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Expression of neuropeptide Y is 
increased in an activated human 
HSC cell line
Wufei Dai1, Yang Liu1, Yali Zhang2, Yufeng Sun1, Changjiang Sun3, Yu Zhang4 & Xiufang Lv1

Neuropeptide Y (NPY) is an abundant neuropeptide in the mammalian central and peripheral nervous 
systems. Transgenic mice overexpressing NPY in noradrenergic neurons have increased level of hepatic 
triglycerides, fatty acids and cholesterol, which contributed to the development of hepatosteatosis. 
However, the roles of NPY in the activation of hepatic stellate cells (HSCs) and the underlying 
mechanisms remain unclear. This study aimed to investigate the expression and secretion of NPY in 
human immortalized HSC LX-2 cells and the regulatory function of NPY on the fibrogenic response in 
LX-2 cells, to explore the potential association between NPY and LX-2 activation. The results showed 
an increase in the expression and secretion of NPY(1–36) in activated LX-2 cells. Both endogenous 
and exogenous NPY(1–36) induced the phosphorylation of mTOR, p70S6K, and 4EBP1 and promoted 
the fibrogenic response via NPY Y1 receptor subtype (NPY1R), as these responses were blocked by 
either an NPY1R antagonist (BIBP3226) or NPY1R knockdown. Moreover, NPY(1–36) serum levels 
were increased in patients with liver cirrhosis (LC) and hepatocellular carcinoma (HCC) and presented 
a positive relationship with MELD scores in LC patients. These findings suggest that immortalized 
HSCs LX-2 have the potential to produce NPY(1–36). High serum levels of NPY(1–36) is correlated with 
hepatic dysfunction in cirrhotic patients.

Neuropeptide Y (NPY) is the most abundant neuropeptide in the mammalian central nervous system and plays 
important roles in feeding behaviours, depression, stress, and hypothalamic hormone release1. In the peripheral 
nervous system, NPY is co-exists with norepinephrine in nerve endings in the sympathetic nerve system. It is a 
regulator of the cardiovascular system and a growth factor in endothelial cells and vascular smooth muscle cells 
(VSMCs)2. NPY has also been implicated as a promotor of multiple types of malignancies, including breast and 
prostate cancer3,4. Moreover, several studies have shown that transgenic mice overexpressing NPY in noradrenergic 
neurons show increased hepatic level of triglycerides, fatty acids and cholesterol, which contributed to the devel-
opment of hepatosteatosis5. Whether NPY is involved in HSCs activation, fibroblastic changes and the underlying 
mechanisms are unclear.

Hepatic fibrosis and cirrhosis are the result of multiple types of liver injury caused by various factors, includ-
ing viruses, metabolic diseases and cholestatic, autoimmune and drug induction6. Many studies both in animal 
models and in humans has shown that fibrogenesis is a dynamic and reversible process7,8. Underlying this process 
is a variety of nonparenchymal liver cells that transdifferentiate into activated cells characterized by increased 
cell proliferation and extracellular matrix secretion. Cirrhosis represents an advanced stage of fibrosis, which is 
present in 80–90% of patients with hepatocellular carcinoma (HCC)9,10. Thus, the elucidation of the mechanisms 
underlying these processes is fundamentally important for developing effective antifibrotic therapies and decreas-
ing the risk of HCC among patients.

Liver myofibroblasts arising from different cell populations, such as resident mesenchymal cells, portal fibroblasts, 
and hepatic stellate cells (HSCs), undergo a common process of transdifferentiation6,11. Among these cell populations, 
HSCs are the main source of myofibroblasts (>80%)12,13. In liver tissue, HSCs are located in the space between hepato-
cytes and liver sinusoidal endothelial cells and represent 5–8% of the total number of hepatic cells. HSCs are in contact 
with a large number of hepatocytes, adjacent sinusoidal endothelial cells, stellate cells, and nerve endings. They are 
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important autocrine, paracrine, and chemoattractant factors that are used to maintain microenvironment homeosta-
sis in the hepatic sinusoid14. After acute or chronic liver injury, HSCs transdifferentiate from retinoid storing cells to 
activated myofibroblast-like cells characterized by the expression of α-smooth muscle actin (α-SMA) and the loss of 
retinoid. The process of activation includes myofibroblast-like cell phenotypic changes, including increased migration 
capability and proliferation rate increasing, increased production of cytokines, chemokines and extracellular matrix 
proteins, and enhanced contractility, which may lead to fibrosis and cirrhosis15.

We previously demonstrated that NPY inhibits the proliferation of human immortalized hepatocyte cells and 
HCC cells16. On one hand, NPY-positive nerve fibres are localized in Disse spaces in very close proximity to HSCs 
and adjacent hepatocytes17. On the other hand, HSCs contact a large number of nerve endings through multiple 
cytoplasmic processes. Nevertheless, limited information exists regarding the relationship between NPY and 
HSCs activation, the fibrogeneic response, and even hepatic fibrosis. Thus, the aims of this study were to assess 
the expression and function of NPY in immortalized LX-2 HSCs, to explore the signalling pathways involved and 
to obtain in vitro experimental evidence of the fibrogenic response to NPY in the human HSC cell line. Moreover, 
we sought to investigate human circulating NPY levels and their relationship with the severity of liver cirrhosis.

Results
Expression of NPY and NPY1R in human immortalized LX-2 HSCs and liver tissue.  Our previ-
ous study demonstrated that the levels of NPY1R mRNA and protein in human immortalized hepatocyte L-02 
cells were significantly higher than those in HCC cells. Until now, there have been limited data demonstrating 
the potential for HSCs to express NPY receptors and to synthesize NPY. Here, we demonstrated that mRNA 
encoding NPY1R, but not NPY2R or NPY5R, was expressed more strongly in LX-2 cells than in L-02 cells and 
HCCLM3 cells (Fig. 1A). The level of NPY mRNA in LX-2 cells was significantly higher than that in L-02 cells and 
HCCLM3 cells. Importantly, almost no NPY mRNA was detected in L-02 cells or HCCLM3 cells (Fig. 1B). The 
NPY1R protein level, as determined by western blotting, was the highest in LX-2 cells among the three cell lines 
(Fig. 1C). We further demonstrated via fluorescence microscopy that both LX-2 cells and L-02 cells expressed the 
NPY1R protein and that it was diffusely spread throughout the cell cytoplasm and nucleus (green). LX-2 cells, but 
not L-02 cells, abundantly expressed the NPY protein only in the cytoplasm (red) (Fig. 1D). Neither NPY nor the 
NPY1R protein was detected in HCCLM3 cells (data not shown). These results suggest that NPY and NPY1R are 
expressed in immortalized LX-2 HSCs.

Based on the above, we wanted to know which cells express NPY and its receptors in human liver tissue. We 
analysed the expression of NPY1R, NPY2R, NPY5R and their common agonist NPY in clinical samples by immu-
nohistochemical (IHC) staining. The results showed that NPY1R was mainly located in the cytoplasm and there was 
low expression on the membranes of hepatocytes in control normal livers (CNLs), weak staining in fibrotic livers 
(LCs) and no staining in hepatocellular carcinoma (HCC) tissues. What excited us was that the NPY1R staining was 
stronger in HSCs than in the hepatocytes in LC tissues (Fig. 1E). NPY2R and NPY5R were not detected in any tissues 
(data not shown). We failed to detect the NPY protein in HSCs and hepatocytes. The pattern of staining was faint 
cytoplasmic staining in some stromal cells near the parenchymal-stromal inter-face in CNL tissues (Figure S1). These 
results suggest that NPY1R, but not NPY2R and NPY5R, are expressed in the human liver. Our data indicate that 
NPY1R is the prominent NPY receptor subtype expressed in LX-2 cells and human liver tissues. Therefore, we focused 
only on the NPY(1–36), the ligand with the highest affinity among the various isoforms, in subsequent studies.

Human immortalized HSCs LX-2 synthesize and secrete NPY(1–36).  LX-2 cells exhibit typical 
features of hepatic stellate cells and express α-SMA under culture conditions, even when grown in low serum 
mediums (1% FBS). Therefore, the cells are considered activated, or at least partially activated. NPY(1–36) mRNA 
and protein were present in LX-2 cells cultured in 10% FBS, and the response of the LX-2 cells to TGF-β1 involved 
accelerating HSC activation. We wanted to determine whether the NPY(1–36) protein can be synthesized in LX-2 
cells and secreted by the cells to play important regulatory functions. To assess NPY(1–36) synthesis and secre-
tion in activated HSCs, LX-2 cells were cultured in serum-free medium with or without TGF-β1 treatment for 
24 h. Human SH-SY5Y neuroblastoma cells, which have been reported to express and secrete NPY(1–36), were 
used as a positive control18. First, we examined the protein expression of the activated HSC marker α-SMA in 
the TGF-β1-treated cells. Quantitative analysis showed that the α-SMA protein was significantly upregulated in 
treated cells cultured in serum-free (SF) medium by three doses (0.1, 1 and 10 ng/mL) of TGF-β1 (Fig. 2A). We 
chose a dose of 1 ng/mL for subsequent TGF-β1 treatment studies. To investigate NPY(1–36) synthesis and secre-
tion in activated LX-2 cells, we examined NPY(1–36) mRNA and protein expression in TGF-β1-treated LX-2 
cells. As shown in Fig. 2B,C, TGF-β1 significantly enhanced the NPY(1–36) mRNA level in LX-2 cells cultured in 
serum-free medium. NPY(1–36) protein concentrations in both LX-2 cell lysates (intracellular) and SF medium 
(extracellular) were significantly enhanced by TGF-β1 (Fig. 2C). These results suggest that TGF-β1-induced LX-2 
activation leads to the synthesis and secretion of the NPY(1–36) protein by LX-2 cells.

A previous study showed that 10% FBS induced HSCs proliferation. There are reasons to believe that LX-2 
cells undergo progressive activation with serum growth factor support19. Therefore, it was of interest to investigate 
the effects of 10% FBS medium on TGF-β1-induced LX-2 cell activation and the pattern of NPY(1–36) expression 
and secretion. We cultured LX-2 cells for 24 h in 10% FBS medium with or without TGF-β1 treatment. Western 
blot analysis demonstrated that TGF-β1 markedly induced α-SMA protein expression at three doses, and there 
was no difference among the three doses (Fig. 2D). TGF-β1 had no effect on NPY(1–36) mRNA expression 
(Fig. 2E) or changes in protein concentration in LX-2 cell lysates (intracellular) or in culture medium (extracel-
lular) (Fig. 2F). Together, these results indicate that TGF-β1 promoted further activation of LX-2 cells to produce 
α-SMA protein but had no effect on the synthesis and secretion of NPY(1–36) protein in already activated LX-2 
cells.

https://doi.org/10.1038/s41598-019-45932-3


3Scientific Reports |          (2019) 9:9500  | https://doi.org/10.1038/s41598-019-45932-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

NPY(1–36) promotes LX-2 cell proliferation and migration via NPY1R.  The effects of HSC acti-
vation, including cell proliferation and migration, can be considered a fibrogenic response to stimuli present in 
the extracellular environment. As LX-2 cells synthesize and secrete NPY(1–36) and obviously express one of its 
receptors, namely, NPY1R, we wanted to determine whether the cells respond functionally to NPY(1–36) via 
NPY1R. We treated LX-2 cells with human recombinant NPY(1–36) in serum-free culture medium with or with-
out pretreatment with the selective NPY1R antagonist BIBP3226. Our data showed that NPY(1–36) significantly 
promoted the fibrogenic response, such as cell proliferation and migration in LX-2 cells. Pre-treatment with 
BIBP3226 blocked the promotion effect of NPY(1–36) (Fig. 3A,D). There is limited knowledge about the function 
of endogenous NPY(1–36) in HSCs. To explore the biological function of endogenous NPY(1–36) and NPY1R in 
HSCs, we established stable cell lines transduced with a lentivirus carrying short hairpin RNA (shRNA) targeting 
NPY1R, as described previously16. NPY1R was successfully reduced in LX-2 cells stablely transfected with either 
Lenti-sh2-NPY1R or Lenti-sh3-NPY1R (Fig. 3B). Then, we cultured these stably transfected cells in medium 
containing 10% FBS and assessed cell proliferation and migration. Our data showed that NPY1R was a key fac-
tor involved in proliferation and migration and that the knockdown of NPY1R significantly inhibited the basal 
proliferation and migration of the LX-2-sh-NPY1R-transfectanted cells (Fig. 3C,E). These results suggest that 
NPY(1–36) functions as an activator to promote fibrogenic response on LX-2 cells via NPY1R.

Figure 1.  Expression of NPY and its receptors in cultured cells and liver tissues. (A) mRNA expression of 
NPY1R, NPY2R and NPY5R in LX-2, L-02 and HCCLM3 cells. (B) NPY mRNA expression in LX-2, L-02 
and HCCLM3 cells. (C) Protein levels of NPY1R in LX-2, L-02 and HCCLM3 cells. The lanes represent two 
duplicate samples of each cell type. (D) Representative images showing the distribution of NPY (red) and 
NPY1R (green) in LX-2 and L-02 cells. The nuclei are stained with Hoechst (blue). Scale bars, 75 µm. (E) 
Representative images of NPY1R immunostaining in liver tissues. The black arrows indicate HSCs. CNL, 
control normal liver; LC, liver cirrhosis; HCC, hepatocellular carcinoma. Scale bars, 50 µm.
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NPY(1–36) induces LX-2 cell activation through the mTOR/p70S6K/4EBP1 signalling path-
way.  The mammalian target of rapamycin (mTOR) pathway plays key roles in numerous cellular functions, 
including the transdifferentiation of HSCs in liver fibrosis20,21. Both the 70-kDa ribosomal S6 kinase (p70S6K) 
and eukaryotic translation initiation factor 4E binding protein 1 (4EBP1) are downstream molecules of mTOR. 
To evaluate whether the mTOR signalling pathway is involved in NPY-induced LX-2 cell activation and if this 
activation occurs via NPY1R, LX-2 cells were treated with NPY(1–36) for 24 h with or without BIBP3226 follow-
ing serum starvation for 48 h. PDGF-treated LX-2 cells were used as a positive control22. To examine the effect of 
NPY(1–36) on signal transduction in LX-2 cells, we performed western blot analysis with specific phosphoanti-
bodies on cell lysates from activated LX-2 cells. The results showed that PDGF induced α-SMA expression and 
the phosphorylation of mTOR, p70S6K and 4EBP1, as expected. α-SMA was significantly induced by NPY(1–36), 
and this induction was abolished by BIBP3226 pretreatment (Fig. 4A,B). The phosphorylation of mTOR, p70S6K 
and 4EBP1 was significantly increased by NPY(1–36) treatment (Fig. 4A,C–E). This effect shows specificity via 
NPY1R because the activation of mTOR, p70S6K and 4EBP1 was significantly decreased by pretreatment with 
BIBP3226 (Fig. 4A,C–E). These data collectively indicate that the activation of the mTOR/p70S6K/4EBP1 path-
way is necessary for the NPY-stimulated fibrogenic response in LX-2 cells via NPY1R.

Serum levels of NPY(1–36) correlate with liver dysfunction in human hepatic cirrhosis.  Because 
our results suggest the importance of NPY(1–36) expression, secretion and function in LX-2 cell activation, we 
next attempted to determine whether there are changes in the circulating NPY(1–36) concentration in patients 
with different liver diseases. Therefore, we determined the NPY(1–36) concentration in serum samples from LC 
and HCC patients by ELISA and compared them to NPY(1–36) levels in healthy control (HC) individuals. As 
shown in Fig. 5A, the serum level of NPY(1–36) was significantly increased in both patients with LC and HCC 
when compared to healthy individuals, but no differences were observed between patients with LC and HCC. To 
further confirm these changes, we carried out Pearson’s chi-square and Fisher’s exact test to analyse the correla-
tion between NPY(1–36) concentrations and clinicopathological characteristics in patients. The same result as 
that observed above was revealed (Table S5).

Figure 2.  Expression and secretion of NPY(1–36) in activated LX-2 cells. (A) α-SMA protein levels in TGF-
β1-treated LX-2 cells cultured in SF medium. (B) NPY(1–36) mRNA expression in SH-SY5Y cells and LX-2 
cells with or without TGF-β1 (1 ng/ml) treatment cultured in SF medium. (C) NPY(1–36) protein concentration 
inside cells (intracellular) and released into the culture medium (extracellular) when cells were cultured in SF 
medium. (D) α-SMA protein levels in TGF-β1-treated LX-2 cells cultured in medium containing 10% serum. 
(E) NPY(1-36) mRNA expression in SH-SY5Y cells and LX-2 cells with or without TGF-β1 (1 ng/ml) treatment 
cultured in 10% FBS medium. (F) Intracellular and extracellular NPY(1–36) protein concentration of cells 
cultured in 10% FBS medium.
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In order to identify the NPY(1–36) serum level is associated with the severity of liver cirrhosis, we adopted 
a scoring system named the Model for End-Stage Liver Disease (MELD) to assess the severity of chronic liver 
disease and to evaluate hepatic function in cirrhotic patients23,24. Patients were divided into three groups in terms 
of MELD scores: < 10, 10-20, and > 20. A stepwise increasing trend in NPY(1–36) serum concentrations was 
found in LC patients as MELD scores increased (Fig. 5B). We further analysed the correlation between circulating 
NPY(1–36) levels and MELD scores. As shown in Fig. 5C, Pearson correlation analysis revealed a remarkable pos-
itive correlation between NPY(1–36) serum concentration and MELD score (R2 = 0.3162, p < 0.0001, r = 0.5623). 
These findings underscore the relevance of circulating NPY(1–36) levels to the developing of liver cirrhosis in 
HCC.

Discussion
HSCs are the main source of liver myofibroblasts, and recent research has suggested that activated HSCs should 
be regarded as the primary target for developing new antifibrotic therapies25. LX-2 is an immortalized human 
hepatic stellate cell line that is usually used as a cell model to study the mechanism of liver fibrogenesis and to test 
the antifibrotic effect of new compounds26,27. In our present study, we found for the first time that activated human 
immortalized hepatic LX-2 cells mainly expressed NPY1R, but not NPY2R and NPY5R, and secreted NPY(1–36). 
After activated LX-2 cells were quiesced by serum starvation, TGF-β1 and medium containing 10% FBS acti-
vated the quiescent HSCs and induced the expression and secretion of NPY(1–36). Nevertheless, TGF-β1 had 
no effect on NPY(1–36) expression and secretion in activated LX-2 cells. The findings that NPY1R is expressed 
and NPY2R and NPY5R are absence in LX-2 cells are similar to Sigala’s findings that primary human HSCs 
abundantly express the NPY Y1 receptor subtype but exhibit little or no expression of the Y2 and Y5 subtypes28.

Our previous study found that NPY(1–36) inhibits human HCC cell proliferation in vitro, while other find-
ings have shown that NPY increases the proliferation of cultured primary human HSCs28,29. Similar to other 
reports, the present study found that human immortalized HSCs LX-2 synthesize and secrete NPY(1–36). This 
endogenous NPY(1–36) promoted a fibrogenic response to induce the proliferation and migration of LX-2 cells, 
as did exogenous recombinant human NPY(1–36). We also found that NPY-induced proliferation and migration 

Figure 3.  Effect of NPY(1–36) on LX-2 cell proliferation and migration via NPY1R. (A) Cell proliferation 
was analysed by treatment with NPY(1–36) (10−8 M) or BIBP3226 (10−7 M) pretreatment. (B) NPY1R was 
knockdown by shRNA in stable Lenti-sh2-NPY1R and Lenti-sh3-NPY1R transfectants. (C) Cell proliferation 
was analysed by NPY1R knockdown. (D) Representative cell migration images treated with vehicle, NPY(1–36), 
or NPY(1–36) with BIBP3226 pretreatment. The histogram is the statistical analysis of cell counts. (E) 
Representative cell migration images of NPY1R knockdown. The histogram is the statistical analysis of cell 
counts.
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occurred through NPY1R because these responses were blocked either by BIBP3226 pretreatment or by NPY1R 
knockdown. However, little is known about the possible intracellular pathway-mediated effects of NPY(1–36). 
Some findings have shown that the phosphorylation of mTOR and p70S6K is induced in activated HSCs and 
regulates HSCs proliferation and migration30,31. Moreover, a number of mTOR inhibitors have been reported to 
inhibit HSC proliferation and attenuate hepatic fibrosis in vivo and in vitro. Similar to previous studies, our data 
showed that NPY(1-36) induced the phosphorylation of mTOR and p70S6K, as well as that of their common sub-
strate 4EBP1, which functions as a translation repressor and is involved in the regulation of LX-2 cell activation32. 
In the hypophosphorylated form, 4EBP1 binds to eIF4E to prevent cap-dependent translation33,34. In the present 
study, upon stimulation by NPY(1–36), phosphorylated mTOR/p70S6K induced the phosphorylation of 4EBP1, 
leading to translation initiation and the subsequent proliferation and migration of LX-2 cells.

Transgenic mice overexpressing NPY exhibit increased levels of hepatic triglycerides, fatty acids and cho-
lesterol, which contribute to the development of hepatosteatosis5. Another study showed that stress-induced 
increases in serum levels of NPY combined with a high-fat and high-sugar (HFS) diet leads to liver steatosis by 

Figure 4.  Phosphorylation of mTOR, p70S6K and 4EBP1 in LX-2 cell. (A) Representative images of 
phosphorylated mTOR, p70S6K and 4EBP1 were determined in cell lysates by western blotting. Cells treated 
with various dosages of PDGF as a positive control. Quantification of α-SMA protein (B), phosphorylation of 
mTOR (C), p70S6K (D) and 4EBP1(E) protein in NPY-treated cells, with or without pretreatment of BIBP3226.

Figure 5.  NPY(1–36) serum levels in patients with liver cirrhosis and HCC. (A) NPY(1–36) serum levels in HC 
and patients with LC and HCC. (B) NPY(1–36) serum levels in LC patients with different MELD scores. (C) 
In LC patients, correlation analysis between changes in the NPY(1–36) serum concentration and MELD scores 
(r = 0.5725, P < 0.0001). HC, healthy control; LC, liver cirrhosis; HCC, hepatocellular carcinoma.
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promoting fat growth35. These data suggest that NPY may be involved in fibroblastic changes in liver fibrosis and 
cirrhosis, particularly because hepatosteatosis is the predominant pathological cause of hepatic fibrosis. Our study 
found that serum NPY(1–36) levels were significantly higher in LC and HCC patients than in healthy volunteers. 
These results are similar to previous observations of plasma NPY levels, which are increased in LC patients com-
pared to healthy controls36. We also found, a stepwise increase in serum NPY(1–36) as MELD scores increased 
and a significant positive correlation between serum NPY(1–36) levels and MELD scores in LC patients. These 
findings indicate a promising relationship between circulating NPY(1–36) levels and MELD scores. Moreover, 
serum NPY(1–36) levels in HCC patients were higher than those in healthy controls, likely because 80–90% of 
all cirrhotic livers develop HCC9,10. Ultimately, 90.57% of patients in the HCC cohort in the present study were 
developed from liver cirrhosis.

As previously reported, circulating NPY can be degraded head-to-toe by a variety of proteolytic enzymes, such 
as dipeptidyl peptidase 4, which produces NPY(3–36), meprin A, which produces NPY(2–36), and kallikreins, 
which produce NPY(3–35)37,38. Unlike most loss-of-function protein, the degradation of NPY results in a loss 
of affinity for the original receptor and binding to different receptors within distinct physiological responses. 
For example, the NPY receptor is strongly and selectively influenced by N-terminal truncation to NPY(3–36), 
resulting in a switch from NPY1R to NPY2R and NPY5R37,39. In the present study, we limited our research to 
NPY(1–36), mainly because of the dominant expression of NPY1R in LX-2 cells and liver tissues. Considering 
the abundance of proteolytic enzymes in liver and blood, we speculated that increased circulating NPY(1–36) in 
LC and HCC patients is partly due to a reduction in enzymes production or activity. This speculation should be 
tested in future studies.

A shortcoming of our study is that we have no evidence to indicate the source of the elevated serum levels 
of NPY(1–36) in LC and HCC patients. Histological studies have found that a large number of NPY-containing 
nerve fibres were distributed along with hepatocytes, sinusoid endothelial cells and Ito cells in the Disse space and 
that these nerve fibres were decreased in human alcoholic cirrhotic livers compared with healthy controls17,40,41. 
Combining these findings with the findings of our study, we speculated that the loss of innervation feedback 
stimulates the sympathetic system to increase NPY release from nerve terminals and maintain microenvironment 
homeostasis in the Disse space.

In summary, the results of present study indicate that human immortalized hepatic stellate cell line LX-2 had 
the ability to produce NPY(1–36). Both autocrine and exogenous NPY(1–36) induce fibrogenic responses in 
LX-2 cells via NPY1R, and mTOR/p70S6K/4EBP1 signalling pathways are involved in (Fig. 6). Moreover, circu-
lating NPY(1–36) levels are increased in LC patients and are associated with the severity of LC.

Materials and Methods
Cell culture and treatment.  The human immortalized hepatic stellate cell line LX-2 was a gift from Dr 
Scott Friedman. The HCC cell line HCCLM3 was provided by the Liver Cancer Institute of Zhongshan Hospital 
of Fudan University (Shanghai, China). The L-02 human immortalized hepatocyte cells and the neuroblastoma 
cell line SH-SY5Y were purchased from the Cell Bank of Type Culture Collection of Chinese Academy of Sciences 
(Shanghai, China). The embryonic kidney cell line HEK293T was purchased from American Tissue Culture 
Collection (ATCC) (Manassas, USA). Cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM, 
Gibco, Gaithersburg, MD, USA) containing 10% foetal bovine serum (FBS, Gibco) and incubated at 37 °C in a 
humidified environment containing 5% CO2.

To determine NPY(1–36) expression and secretion, cells were serum starved overnight and then treated with 
transforming growth factor β1 (TGF-β1) (#8915, Cell Signaling Technology, MA, USA) (0.1, 1, and 10 ng/mL) in 
the presence or absence of 10% FBS for 24 h for immunocytochemistry, western blotting and real-time PCR. For 
the proliferation and migration assays, the cells were serum starved overnight and then treated with recombinant 
human protein NPY(1–36) (#N5017, Sigma-Aldrich, USA) (10−8 M) or pre-treated for 2 h with the NPY1R antag-
onist BIBP3226 (10−7 M) (#60-1-22, American Peptide Company, Calif., USA). Cell proliferation and migration 
were assessed by the CCK-8 and transwell assays. NPY(1–36) concentrations in culture medium, cell lysates and 
human serum were determined by ELISA. Detailed methods are provided in the Supplementary Information.

Plasmid constructs and lentivirus production.  The plasmid constructs and lentivirus production 
were performed as previously described16. To construct the shRNAs of NPY1R in the shRNA expression vector 
pGreenPuro (System Biosciences, CA), three target sequences (sh1RNA, sh2RNA and sh3RNA) were synthesized 
and inserted into the vector according to the manufacturer’s instructions. shRNA with a non-targeting sequence 
was used as a negative control. Details regarding the primers are listed in Table S1.

Virus packaging was performed in HEK293T cells after the co-transfection of pGreenPuro-sh-NPY1R with 
the packaging plasmid pPACK-GAG, pPACK-REV (System Biosciences, CA), and the envelope plasmid pVSV-G 
(System Biosciences, CA) using Lipofectamine 2000 (Invitrogen, Carlsbad, CA). Viruses were harvested 48 h 
after transfection, and viral titres were determined. LX-2 cells (1 × 105) were infected with 1 × 106 recombinant 
lentivirus-transducing units in the presence of 6 μg/mL polybrene (Sigma) for 24 h. The LX-2 cells stably infected 
with recombinant lentivirus were named Lenti-sh1NPY1R, Lenti-sh2NPY1R and Lenti-sh3NPY1R (knockdown) 
and Lenti-vector (control).

Immunocytochemistry.  Cells were plated on glass coverslips (Fisher Scientific) in 12-well culture dishes 
and grown to approximately 50% confluence for 24 h to promote adherence. The cells were then fixed with 4% 
paraformaldehyde for 10 min and permeabilised with PBS containing 0.1% Triton X-100 for 15 min. They were 
then incubated with blocking solution (Beyotime) for 30 min. Samples were incubated with primary antibody 
(α-SMA and NPY(1–36), Sigma; NPY1R, AbCam) at 4 °C overnight and then incubated with Alexa Fluor 488 or 
Alexa Fluor 555 secondary antibody (Invitrogen) at room temperature for 1 h. Nuclei were stained with Hoechst 
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33342 (Invitrogen) for 5 min. Following a final three washes with PBS, the cells were imaged by fluorescence 
microscopy DMI4000B (Leica).

Real-time polymerase chain reaction and Western blot assay.  As described in our previous study16, 
total RNA was isolated from cells or tissues with TRIzol reagent (Invitrogen) according to the manufacturer’s 
protocol. Real-time polymerase chain reaction (PCR) was performed with the CFX96 Touch™ Real-Time PCR 
Detection System (Bio-Rad Laboratories, Inc.). Real-time PCR was subsequently performed with SsoFast™ 
EvaGreenSupermix (Bio-Rad, Shanghai, China). The reaction conditions were as follows: 95 °C for 3 min, fol-
lowed by 40 cycles of 95 °C for 10 sec and 55 °C for 30 sec. The expression levels were normalized against those of 
the internal reference gene β-actin, and the relative expression levels were determined by the following equation: 
2−ΔΔCt (ΔCt = ΔCttarget−ΔCtβ-actin). Primers for the target genes are listed in Table S1.

For Western blot assay, cells were prepared with the T-PER tissue protein extraction reagent (Pierce, Rockford, 
IL) with a cocktail of proteinase inhibitors (Roche Applied Science, Switzerland) and a cocktail of phosphatase 
inhibitors (Roche Applied Science). The total protein concentration was determined by the modified Bradford 
assay according to the manufacturer’s instructions (Sigma). Proteins were electrophoresed via SDS-PAGE and 
transferred to polyvinylidene difluoride (PVDF) membranes. The blots were incubated with the primary antibod-
ies and secondary antibodies and developed using the West Dura chemiluminescent substrate. Antibodies for tar-
get proteins and incubation conditions are listed in Table S2. The bands were visualized and quantified using the 
ChemiDoc™ MP System (Bio-Rad). Normalization of protein α-SMA and protein phosphorylation experiments 
was based on the ratio to vehicle control, defined as the average (phosphorylated/total protein) for each condition 
divided by the corresponding average value for the control.

Cell proliferation and migration.  For proliferation assays, cells were seeded at 2 × 103 cells/well in 96-well 
plates and cultured in 100 µl of culture medium with or without treatment with NPY(1–36) or the NPY1R antag-
onist BIBP3226. The corresponding culture medium was replaced every 2 days. Details were performed as pre-
viously described16. For migration assays, 40,000 NPY-treated or untreated LX-2 cells resuspended in 200 µl of 
serum-free DMEM were plated in the upper chambers (Millicell, 0.8 µm; Millipore, Bedford, MA) as previously 
discribed42. DMEM with 10% FBS was used as a chemoattractant in the lower chambers. After 16 h (for NPY(1–
36) treatment) or 24 h (for NPY1R knockdown), non-migrating cells were removed from the upper surface softly 
by a cotton swab. The cells that migrated through the membrane to the lower surface were stained with crystal 

Figure 6.  Schematic diagram of NPY(1–36) expression and secretion in activated LX-2 cells and the signalling 
pathway involved. Activated human immortalized hepatic stellate cells synthesize and release NPY(1–36). 
Both autocrine and exogenous NPY(1–36) induce fibrogenic responses via NPY1R and activate the mTOR/
p70S6K/4EBP1 signalling pathway, further phosphorylating 4EBP1 and releasing eIF4E to initiate mRNA 
translation. The fibrogenic response can be blocked by either the selective NPY1R antagonist BIBP3226 or 
Lenti-sh-NPY1R. The speculated mechanism is circled with the grey dotted line.
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violet (Sigma-Aldrich), and then, the cells were counted and imaged using a microscope (Leica) at 100-fold mag-
nification. This experiment was performed in triplicate.

Cell culture supernatants and cell lysates.  A total of 1 × 106 cells were seeded on a 100-mm tissue 
culture dish and cultured to 70% confluence. The cells were serum starved and supplemented with 0.2% BSA for 
48 h prior to TGF-β1 treatment (0.1, 1 and 10 ng/mL for) 24 h. Cell culture supernatants were collected, and par-
ticulates were removed by centrifugation for 15 min at 1000 × g, 4 °C; samples were then aliquoted and stored at 
−80 °C. The media was removed, and the cells were rinsed once with ice-cold PBS. The cells were scraped off the 
plate and transferred to a tube. The cell suspension was diluted with 1x PBS until the cell concentration reached 
1 × 106/mL. Then, the samples were stored at −20 °C overnight. After two freeze-thaw cycles to break up the cell 
membranes, cell lysates were centrifuged at 4 °C for 5 min at 5000 × g. The supernatants were collected, and sam-
ples aliquoted and stored at −80 °C. The samples were centrifuged again after thawing before the assay. Care was 
taken to avoid repeated freeze-thaw cycles.

Human serum and the NPY(1–36) ELISA assay.  We recruited consecutive patients with LC and HCC as 
well as healthy controls from the Affiliated Hospital of Nantong University between May 2014 and June 2017. The 
study was carried out according to the ethical guidelines of the 1975 Declaration of Helsinki (2008 revision) and 
approved by the Nantong University associated Hospital Research Ethics Committee. Written informed consent 
for the biological studies was obtained from each patient. There was no known disease or condition associated 
with serum NPY(1–36) changes in any of the participants. Diagnosis of cirrhosis was based on histopathology of 
liver biopsy samples. Clinicopathological characteristics of LC patients (n = 74) and HCC (n = 53) are shown in 
Tables S3 and S4. The model for end-stage liver disease (MELD) score was applied to assess the severity of chronic 
liver disease and to evaluate hepatic function in cirrhotic patients. The formula of the score is R = 9.57 × loge 
[creatinine (mg/dl)] + 3.78 × loge [bilirubin (mg/dl)] + 11.2 × loge (INR) + 6.43 × (aetiology: 0 if cholestatic or 
alcoholic, 1 otherwise)22. The blood donors in healthy control group have no history of liver disease, normal liver 
biochemistry and no malignant disease.

Peripheral blood samples were collected into serum separator tubes. Samples were allowed to clot at 4 °C over-
night before centrifugation for 15 min at 1000 × g. Serum was collected, and samples were aliquoted and stored at 
−80 °C to avoid repeated freeze-thaw cycles until testing. Cell culture supernatants and cell lysates were prepared 
as described above. Human serum samples were diluted 50-fold with sample diluent. NPY(1–36) concentrations 
were measured with an enzyme-linked immunosorbent assay (ELISA) (Cusabio, China) according to the manu-
facturer’s recommendations. The optical density was measured at 450 nm on a microplate reader (Tecan, Austria), 
570 nm was the reference wavelength. The concentrations of NPY(1–36) were calculated with a four-parameter 
logistic curve fitting for the standard value, and multiplied by the dilution of serum.

Statistical analysis.  Statistical analyses were carried out using the GraphPad Prism software program. 
For quantitative data, groups are reported as the mean ± SEM and compared using the unpaired 2-tailed t test, 
one-way ANOVA test or two-way ANOVA test followed with the Newman-Keuls multiple comparisons test. 
The linear regression and Pearson correlation were used to determine the correlationship between two vari-
ants. Statistical significance was established at p < 0.05. Unless otherwise specified, all assays were performed in 
triplicates.
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