variation and, if the gene
is a ClinVar pathogenic gene, a second lollipop plot show-
ing ClinVar annotated pathogenic (red) and benign (blue)
variants.

The variant query results page (Supplementary Figure
S2) displays a table of the input variants with their corre-
sponding MTR estimates for all Ensembl gene transcripts
(v95) that the variant is contained in. Variants with no
match are reported in the results table. The view button will

redirect the user to the gene viewer for that transcript and
label the variant on the MTR line graph.

VALIDATION

To further validate the utility of the MTR scores to dif-
ferentiate pathogenic variants, we examined their distribu-
tion across the ClinVar pathogenic missense variant and
Catalogue Of Somatic Mutations In Cancer (COSMIC)
datasets.

The MTR scores of unique ClinVar pathogenic-assigned
missense variants (n = 29 330, Average MTR = 0.77, MTR
Standard Deviation = 0.24) were compared to the MTR
scores of unique ClinVar benign-assigned missense variants
(n = 18 582, Average MTR = 0.92, MTR Standard De-
viation = 0.14) (Figure 2A). In addition, the pathogenic-
assigned variants were also compared to the MTR scores
from a novel set of missense variants not observed in
gnomAD from the DiscovEHR reference cohort, and fil-
tered to those within ClinVar genes (n = 195 735, average
MTR = 0.87, MTR Standard Deviation = 0.18). ClinVar
pathogenic-assigned variants were significantly more likely
to occur in MTR missense depleted regions than the Clin-
Var benign variants or the novel population-based Discov-
EHR missense variants (Mann–Whitney U test P values of
< 2.2 × 10−16).

A comparison of confirmed somatic COSMIC vari-
ants (n = 231 724, average MTR = 0.74, MTR Stan-
dard Deviation = 0.28) to DiscovEHR population varia-
tion within COSMIC genes (n = 47 589, Average MTR
= 0.85, MTR Standard Deviation = 0.19) was also per-
formed to identify whether there is significant enrichment of
cancer-ascertained somatic mutations within intolerant re-
gions (Figure 2B). COSMIC variants were found to be sig-
nificantly more likely to occur in intolerant regions (Mann–
Whitney U test, P < 2.2 × 10−16).

The discriminatory power of the MTR scores was also
assessed using the FATHMM SwissProt/TrEMBL train-
ing dataset and the FATHMM cancer-associated training
dataset. When we evaluate missense variants with MTR
scores less than 0.25 or 0.5, we found that 2.0% and 8.6%
respectively of disease causing missense variants, but only
0.1% and 0.9% respectively from neutral variants reside in
these regions (odds ratio [OR] = 13.76; Fisher’s exact test P
< 2.2 × 10−16, odds ratio [OR] = 10.11; Fisher’s exact test
P < 2.2 × 10−16). Similarly, we found that 2.1% and 9.7% of
cancer asociated missense variants, but only 0.3% and 1.7%
from neutral variants, have MTR less than 0.25 or 0.5 re-
spectively (odds ratio [OR] = 6.49; Fisher’s exact test P <
2.2 × 10−16, odds ratio [OR] = 6.36; Fisher’s exact test P
< 2.2 × 10−16). This showed that low-MTR scored regions
are highly enriched for pathogenic variation.

We empirically selected FDR <0.1 to define regions with
a significantly different proportion of observed missense
variants. 10.5% of the FATHMM disease-associated vari-
ants and 9.6% of the cancer-associated variants are found in
these regions, compared with 2.4% and 3.2% neutral vari-
ants, showing a significant enrichment of disease-associated
variation in both datasets (odds ratio [OR] = 4.69; Fisher’s
exact test P < 2.2 × 10−16, odds ratio [OR] = 3.23; Fisher’s
exact test P < 2.2 × 10−16).

http://biosig.unimelb.edu.au/mtr-viewer/api?q=%3Cquery%3E
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Figure 1. MTR-Viewer gene query results page. (A) A line graph displays the MTR distribution for example gene BRAF with regions in red indicating
observed variation differs significantly from neutrality. (B) Lollipop plots show the underlying gnomAD missense and synonymous variation and (C)
ClinVar known pathogenic and known benign variants for the gene. (D) Alternate transcripts are displayed below with matching RefSeq transcript ID’s.
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Figure 2. Distribution of MTR scores for known disease variants compared to background. (A) Cumulative distribution of MTR scores for ClinVar
pathogenic variants (red), ClinVar benign variants (blue) and DiscovEHR novel missense control variants (black). (B) Cumulative distribution of MTR
scores for COSMIC somatic missense variants (red) compared with DiscovEHR novel missense control variants (black).

While the MTR is solely a measure of missense depletion,
using the FATHMM training datasets, it was compared to
the trained predictors MPC and PolyPhen-2, which utilize
functional information (Supplementary Tables S1 and S2).
The MTR had the highest Matthew’s correlation coefficient
over the FATHMM cancer-associated dataset, and was
comparable to the MPC scores over the FATHMM disease-
associated using the authors’ defined cut-off of MPC >2.

CONCLUSION

Here we present the MTR-Viewer, a web-server to explore
regional intolerance to missense variation across human
protein-coding genes from 240 000 exome and genome se-
quences. By providing a measure and visualization of pu-
rifying selection occurring within a given gene transcript,
patient-ascertained variants can be better prioritized based
on whether they reside in intolerant regions (12). The MTR-
Viewer is freely available as a user-friendly web server at
http://biosig.unimelb.edu.au/mtr-viewer/.
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