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Abstract

The liver kinase B1-AMP-activated protein kinase (LKB1-AMPK) pathway has been identified as 

a new target for cancer therapy, because it controls the glucose and lipid metabolism in response to 

alterations in nutrients and intracellular energy levels. In the present study, we aimed to identify 

genetic variants of the LKB1-AMPK pathway genes and their associations with pancreatic cancer 

(PanC) risk using 15,418 participants of European ancestry from two previously published PanC 

genome-wide association studies. We found that six novel tagging single-nucleotide 

polymorphisms (SNPs) (i.e., MAP2 rs35075084 T>deletion, PRKAG2 rs2727572 C>T and 

rs34852782 A>deletion, TP53 rs9895829 A>G, and RPTOR rs62068300 G>A and rs3751936 

G>C) were significantly associated with an increased PanC risk. The multivariate logistic 

regression model incorporating the number of unfavorable genotypes (NUGs) with adjustment for 

age and sex showed that carriers with 5-6 NUGs had an increased PanC risk (odds ratio=1.24, 

95% confidence interval=1.16-1.32 and P<0.0001), compared to those with 0-4 NUGs. 

Subsequent expression quantitative trait loci (eQTL) analysis further revealed that these SNPs 

were associated with significantly altered mRNA expression levels either in 373 normal 

lymphoblastoid cell lines (TP53 SNP rs9895829, P<0.05) or in whole blood cells of 369 normal 
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donors from the genotype-tissue expression project (GTEx) database [RPTOR SNP rs60268947 

and rs28434589, both in high linkage disequilibrium (r2>0.9) with RPTOR rs62068300, P<0.001]. 

Collectively, our findings suggest that these novel SNPs in the LKB1-AMPK pathway genes may 

modify susceptibility to PanC, possibly by influencing gene expression.
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Introduction

Pancreatic cancer (PanC) is one of the most lethal human malignancies, with an overall five-

year survival rate lower than 10% and a median survival of six months, and PanC is also the 

fourth leading cause of cancer-related death and is expected to become the second within the 

next decade in the United States 1,2. The exact cause of PanC is not yet well understood, 

though several risk factors have been identified, including smoking, morbid obesity, having a 

family history of PanC or pancreatitis, and having certain hereditary conditions 3,4. More 

importantly, patients with PanC rarely exhibit symptoms at the early stages, until the disease 

reaches an advanced stage, which is one of the main reasons for the observed, generally poor 

survival rates 4,5. Therefore, prevention and early diagnosis at a curable stage are desperately 

needed to reduce PanC mortality.

Since Otto Warburg first proposed a connection between cellular metabolism and 

tumorigenesis nearly 100 years ago, pointing out a new direction for cancer research 6,7, 

numerous studies have been reported on molecular mechanisms that link the signaling 

pathways controlling the metabolism to cell growth, in which the metabolism 

reprogramming was found to be necessary for cancer initiation and progression, a hallmark 

of cancer 8,9. PanC is characterized by a severely hypoxic and nutrient-deprived 

microenvironment, with specific metabolically adaptive mechanisms, such as the Warburg 

effect, glutamine addiction and autophagy, that all contribute to PanC development and 

progression, in addition to both oncogenes/tumor suppressors and tumor microenvironment 
10,11. Therefore, targeting any of specific metabolic adaptions becomes an emerging strategy 

for PanC diagnosis and treatment 12,13.

LKB1 (liver kinase B1, also known as STK11) directly activates the AMPK (AMP-activated 

protein kinase), which is responsible for nutrient sensing and metabolism reprogramming, 

and LKB1 is inactivated by mutations found in PanC, and the loss of LKB1 is thought to 

drive tumorigenesis 14-16.

AMPK is a master regulator of metabolic homeostasis by sensing cellular energy status, the 

AMP:ATP ratio. When there is an increase in the cellular AMP:ATP ratio, which reflects a 

decrease in energy supply, AMPK is phosphorylated and activated, promoting catabolic 

processes and inhibiting anabolic processes to increase the energy level 17.

Recent studies found that meisoindigo can preferentially kill cancer stem cells by interfering 

cell metabolism via inhibition of LKB1 and activation of AMPK in PanC 18. Similar results 
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have also been drawn from metformin, which influences PanC progression by activating the 

LKB1-AMPK pathway, including inhibition of cell division, promotion of apoptosis and 

autophagy, down-regulation of circulating insulin, and activation of the immune system 19.

Therefore, we hypothesize that genetic variants of the LKB1-AMPK pathway genes are 

associated with PanC risk. To test such a hypothesis, we conducted a comprehensive meta-

analysis of genetic variants in the LKB1-AMPK pathway genes using two previously 

published genome-wide association study (GWAS) datasets from the PanScan (i.e., the 

Pancreatic Cancer Cohort Consortium) and Pancreatic Cancer Case-Control Association 

Study. We also focused our analysis on the identified single-nucleotide polymorphisms 

(SNPs) that may change the mRNA expression levels of the genes and thus are likely have 

functional consequences.

Methods

Study Population and GWAS Data

The analysis used two previously published PanC GWASs: Pancreatic Cancer Cohort 

Consortium (PanScan, phs000206.v5.p3) and the Pancreatic Cancer Case-Control 

Association Study (dbGaP#:phs000648.v1.p1), which included 15,418 participants (8,474 

cases and 6,944 controls). The PanScan GWAS has three phases, including PanScan I, II and 

III (1,760 cases and 1,780 controls in PanScan I; 1,457 cases and 1,666 controls in PanScan 

II, 1,538 cases and 0 controls in PanScan III) 20-23. We then merged the PanScan II and 

PanScan III into one dataset, PanScan II/III, because PanScan III was a case-only study 24. 

Another GWAS dataset was from the Pancreatic Cancer Case-Control Consortium (PanC4) 

that consisted of 3,719 cases and 3,498 controls from the United States, Europe and 

Australia (Supplementary Fig. S1). All the participants in these GWASs were of European 

ancestry, and a written informed consent was obtained from all study participants. All 

methods were performed in accordance with the relevant guidelines and regulations for each 

of the participating institutions, and the present study followed the protocols approved by 

Duke University Health System Institutional Review Board.

Gene selection, genotyping, and imputation

The keywords “LKB1-AMPK” was searched in Molecular Signatures Database (MSigDB) 

(http://www.broadinstitute.org/gsea/msigdb/index.jsp), and all the 58 related genes located 

on autosomal chromosomes were selected from REACTOME and PID (details presented in 

Supplementary Table S1). The GWAS genotyping was performed using Illumina 

HumanHap550v3.0, Human 610-Quadv1_B, HumanOmniExpress-12v1.0 and 

HumanOmniExpressExome-8v1.0 25-27. The SNPs located both in these genes and their 

± 500-kb flanking regions were extracted for further imputation by the IMPUTE2 software, 

using the 1000 Genomes (Phase 1, Release 3) Project as the reference dataset 28,29.

For quality control, the imputed SNPs with an information/accuracy score > 0.4 were 

qualified for further analysis (with details presented in Table 1 and Supplemental Fig. S2). 

As a result, there were 14,557 SNPs, 15,866 SNPs and 14,263 SNPs within 5.0 kb up- and 

down-streams of the 58 LKB1-AMPK pathway genes from populations of the PanScan I, 
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PanScan II/III and panC4 studies, respectively. The final meta-analysis for all three dataset 

contained 12,777 SNPs that meets the inclusion criteria: a call rate > 95%, MAF > 1% and 

Hardy-Weinberg equilibrium (HWE) test P value > 1 × 10−5.

Association analysis

Unconditional multivariable logistic regression including sex, age and top five principal 

components was performed using PLINK (version 1.90), assuming an additive genetic 

model, with assessment of genomic data to control for potential population stratification. 

The principal components were computed by genome-wide complex trait analysis and the 

top five principal components with P value less than 0.001 were selected from the logistic 

regression analysis from all the three studies (Supplementary Table S2), and an odds ratio 

and its 95% CI were estimated for each SNP with PLINK 30. A meta-analysis was further 

employed on the results of a log-additive model of 12,777 SNPs using the fixed-effects 

inverse-variance method based on β estimates and standard errors with Stata software (v 12, 

State College, Texas, US). Cochran’s Q statistics and I2 were used to assess the 

heterogeneity 31. If the Cochran’s Q-test P value > 0.100 and the heterogeneity statistic I2 < 

50%, a fixed-effects model was applied. Otherwise, a random-effects model was employed.

False positive report probability (FPRP) is the probability of no true association between a 

genetic variant and disease, given a statistically significant finding. We chose FPRP to 

correct for multiple testing, because more than 90% of SNPs (12,379 out of 12,777 under 

investigation) included in the present study were imputed. The FPRP approach with a prior 

probability of 0.01 and a hazards ratio (HR) of 2.0 was assigned for an association with 

genotypes and alleles of each SNP to reduce the probability of false-positive findings. The 

association between each SNP and PanC risk was evaluated with an additive genetic model 

in which a cut-off FPRP value ≤ 0.02 was considered as a significant association. The 

multivariable stepwise logistic regression model was also employed to identify independent 

SNPs. The number of unfavorable genotypes (NUGs) of SNPs with independent effects was 

calculated to assess the classification performance of the model. All individuals were further 

dichotomized into low-risk group (0-4 NUGs) and high-risk group (5-6 NUGs) for 

additional analysis. Besides, Haploview v4.2 32 was used to produce the Manhattan plot and 

Linkage disequilibrium (LD) plot, and LocusZoom 33 was employed to construct the 

regional association plots by using the dataset from the 1000 Genomes Project. Linear 

regression was used to analyze the correlations between SNPs and corresponding mRNA 

expression levels. All statistical analyses were performed with SAS software (version 9.4; 

SAS Institute, Cary, NC, USA), if not specified otherwise.

In silico functional prediction and validation

To predict potential functions of the significant SNPs, we used two in silico tools: 

RegulomeDB (http://regulomedb.org/) 34 and HaploReg (http://www.broadinstitute.org/

mammals/haploreg/haploreg.php) 35. We performed the expression quantitative trait loci 

(eQTL) analysis to estimate the associations between SNPs and mRNA expression levels of 

the corresponding genes by using the mRNA expression data from the lymphoblastoid cell 

lines of 373 Europeans available in the 1000 Genomes Project 36 and 127 tumor tissues in 

The Cancer Genome Atlas (TCGA) 37 as well as the eQTL results from the genotype-tissue 
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expression project (GTEx) database for the whole blood (n=369) and normal pancreatic 

tissues (n=220) (http://www.gtexportal.org/home/) 38. In addition, we also compared the 

mRNA expression levels of targeted gene between tumor and adjacent normal tissues 

available in the Oncomine™ database (https://www.oncomine.org/) 39.

Results

Single locus analysis

The research workflow of the present study design is shown in Fig. 1. We first estimated the 

associations between selected SNPs [with a minor allele frequency (MAF) ≥ 0.01] and PanC 

risk with the unconditional logistic regression analysis for each of the three populations of 

European ancestry with 14,557 SNPs, 15,866 SNPs and 14,263 SNPs for PanScan I, 

PanScan II/III and PanC4, respectively; the single locus analysis revealed that these three 

study populations had 623, 1713 and 911 SNPs with a nominal P < 0.05, respectively 

(Supplemental Fig. S3). Then, we included a total of 12,777 SNPs in a meta‐analysis of the 

three populations and found that 589 SNPs remained to be associated with PanC risk at P < 

0.05 in an additive genetic model, of which 16 SNPs on MAP2, PRKAG2, TP53 and 

RPTOR passed multiple testing corrections with an FPRP  ≤ 0.02 (Supplemental Fig. S4a; 

Table 1).

Although seven SNPs of TP53 (i.e., rs17884306, rs17879377, rs9891744, rs75732100, 

rs9895829, rs17883323 and rs8079544) located at 17p13 have been previously reported by 

the AURORA pathway-based analyses 40, the TP53 rs35850753 and other eight SNPs (i.e., 

MAP2 rs35075084, PRKAG2 rs2727572, rs12668489, rs2538046 and rs34852782 and 

RPTOR rs62068300 and rs17848685, rs3751936) located at 2q34, 7q36.1 and 17q25.3, 

respectively, are novel findings, for which we performed additional in silico analysis for 

their functional relevance. The results of these SNPs in each of GWAS datasets and the final 

meta‐analysis are summarized in Table 2. All these SNPs showed a low heterogeneity 

among the three GWAS datasets (all Q‐test P > 0.100 and I2 < 50.0).

LD analysis and stepwise analysis

For the LD analysis, three (i.e., rs2727572, rs12668489 and rs2538046) of the four 

PRKAG2 SNPs shared a high LD (r2 ≥ 0.80, Supplemental Fig. S4b and Supplemental Fig. 

S5a); seven (i.e., rs17884306, rs17879377, rs9891744, rs75732100, rs9895829, rs17883323 

and rs8079544) of the eight TP53 SNPs shared a high LD (r2 ≥ 0.80, Supplemental Fig. S4d 

and Supplemental Fig. S5c); and three RPTOR SNPs (i.e., rs62068300, rs17848685 and 

rs3751936) showed a low LD (r2 ≤ 0.80, Supplemental Fig. S4c and Supplemental Fig. 

S5b). Having considered functional prediction and LD, we selected final eight SNPs, 

including MAP2 rs35075084, two proxy PRKAG2 SNPs (i.e., rs2727572 and rs34852782), 

two proxy TP53 SNPs (i.e., rs9895829 and rs35850753) and all three SNPs of RPTOR (i.e., 

rs62068300, rs17848685 and rs3751936), for further analysis. Next, we assessed these eight 

representative SNPs in the presence of age, sex and top five principal components in a 

multivariate stepwise logistic regression model. As a result, the genotypes of six SNPs 

remained significantly and independently associated with PanC risk (Supplemental Table 

S3).
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Genotype effect and the joint‐effect of the six significant SNPs

After stepwise analysis, we found that the genotypes of MAP2 rs35075084 T>deletion, 

TP53 rs9895829 A>G, PRKAG2 rs2727572 C>T and rs34852782 A>deletion, and RPTOR 
rs62068300 G>A and rs3751936 G>C were significantly associated with PanC risk in both 

additive and dominant genetic models.

In the additive model, the association between each of these six novel SNPs and PanC risk 

had a linear trend as the frequency of the minor allele increased (trend test: P = 0.0008, P = 

0.0004, P = 0.0007, P = 0.0002, P = 0.0009 and P = 0.0009, respectively, Table 3). 

Consistent with previous results of the single locus analysis, the rs2727572 T allele was 

associated with an increased PanC risk [odds ratio (OR) = 1.11, 95% confidence interval (CI) 

= 1.04-1.19 and P = 0.0034], the rs34852782 deleted allele was associated with an increased 

PanC risk (OR = 1.09, 95% CI = 1.02-1.16 and P = 0.0076), while the rs35075084 deleted 

allele, rs9895829 G, rs62068300 A and rs3751936 C alleles were associated with a reduced 

risk (OR = 0.75, 95% CI = 0.64-0.89, P = 0.0007, OR = 0.83, 95% CI = 0.75-0.92, P = 

0.0004, OR = 0.91, 95% CI = 0.85-0.97, P = 0.0026 and OR = 0.91, 95% CI = 0.86-0.97, P 
= 0.0051, respectively), compared with their corresponding wild-type allele (Table 3).

To better estimate the joint association between the six SNPs and PanC risk, we combined 

risk genotypes of rs35075084 TT, rs2727572 CT/TT, rs34852782 A−/−-, rs9895829 AA, 

rs62068300 AA and rs3751936 GG into a single genetic score as the NUGs in a dominant 

model. The significant association between an increased NUGs and an increased PanC risk 

remained with a significant trend (Ptrend < 0.0001, Table 4). We then dichotomized all 

individuals into low-risk group (0-4 NUGs) or high-risk group (5-6 NUGs). As shown in 

Table 4, PanC risk in high-risk group was significantly greater than the low-risk group (OR 

= 1.24, 95% CI = 1.16-1.32, P < 0.0001).

Since the difference in the distribution of age existed in all the dataset, and age is a known 

risk factor for PanC, we performed subgroup analysis by age group (i.e., < 60y, 60 – 70y and 

> 70y) and sex to assess any potential interaction. We found that the risk associated with 

high-risk NUGs was more evident in the >70 year group (OR = 1.27, 95% CI = 1.13-1.41, P 
< 0.0001) and males (OR = 1.25, 95% CI = 1.15-1.37, P < 0.0001); however, there was no 

evidence for an interaction among and between these strata (P > 0.05 for all, Supplementary 

Table S4).

Genotype and phenotype correlation analysis

To explore the potential function of these six SNPs, we used online prediction tools and 

performed eQTL analysis. We found that four SNPs are located in the intronic regions, one 

SNP in 5’-UTR and one SNP in 3’-UTR (Supplemental Table S5). All SNPs are located in 

the enhancer region of histone H3 mono acetyl K27, which is associated with the higher 

activation of transcription and defined as an active enhancer marker. Besides, SNP of TP53 
and two SNPs of RPTOR also located in DNase I hypersensitive sites where chromatins are 

sensitive to cleavage by the DNase I and lost its condensed structure, functionally related to 

transcriptional activity (Supplementary Fig. S6).
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We evaluated correlations between SNPs and corresponding mRNA levels in 373 normal 

lymphoblastoid cell lines from the 1000 Genomes Project. We found rs9895829 G allele was 

significantly correlated with decreased levels of TP53 mRNA expression in both additive 

and dominent model (P = 0.005 and 0.039) by using Student’s t test or linear regression 

analysis of the logarithm transformed expression values (log2) (Fig. 2a-2b). No other allele 

was significantly correlated with increased/decreased levels of mRNA expression. However, 

the rs2727572 T allele of PRKAG2, rs62068300 A allele of RPTOR and rs3751936 C allele 

of RPTOR were correlated with an observable increased/decreased mRNA expression level 

in both additive and dominant models, though the differences did not reach the statistical 

level (P = 0.363 and 0.625, P = 0.299 and 0.092 and P = 0.163 and 0.177, respectively. 

Supplementary Fig. S7). For SNP rs35075084 and rs34852782, the eQTL results are not 

available. Next, we used the data from 127 Europeans in the TCGA-PAAD Project to query 

the eQTL results and assess the correlations. However, we failed to impute the genotype of 

six SNPs based on the current quality control.

In addition, we used the data from the GTEx database and found that SNP rs60268947 and 

rs28434589, located in the intron of RPTOR and in high LD (r2 = 0.91 and r2 = 0.96, 

respectively) with SNP rs62068300, had a significant correlation with an increased level of 

RPTOR mRNA expression in whole blood cells of 369 donors from GTEx (P = 6.5 × 10−12 

and P = 1.5 × 10−10, respectively, Fig. 2c-2d). For other SNPs, there are no significant 

correlations from GTEx (Supplemental Table S6).

We also assessed the differences in mRNA expression levels of MAP2, PRKAG2, TP53 and 

RPTOR between adjacent normal pancreatic tissues and pancreatic tumor tissues (n=220) 

from the Oncomine database. We found that MAP2 and TP53 mRNA expression levels were 

statistically significantly higher (P = 0.002 and P = 1.38 × 10−6, respectively) in tumor 

tissues than in normal pancreas, and the mRNA expression levels of PRKAG2 and RPTOR 
were also higher in tumor tissues than in normal pancreas, though the differences were not 

statistically significant (P = 0.061 and P = 0.196) (Supplementary Fig. S8).

Discussion

In the present study, we evaluated the associations between genetic variants in the 58 LKB1-

AMPK pathway genes and PanC risk, using the two existing GWAS datasets: PanScan I, 

II/III from PanScan study and PanC4 from Pancreatic Cancer Case-Control Association 

Study. Through the meta-analysis, we identified six novel potential susceptibility loci of 

MAP2, PRKAG2, TP53 and RPTOR for PanC risk, located at 2q34, 7q36.1, 17p13.1 and 

17q25.3, respectively. We further showed that these variants were independently or jointly 

associated with an increased PanC risk. Further eQTL analysis revealed that those six novel 

SNPs might influence the mRNA expression levels of corresponding genes, particularly true 

for the MAP2 rs35075084 and TP53 rs9895829.

LKB1 was initially identified as a tumor suppressor gene responsible for the familial Peutz-

Jeghers syndrome and associated with increased risk for gastrointestinal tract cancers, 

including PanC 41. The AMPK, which is highly conserved in all eukaryotic cells and exists 

as a trimeric complex consisting of a catalytic subunit (α subunit) and two regulatory 
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subunits (β and γ subunits), plays a role in the regulation of cellular energy homeostasis by 

maintaining cellular energy homeostasis in response to an increased AMP:ATP ratio and 

restores energy balance by inhibiting anabolic processes that consume ATP, while promoting 

catabolic processes that generate ATP 12,13,17.

Together, the LKB1-AMPK pathway genes serve as a metabolic checkpoint and a central 

metabolic switch that governs glucose and lipid metabolisms in response to alterations in 

nutrients and intracellular energy levels 42,43. Besides, LKB1-AMPK also controls for cell 

growth in response to environmental nutrient changes. For example, one central down-

stream pathway suppressed by the LKB1-AMPK pathway is the mammalian target of 

rapamycin (mTOR) pathway, which controls cell growth in all eukaryotes; this signaling 

pathway is inhibited through the AMPK phosphorylation of tuberous sclerosis complex 2 

(TSC2) and regulatory associated protein of mTOR (RPTOR) in conditions of low 

intracellular ATP levels 44-47.

Microtubule associated protein 2 (MAP2) is localized primarily in dendrites of neurons and 

involved in microtubule assembly 48,49. It has been reported that MAP2 participates in the 

outgrowth of neuronal processes and synaptic plasticity and controls for selective axonal 

cargo sorting by regulating kinesin activity 50. In addition, MAP2 is also involved in the 

protein kinase A-induced decrease in the invasiveness of glioma cells 51. In the present 

study, we found that the MAP2 rs34852782 deleted allele was associated with PanC risk, 

likely due to the resultant increase in the mRNA expression.

The protein kinase AMP-activated non-catalytic subunit γ 2 (PRKAG2), as a member of 

AMPK γ subunit family, mutations in which can cause inappropriate AMPK activation 

under resting conditions and lead to hypertrophic cardiomyopathy associated with the Wolff-

Parkinson-White syndrome 52. Previous studies revealed a nominal association of PRKAG2 
SNPs with diabetes incidence 53 and suggested that PRKAG2 variants were involved in feed 

efficiency traits in beef steers 54. The present study suggests that SNPs rs2727572 and 

rs34852782 located in the intron of PRKAG2 were associated with PanC risk, and the 

variant-associated gene expression may be the mechanism underlying the observed 

association, but additional studies are needed to validate this speculation.

Tumor protein p53 (TP53) has many mechanisms of anticancer function and plays a role in 

apoptosis, genomic stability, and inhibition of angiogenesis 55. TP53 somatically mutated in 

50-80% of PanC 2,56-58. As we mentioned before, SNPs rs9895829 of TP53 has been 

previously reported by the AURORA pathway-based analyses. In our present study we 

found that SNPs rs9895829 had a significant correlation with a decreased TP53 mRNA 

expression and was associated with PanC risk.

RPTOR is a crucial component of MTORC1 and negatively regulates mTOR 59. When the 

intracellular energy level is low, AMPK directly phosphorylates RPTOR at Ser722 and 

Ser792, reducing mTOR kinase activities 60,61. One study suggested that SNP rs11868112 of 

RPTOR exhibits a strong association with temperature variables that contribute to climate 

adaptations 62. The present study found that SNPs rs62068300 and rs3751936 of RPTOR 
were associated with PanC risk. Because two SNPs (rs60268947 and rs28434589) in high 
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LD (r2 > 0.90) with rs62068300 had a significant correlation with an increased RPTOR 
mRNA expression in whole blood cells from GTEx, and genetic variants in RPTOR are 

likely to play a role in carcinogenesis of PanC.

Although the present study observed associations between six novel genetic variants in the 

LKB1-AMPK pathway genes and PanC risk, it has also several limitations. First, we had no 

access to family history in the publically available datasets, which might have an impact on 

PanC risk. Second, since we only used the available online tools and eQTL analysis to 

evaluate function of a particular SNP, further functional investigations are required. Third, 

we are still not sure which SNP in the LKB1-AMPK pathway genes may have played a 

major role in or how jointly they may have an impact on PanC risk. Finally, because all 

selected subjects in two GWAS studies were from Caucasian populations, the results may 

not be generalizable to the general populations.

In summary, we report some significant associations between genetic variants in 58 LKB1-

AMPK pathway genes and PanC risk in European populations. Six SNPs (i.e., MAP2 
rs35075084 T > deletion, PRKAG2 rs2727572 C > T and rs34852782 A > deletion, TP53 
rs9895829, RPTOR rs62068300 G > A and rs3751936 G > C) were found to be significantly 

associated with an increased PanC risk, possibly by influencing their gene expression. More 

population validations and additional functional studies are needed to explore possible 

molecular mechanisms in the etiology of PanC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. The workflow of the analysis.
MAF: minor allele frequency; HWE: Hardy-Weinberg equilibrium; SNP: single nucleotide 

polymorphism; PanC: pancreatic cancer; FPRP: false positive report probability; eQTL: 

expression quantitative trait loci.
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Fig. 2. The eQTL analyses of the functional SNPs.
The eQTL results of the SNP rs9895829 of TP53 in 373 normal lymphoblastoid cell lines 

from the 1000 Genomes Project in (a) additive and (b) dominant model and (c-d) GTEx 

results of the two SNPs in high LD with SNP rs62068300 of RPTOR in whole blood cells of 

369 normal participants. eQTL: expression quantitative trait loci; SNP: single nucleotide 

polymorphism; GTEx: genotype-tissue expression; LD: Linkage disequilibrium.
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Table 3.

Analysis of associations between PanC risk and the six SNPs in the dataset of PanScan and PanC4 studies.

SNP rs ID# & genetic
model Group OR (95% CI)

a
P

b

Genotype Case (%) Control (%)

MAP2 rs35075084 CT>C
b

Additive TT 8221 (96.49) 6798 (95.60) 1.00 --

T- 295 (3.46) 310 (4.36) 0.75 (0.64-0.89) 0.0006

-- 4 (0.05) 3 (0.04) 0.99 (0.22-4.44) 0.9871

Trend test 0.0008

Dominant T-+-- 299 (3.51) 313 (4.40) 0.75 (0.64-0.89) 0.0007

TP53 rs9895829 A>G

Additive AA 7729 (90.56) 6315 (88.62) 1.00 --

AG 788 (9.23) 790 (11.09) 0.83 (0.75-0.93) 0.0006

GG 18 (0.21) 21 (0.29) 0.73 (0.39-1.37) 0.3285

Trend test 0.0004

Dominant AG+GG 806 (9.44) 811 (11.38) 0.83 (0.75-0.92) 0.0004

PRKAG2 rs2727572 C>T

Additive CC 2432 (28.50) 2146 (30.00) 1.00 --

CT 4170 (48.87) 3485 (48.72) 1.09 (1.01-1.17) 0.0283

TT 1930 (22.62) 1522 (21.28) 1.17 (1.07-1.28) 0.0008

Trend test 0.0007

Dominant CT+TT 6100 (71.50) 4980 (69.62) 1.11 (1.04-1.19) 0.0034

PRKAG2 s34852782 TA>T
b

Additive AA 4237 (49.98) 3687 (51.98)

A- 3492 (41.49) 2893 (40.79) 1.06 (0.99-1.13) 0.1161

-- 749 (8.83) 513 (7.23) 1.29 (1.15-1.46) <.0001

Trend test 0.0002

Dominant A-+-- 4241 (50.02) 3406 (48.02) 1.09 (1.02-1.16) 0.0076

RPTOR rs62068300 G>A

Additive GG 4093 (47.97) 3278 (46.00)

GA 3639 (42.65) 3116 (43.73) 0.92 (0.86-0.98) 0.0149

AA 801 (9.39) 732 (10.27) 0.85 (0.76-0.95) 0.0043

Trend test 0.0009

Dominant GA+AA 4440 (52.03) 3848 (54.00) 0.91 (0.85-0.97) 0.0026

RPTOR rs3751936 G>C

Additive GG 4887 (25.28) 3886 (27.01) 1.00 --

GC 3119 (49.55) 2710 (49.40) 0.93 (0.87-1.00) 0.0347

CC 513 (25.17) 512 (23.59) 0.82 (0.72-0.93) 0.0025

Trend test 0.0009

Dominant GC+CC 3632 (74.72) 3222 (72.99) 0.91 (0.86-0.97) 0.0051

Abbreviations: PanC: pancreatic cancer; SNP: single nucleotide polymorphism; OR: odds ratio; CI: confidence interval.
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a
Obtained from Logistic regression models with adjustment for age, sex, and top five significant principal components.

b
Base deletion.
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Table 4.

Combined risk genotypes of the six SNPs and the risk of pancreatic cancer.

NUG
Group

OR (95% CI)
a

P
b

Case (%) Control (%)

0 1 (0.01) 1 (0.01) 1.00 --

1 34 (0.40) 50 (0.71) 1.75 (0.11-29.08) 0.6963

2 459 (5.44) 467 (6.61) 1.48 (0.94-2.34) 0.0911

3 1738 (20.59) 1571 (22.25) 1.66 (1.07-2.59) 0.0253

4 3014 (35.70) 2626 (37.20) 1.75 (1.12-2.72) 0.0133

5 2450 (29.02) 1836 (26.01) 2.04 (1.31-3.18) 0.0016

6 746 (8.84) 509 (7.21) 2.23 (1.42-3.51) 0.0005

Trend test <.0001

0-4 5246 (62.14) 4715 (66.78) 1.00 --

5-6 3196 (37.86) 2345 (33.22) 1.24 (1.16-1.32) <.0001

Abbreviations: SNP: single nucleotide polymorphism; PanC: pancreatic cancer; NUG: number of unfavorable genotype; OR: odds ratio; CI: 
confidence interval.

a
Risk genotypes were rs35075084 TT, rs2727572 CT+TT, rs34852782 A-+--, rs9895829 AA, rs62068300 GG and rs3751936 GG.

b
Logistic regression analyses were adjusted for age, sex and the top five principal components.
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