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Abstract

Rationale State-dependent changes in physiological arousal may influence impulsive behaviours.

Objectives To examine the relationship between arousal and impulsivity, we assessed the effects of yohimbine (an «,-adrenergic
receptor antagonist, which increases physiological arousal via noradrenaline release) on performance on established laboratory-
based impulsivity measures in healthy volunteers.

Methods Forty-three participants received a single dose of either yohimbine hydrochloride or placebo before completing a
battery of impulsivity measures. Blood pressure and heart rate were monitored throughout the study.

Results Participants in the yohimbine group showed higher blood pressure and better response inhibition in the Stop Signal Task,
relative to the placebo group. Additionally, individual changes in blood pressure were associated with performance on Delay
Discounting and Information Sampling tasks: raised blood pressure following drug ingestion was associated with more far-
sighted decisions in the Delay Discounting Task (lower temporal impulsivity) yet reduced information gathering in the
Information Sampling Task (increased reflection impulsivity).

Conclusions These results support the notion that impulsive behaviour is dependent upon state physiological arousal; however,
distinct facets of impulsivity are differentially affected by physiological changes.

Keywords Yohimbine - Noradrenaline - Heart rate - Blood pressure - Barratt Impulsiveness Scale - UPPS-P - Stop Signal Task

Introduction is widely appreciated, both in everyday life, as it is a major

influence on decision-making processes, and in the clinical ex-

Impulsivity describes a tendency to act rapidly without consid-
ering the consequences of one’s actions (Daruna and Barnes
1993; Moeller et al. 2001). The importance of this phenomenon
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pression of many neuropsychiatric conditions such as attention
deficit and hyperactivity disorder (ADHD), manic episodes of
bipolar disorder, Parkinson’s disease, eating disorders, or sub-
stance abuse (American Psychiatric Association 2013).

Impulsivity is a multidimensional construct, which can be
considered both as a stable personality characteristic (trait) and
as behaviour that varies depending on a situation (state impul-
sivity) (Herman et al. 2018a). Behavioural impulsivity can be
divided into three major facets: reflection impulsivity (lack of
information gathering and assessment before reaching a con-
clusion), motor impulsivity (premature or no longer appropriate
actions) and temporal impulsivity (difficulty in delaying grati-
fication) (reviewed in Herman et al. 2018a; Herman and Duka
2018). Additionally, inattention and aspects of disadvantageous
decision-making, such as risk-taking, are sometimes also con-
sidered a part of impulsivity construct (for discussion, see de
Wit 2009; Winstanley 2011; Herman et al. 2018a).

Current mood and/or arousal state (Herman et al. 2018a) is
shown to induce changes in distinct facets of behavioural im-
pulsivity. Arousal refers to the general level of cortical
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excitement and autonomic activation (Gray 1964) and ranges
from drowsiness or sleep to behavioural activation or extreme
emotional experience (Humphreys and Revelle 1984). Thus,
increased arousal is intrinsic to high positive or negative emo-
tional experience. Previous research indicates that modulating
one’s state of physiological arousal causes changes in the per-
formance on impulsivity tasks. For example, moderate phys-
ical exercise can decrease motor impulsivity (Chu et al. 2015).
Furthermore, individual differences play a role in the relation-
ship between state arousal and impulsivity. Individuals high in
trait impulsivity typically have a low resting state of arousal
(Fowles 2000; Mathias and Stanford 2003; Puttonen et al.
2008; Schmidt et al. 2013). Since every organism aims to
reach an optimal internal state (i.e. one that feels best; Hebb
1955), it is hypothesised that these individuals behave impul-
sively in order to increase their arousal to the optimal level
(Barratt 1985; Eysenck and Eysenck 1985; Zuckerman 1969).
Thus, trait impulsivity, associated with a low resting state of
arousal, might mediate the effects of arousal on behaviour. For
instance, impulsive individuals perform worse at baseline than
low-impulsive individuals on tests of sustained attention, but
they obtain a greater performance benefit from caffeine than
the low-impulsive individuals (Smith et al. 1991), suggesting
that such a manipulation of (psycho) physiological state will
also influence state impulsivity. This is further supported by
clinical effects of treating ADHD patients with stimulant
drugs: medications such as methylphenidate increase arousal
levels and can decrease impulsive behaviour (Swanson et al.
2011). In healthy populations, low resting physiological
arousal, reflected in low heart rate, predicts faster responses
and riskier behaviour in a gambling game, indicating dimin-
ished impulse control (Schmidt et al. 2013). Interestingly, par-
ticipants tend to make fewer risky gambles following physical
exercise, when compared to a resting condition. Thus, while
relationship between bodily arousal and impulsive behaviours
might yield valuable insights for clinical practice, there has yet
to be a comprehensive study that looks at how physiological
arousal differentially affects dissociable aspects of
impulsivity.

State arousal can be modulated pharmacologically with
substances that act on the noradrenergic system. Yohimbine
hydrochloride, an «,-adrenergic receptor antagonist, increases
blood norepinephrine levels (Hedner et al. 1992) and causes
an increase in physiological arousal (Goldberg et al. 1983;
Krystal et al. 1992; Swann et al. 2013). At higher doses, yo-
himbine can induce hypertension, change mood state and in-
crease anxiety and nervousness (Cimolai and Cimolai 2011)
in particular in individuals more prone to anxiety (Gurguis
et al. 1997). Thus, induced arousal appears to be a more com-
mon effect of yohimbine.

Evidence for the effects of yohimbine on impulsivity most-
ly comes from animal research. For example, yohimbine
acutely increases the preference for the large and delayed
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reinforcer over a smaller immediate one (decreased temporal
impulsivity) (Schippers et al. 2016). However, yohimbine
might also induce inflexibility in adjusting behaviour in re-
sponse to changes in the relative reward values of different
response options (Schwager et al. 2014; Montes et al. 2015).
Moreover, the behavioural effects of yohimbine might depend
on individual differences: yohimbine improves response inhi-
bition (i.e. decreases ‘stopping’ motor impulsivity) in highly
impulsive rats but attenuates response inhibition in low-
impulsive rats (Schippers et al. 2016). Yohimbine also induces
dose-dependent increases in premature responding on the
Five-Choice Serial Reaction Time Task (‘waiting” motor im-
pulsivity) in rats (Sun et al. 2010; Mahoney et al. 2016) and
decreases attentional performance; however, the effects do not
depend on baseline impulsivity levels (Barlow et al. 2018). In
humans, yohimbine is shown to increase impulsive behaviour
on the Immediate Memory Task (IMT) and Delayed Memory
Task (DMT) (a measure of ‘waiting’ motor impulsivity),
which correlates with increases in blood pressure (Swann
et al. 2005, 2013), an effect often associated with arousal. To
our knowledge, there are no studies in humans examining the
effects of yohimbine on impulsivity using tasks to test the
different facets of impulsivity simultaneously. And from the
findings presented above, it also seems that yohimbine may
have differential effects on distinct facets of impulsivity (i.e.
decrease motor ‘stopping’ and temporal impulsivity but in-
crease ‘waiting” impulsivity and inattention) which may de-
pend on baseline impulsivity levels.

Thus, the aims of the current study were twofold: firstly, to
determine whether yohimbine differently affects the distinct
facets of behavioural impulsivity. We hypothesised that yo-
himbine administration would lead to lower behavioural im-
pulsivity, specifically motor ‘stopping’ and temporal sub-
types, particularly in more impulsive individuals (Barratt
1985; Eysenck and Eysenck 1985; Zuckerman 1969).
Alternatively, increasing noradrenergic activity may increase
aspects of impulsive behaviour via deleterious effects on the
scope of attention (Robbins 1997). Secondly, we explored the
alleged under-arousal hypothesis of trait impulsivity. In line
with past literature (Fowles 2000; Mathias and Stanford 2003;
Puttonen et al. 2008; Schmidt et al. 2013), we predicted that
more impulsive individuals would show lower resting levels
of physiological arousal. We used two trait impulsivity mea-
sures: the Barratt Impulsiveness Scale and the UPPS
Impulsivity Scale, to capture the wide range of impulsivity
characteristics, including emotional impulsivity (positive and
negative urgency).

Healthy volunteers took part in a double-blind study.
Participants were randomly assigned to a control (placebo)
or experimental (yohimbine) groups and completed a battery
of behavioural impulsivity tasks. We compared performance
of the two groups to test how noradrenergic manipulation
influenced distinct domains of impulsive behaviour.



Psychopharmacology (2019) 236:1783-1795

1785

Materials and methods
Participants

The study design was approved by the BSMS Research
Governance and Ethics Committee. Forty-three healthy vol-
unteers (19 males) were randomly assigned to one of two
experimental groups: placebo or yohimbine. Only volunteers
who met strict inclusion criteria were recruited. These criteria
involved the following: age between 18 and 40 years old,
normal or corrected-to-normal vision, no lifetime history of
any neurological or mental disorders, no current pharmaco-
logical treatment or psychological counselling, no drug use
within 5 days prior the testing session or alcohol use 24 h
before testing session, weight above 55 kg, systolic blood
pressure (SYS BP) below 135 mmHg and diastolic blood
pressure (DIA BP) below 90 mmHg. Strict exclusion criteria
involved a history of anxiety or panic attacks. Women who
were not using a recommended means of birth control under-
took a pregnancy test before participation in the study. All
volunteers gave written informed consent to participate and
received compensation for their time (£10 per hour).

Materials
Questionnaires

Each participant completed a battery of questionnaires to as-
sess current mood state, alcohol use and impulsivity. The
Nuffield Hospitals Medical History Questionnaire was used
to record demographic details, past and present health status,
use of medications and recreational drugs and a number of
cigarettes smoked per day.

The Barratt Impulsiveness Scale (BIS-11) (Patton et al.
1995) and the UPPS-P Questionnaire (Whiteside and
Lynam 2001; Cyders and Smith 2007), widely used question-
naires in impulsivity research, measured trait impulsivity. BIS
provides an index of three impulsivity dimensions: motor,
non-planning and in-attention. UPPS-P gives a measure of
premeditation, perseverance, sensation secking as well as ten-
dencies to act impulsively while experiencing positive and
negative emotions and positive and negative urgency,
respectively.

Participants completed the Rey Auditory Verbal Learning
Test (RAVLT; Rey 1964), a measure of working memory ca-
pacity, to ensure that both experimental groups are matched on
the basis of their cognitive abilities. Participants heard a list of
15 unrelated nouns with a presentation rate of one word per
2 s. Following a period of 2 min, while instructed to count
from 100 backwards out-loud to minimise mental repetition,
participants were asked to recall as many words as they could
remember. The number of correct recalls was the dependent
variable.

The Alcohol Use Questionnaire (AUQ, Mehrabian and
Russell 1978) provided an estimate of a number of alcohol
units (1 unit=8 g of alcohol) consumed a week over the past
6 months.

The Depression Anxiety Stress Scale (DASS; Henry and
Crawford 2005) consists of three seven-item self-report scales
that measure the extent of depression, anxiety and stress ex-
perienced over the past week. This scale was introduced to
ensure group matching on negative mood ratings.

The Drug Effects Questionnaire (DEQ; Morean et al.
2013) assesses two key aspects of subjective experience: the
strength of substance effects and the desirability of substance
effects. It consists of five items, “Do you feel a drug effect
right now?” (feel), “Are you high right now?” (high), “Do
you like any of the effects you are feeling right now?” (like),
“Do you dislike any of the effects you are feeling right now?”
(dislike) and “Would you like more of the drug you took, right
now?” (more), rated on a 100-point visual analogue scale
ranging from “not at all” to “extremely”.

The Perceived Arousal Scale (Anderson et al. 1995) pro-
vides ratings of subjective arousal state. It consists of 24 ad-
jectives indicating arousal (e.g. energetic) or a lack of arousal
(e.g. sleepy) rated on a five-point scale from 1 (“very slightly
ornot atall”) to 5 (“extremely”). The scale has a high internal
consistency (Cronbach’s av=.93).

The Positive Affect/Negative Affect Scale (PANAS)
(Watson et al. 1988) is a 20-item measure of self-reported
positive affect (PA) and negative affect (NA) experienced at
the present moment.

The State-Trait Anxiety Inventory (STAIL; Spielberger et al.
1983) was used to assess anxiety levels. It consists of two 20-
item scales rated on a four-point scale.

Tasks

The Affective Stop Signal Task (ASST) measured motor re-
sponse inhibition in task-irrelevant emotional contexts. This
modified version of the commonly used Stop Signal Task was
introduced as previous reports suggested that yohimbine
might affect amygdala responses to fearful faces and change
the perception of emotional faces (Schwabe et al. 2013).
Therefore, we used a paradigm with task-irrelevant emotional
context (fearful faces).

The details on the ASST were published previously
(Herman et al. 2018b). Briefly, instead of arrows, participants
were presented with facial expressions from the FACES data-
base (Ebner et al. 2010) of males and females (50% each)
displaying either fear or neutral expression (50% each). On
the Go-trials (a facial expression surrounded by a white
frame), participants were instructed to respond with an appro-
priate button press to indicate whether the face displayed on
the screen was male or female (implicit emotional context) as
quickly as possible and to try and withhold their responses
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when the frame surrounding the picture changed colour (Stop-
trials). The onset of the Stop Stimulus (the same picture
surrounded by a yellow frame) was adjusted according to a
staircase procedure depending on individual performance sep-
arately for each emotional condition, to obtain a probability of
stopping of 0.5 for each condition. Participants were informed
that speed and accuracy on the task are equally important and
that they should not be delaying their responses to see whether
the frame would turn yellow. The Stop-Signal Reaction Time
(SSRT) was calculated separately for neutral (SSRT Neutral)
and fearful (SSRT Fearful) trials.

Participants completed two runs of 160 trials with a rest
break in between. In total, there were 120 Go Neutral, 120 Go
Fearful, 40 Stop Neutral and 40 Stop Fearful trials.

The Probability Discounting Task (PD; Madden et al.
2009) is a measure of risk-taking. It consists of a list of 30
choices between smaller certain rewards and uncertain larger
gains. The dependent variable is /# parameter calculated for
each participant using the following formula:
h = (Probabilistic reward / Certain reward — 1) / Odds against
winning) (In-transformed to reduce skewness). Large / values
indicate discounting of probabilistic rewards (risk aversion).

The Information Sampling Task (IST; Clark et al. 2006) is a
measure of reflection impulsivity. On each trial, a matrix of
5 x5 grey squares was presented on a computer screen. The
participant selected a square by clicking with the mouse over
the square, to reveal one of two colours (e.g. red and blue)
until they were confident which of the two colours was in the
majority of the squares. There were two conditions of the task:

(i) IST fixed win condition (FW): the participant won 100
points if they made the right decision (regardless of how
many boxes they have opened); otherwise, they lost 100
points. The participant completed 10 experimental trials.

(i) IST reward conflict (RC): for every box opened, the par-
ticipant lost 10 points from a bank of 250. If the partic-

ipant chose correctly, they won the remaining points
from the bank; otherwise, they lost 100 points. Each
participant completed 10 experimental trials.

The dependent variable for both conditions is p (correct),
which reflects the degree of certainty that a participant re-
quires when they make a decision. p (correct) values of 1
indicate that the participant acquired full information before
deciding, and 0.5 indicates that the participant had only
enough information to choose at chance.

The Monetary Choice Questionnaire (MCQ); Kirby et al.
1999) is a measure of temporal impulsivity. Each participant
was presented with 27 hypothetical choices between small and
immediate rewards (SIR) and larger delayed rewards (LDR),
for example “would you prefer £54 today or £55 in 117
days?”. The dependent variable was the proportion of LDR
choices made.
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Procedures

Before testing, all volunteers attended a standardised inter-
view with a medical doctor (TD). The screening checked for
exclusion criteria, history of medication and recreational drug
use, contraceptive use, any current or chronic medical condi-
tion and current or lifetime history of any psychiatric or neu-
rological disorder. Seventy-four volunteers (48 females) en-
tered initial screening, but 27 (36%) were excluded as they
met one or more exclusion criteria, and further four individ-
uals (5%) withdrew from the study, yielding 43 individuals
who participated.

Participants were instructed to refrain from caffeine-
containing products on a day of testing and have a light break-
fast in the morning before participating in the study. Following
completion of RAVLT, Alcohol Use and PANAS question-
naires and BP measurement, participants were administered
20 mg yohimbine (yohimbine hydrochloride; Arzneimittel
GmbH) or placebo orally 45 min before the behavioural test-
ing began. Sample size, dosage and timing of drug adminis-
tration were chosen according to previous studies using yo-
himbine, as this dosage was shown to evoke mild effects on
the physiological arousal without causing mood-related side
effects (anxiety and nervousness) (Plewnia et al. 2001;
Schwabe et al. 2010, 2012, 2013; Swann et al. 2013).

Within the first 45 min following tablet administration, the
participants had time to relax and their heart rate (HR) and BP
was monitored every 15 min. Subsequently, physiological
measurements were taken every 30 min. All physiological
measures were recorded while participants were sitting still.
We report both systolic and diastolic effects on blood pressure
as per previous literature to mitigate confounding differential
effect of the drug on DIA and SYS BP (e.g. Krystal et al.
1992; Swann et al. 2013). Approximately 20 min following
the tablet administration, a light snack was served. Following
a 45-min rest period, testing part commenced, during which
participants completed behavioural impulsivity measures
(ASST, IST, PD and MCQ, in a randomised order) and further
state measure questionnaires (PANAS, Perceived Arousal
Scale and DEQ). Procedures are illustrated in Fig. 1. After
behavioural testing was completed, participants remained in
the lab until their BP was < 10 mmHg above baseline.

Statistical analysis

An exploratory correlational analysis was undertaken to as-
sess the relationship between the resting level of physiological
arousal (HR, BP) and trait impulsivity measures. Differences
between groups on demographic information and task perfor-
mance (apart from the ASST) were compared using a series of
independent samples ¢ tests or chi-square tests as appropriate.
Response inhibition on the ASST was analysed with mixed
ANOVA with emotion condition (fearful and neutral) as a
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within-subjects factor, and group (yohimbine or placebo) as a
between-subjects factor. Physiological measures were also
analysed using mixed ANOVAs with time of measurement
as a within-subjects factor, and group (yohimbine or placebo)
as a between-subjects factor. Significant main or interaction
effects were pursued with appropriate follow-up tests, includ-
ing repeated-measures ANOVA. In case of violation of sphe-
ricity, multivariate ANOVAs were used (Maxwell and
Delaney 2004). Additionally, for completeness, in the
Appendix in the Electronic supplementary material, we also
present the analysis exploring sex differences in questionnaire
and behavioural data.

Results
Exclusions and missing data

One participant did not complete the study due to strong nau-
sea and cardiovascular reaction to yohimbine. Therefore, the
final sample consisted of 42 participants (23 females), of
which 21 (12 females) received placebo and 21 (11 females)
yohimbine. The number of cigarettes per smoker in each
group was similar (3 and 4, respectively; X*(1)=0.17,
p=.679). Five participants did not complete RAVLT, and data
from MCQ were missing for two individuals, due to technical
failure; all data from questionnaires administered after tablet
ingestion (PANAS, Perceived Arousal Scale and DEQ) were
missing for one participant. Four participants were excluded
from the ASST for failing to follow instructions not to wait for
the stop signal, evidenced by long Go RTs, long SOA values
and/or high Stop Accuracy values (>2.5 standard deviations
from the group mean).

The groups were well matched on demographics, mood
state and personality variables. However, there were some
group differences in sensation seeking (not significant after
the Bonferroni correction for multiple comparisons,
p>.003) (see Table 1). Therefore, to investigate the potential
role of sensation seeking, each comparison was computed
with and without including sensation seeking as a confound-
ing covariate.

+75min

W

+105min

.M..

Blinding

To establish whether the blinding procedure was success-
ful, we compared the numbers of participants who cor-
rectly and incorrectly guessed their group allocation.
Chi-square test was insignificant (X*(1)=1.62,
p=.204), indicating that individuals in both the placebo
and yohimbine groups were blind to the group allocation.
Notably, 11 out of 21 participants in the yohimbine
group thought they received placebo, while 15 out of
21 participants from the placebo group thought they re-
ceived placebo; therefore, the blinding procedure seemed
to work marginally better for the yohimbine group (see
Fig. 2 for details).

Resting state arousal and trait impulsivity

Correlational analysis to examine the relationship between
resting state measures of arousal (HR, DIA BP, SYS BP)
and trait impulsivity measures (BIS and UPPS-P) showed no
significant correlations (Table 2), indicating that, in this group,
trait impulsivity was not related to unusually low levels of
arousal at rest.

Yohimbine effects on affective state

Following drug ingestion, the yohimbine group reported in-
creased levels of NA but did not differ from the placebo group
in PA (Table 3). No group differences in self-perceived arousal
or drug effects were found. The results did not change after
including sensation seeking as a covariate.

Yohimbine effects on physiological recordings
Systolic blood pressure

Mixed ANOVA revealed a trend for a time-group inter-
action (F(5, 200)=1.90, p=.096, n2p=.045) and a sig-
nificant main effect of time (F(5, 200)=4.81, p<.001,
n2p= .107), and no main effect of drug (F(1, 40)=1.19,
p=.28, nzp =.029). The SYS BP reached its peak 45 min
following drug administration (see Fig. 3a). Including SS
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Table 1 Group demographics, personality and mood state measures as well as group statistics
Variable Placebo Yohimbine t df p Cohen’s d 95% CI
N Mean SD N Mean SD Lower Upper
Demographic information
Age 21 21.29 3.27 21 23.19 541 -1.38 40 175 —043 —4.69 0.88
Weight (kg) 21 70.99 10.72 21 68.96 8.15 0.69 40 493 0.21 -39 7.97
Height (m) 21 1.76 0.1 21 1.73 0.09 0.84 40 406 0.26 -0.04 0.08
BMI (kg/m?) 21 22.96 2.68 21 22.97 237 -0.02 40 988 -0.01 -1.59 1.57
Alcohol units per week 21 1291 10.5 21 11.4 11.55 0.45 40 .659 0.14 -5.37 8.4
RAVLT 18 6.56 2.12 19 5.9 1.45 1.11 35 274 0.37 -0.55 1.87
Trait impulsivity
BIS total 21 66.95 10.52 21 62.76 9.93 1.33 40 192 0.41 -2.19 10.57
UPPS-P
Negative urgency 21 28.91 6.58 21 25.19 54 2 40 .052 0.62 —0.04 7.47
Premeditation 21 2238 4.57 21 19.95 52 1.61 40 116 0.5 -0.62 5.48
Perseverance 21 21.05 4.93 21 18.81 522 1.43 40 161 0.44 -0.93 5.41
Sensation seeking 21 40.24 5.21 21 34.57 7.53 2.83 40 .007 0.88 1.63 9.71
Positive urgency 21 30.43 10.19 21 26.52 7.31 1.43 40 161 0.44 -1.63 9.44
Mood measures
PANAS
NA pre 21 11.71 243 21 12.86 2.46 -1.52 40 .138 -047 —2.67 0.38
PA pre 21 2833 5.8 21 30.38 7.48 -0.99 40 327 -0.31 -6.22 2.13
STAI
Trait anxiety 21 39.1 7.08 21 39.71 7.46 -0.28 40 784 —-0.09 =515 3.92
State anxiety 21 3491 7.88 21 32.71 7.81 091 40 371 0.28 -2.7 7.08
as a covariate strengthened the interaction effect (F(5, Heart rate

195)=2.62, p=.026, n2p= .063), and the main effect of
time was no longer significant F(5, 195)=0.712,
p=.615, nzp:.018). Post hoc repeated-measures
ANOVA revealed that while the placebo group did not
show significant changes in SYS BP over time (F(5,
100)=1.18, p=.326), the yohimbine group did show
changes over time (F(5, 100)=4.10, p =.002).

Diastolic blood pressure

Mauchly’s test of sphericity was significant (X(14)=39.41,
p <.001); therefore, multivariate test was used. Wilks’ lambda
test revealed a time-group interaction (F(5, 36)=2.63,
p=.040, nzp= .267) and a main effect of time (F(5, 36) =
7.77, p<.001, 772p =.519). Post hoc tests revealed that both
groups showed DIA BP changes over time (placebo: F(5,
100)=4.49, p=.001; yohimbine: F(5, 100)=4.66,
p=.001). The SYS BP reached its peak 30 min following
drug administration (see Fig. 3b). There was a trend for a main
drug effect (F(1, 40)=3.04, p =.086, nzp =.071), suggesting
an overall higher DIA BP in the yohimbine group regardless
of the time of measurement.

After controlling for SS, the interaction effect was ap-
proaching significance (F(5, 35)=2.47, p=.051, nzp =.261),
the main effect of time was no longer significant (F(5, 35) =
0.893, p=.496, 172p= .113) and the main effect of drug
remained unchanged (F(1, 40) =3.22, p =.080, 772p =.076).

@ Springer

There was a trend for a time-condition interaction (F(5,
200)=1.95, p=.088, nzp: .05) and a main effect of time
(F(5, 195)=5.24, p<.001, n, =.12), but not a main effect
of drug (F(1, 40)=0.001, p = .975, nzp =.00) (see Fig. 3c).

After controlling for SS, there were no significant results
(interaction term: F(5, 195)=1.43, p=.216, n2p= .04; time:
F(5, 195)=0.62, p=.687, nzp =.02; drug: F(1, 39)=0.26,
p=.611, nzp =.01). Therefore, yohimbine did not affect the
HR.

Performance on the tasks
ASST

A main effect of drug (F(1, 35) =4.30, p =.045, 772p =.11) but
not main effect of emotion or drug-emotion interaction effect
(ps>.05) was found in the SSRT, indicating that
under yohimbine participants had lower SSRT (i.e. they were
better able to inhibit prepotent motor responses successfully).
This effect, however, was only significant when controlling
for individual differences in SS (Fig. 4).

MCQ, PD and IST
Independent samples ¢ test revealed that there were no group

differences in performance on neither MCQ, PD nor IST, and
controlling for SS had no effects on the results (Table 3).
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Therefore, yohimbine ingestion did not affect temporal impul-
sivity, or risk-taking, or reflection impulsivity.

Correlations

To further explore the relationship between individual chang-
es in arousal and performance on the tasks, bivariate correla-
tion coefficients were computed between post-drug ingestion
changes in physiological parameters (BP and HR) and task-
dependent variables. In this analysis, for each participant, we
subtracted the baseline measurement from the average of post-
tablet administration arousal measurements. Therefore, the
change in arousal reflected increased state arousal following
tablet ingestion relative to baseline level. The Bonferroni cor-
rection for multiple comparisons was set to p <.006. The

results indicated that increased DIA BP was associated with
a higher proportion of delayed versus immediate rewards cho-
sen in the MCQ (Table 4, Fig. 5a). Elevated DIA BP and SYS
BP were also associated with less impulsive responding in the
fearful context in the ASST, but this correlation did not sur-
vive the correction for multiple comparisons. In contrast, ele-
vated DIA BP was associated with less information sampling
in the IST RC condition (increased reflection impulsivity;
Fig. 5b). There were no other significant correlations
(Table 4). To establish whether the relationships are solely
related to changes in physiological arousal and not mood state,
we additionally computed correlations between behavioural
impulsivity measures and change in PANAS scores. There
were no significant correlations (Table 4), indicating that state
impulsivity level was solely driven by changes in physiolog-
ical arousal level.

Discussion

The current study examined the role of state arousal induced
by administration of &,-noradrenergic blocker, yohimbine, on
distinct subtypes of behavioural impulsivity. We hypothesised
that yohimbine-induced arousal would result in decreased im-
pulsive behaviour.

In agreement with previous reports, yohimbine did not
affect HR but caused an increase in BP, notably DIA BP
(Krystal et al. 1992; Swann et al. 2005, 2013; Schwabe

Table 2  Pearson’s correlations between trait impulsivity dimensions and measures of physiological arousal at baseline
Baseline BP SYS (mmHg) Baseline BP DIA (mmHg) Baseline HR (bmp)
BIS total score
Pearson’s r .039 234 —.146
p value .806 136 356
UPPS-P
Premeditation
Pearson’s r .109 292 —.102
p value 493 .060 521
Perseverance
Pearson’s r .056 107 .034
p value 7123 .500 .829
Sensation seeking
Pearson’s r .074 .051 —.245
p value .642 750 118
Negative urgency
Pearson’s r .089 .071 —.059
p value 575 .653 709
Positive urgency
Pearson’s r 292 259 —.182
p value .061 .098 250
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Table 3 Descriptive statistics of the mood state measures as well as task performance group comparison following drug/placebo ingestion
Variable Placebo Yohimbine t df p Cohen’sd  95% confidence interval
N Mean SD N Mean SD Lower Upper
State questionnaires
DEQ
Feel 20 27.9 2649 21 28.19 2879 -0.03 39 0973 -0.01 -17.79 17.21
High 20 20.15 2276 21 1543 243 0.64 39 0.525 0.2 -10.17 19.61
Dislike 20 21.85 2746 21 2229 2401 -005 39 0957 -0.02 -16.71 15.84
Like 20 34.6 2123 21 3952 2737  —-0.64 39 0525 -02 —20.45 10.6
Want more 20 27.85 221 21 21.81  24.69 082 39 0415 0.26 -8.79 20.87
Perceived arousal 20 69.65 21.19 21 79.62 1788 —1.63 39 0.111 -0.51 —22.33 2.39
PANAS
PA post 20 213 842 21 26.29 972 -175 39 0088 —0.55 —10.74 0.77
NA post 20 10.85 127 21 13.48 414 -272 39 0010 —0.85 —4.58 —0.67
Task performance
IST
FW P (correct) 21 0.8 0.09 21 0.81 012 -029 40 0773 —0.09 —-0.07 0.05
RC P (correct) 21 0.73 0.06 21 0.72 0.1 0.6 40 0552 0.19 —0.04 0.07
MCQ
Proportion LDR 19 0.43 0.16 21 0.49 022 —-1.02 38 0315 -032 -0.19 0.06
PD
Inh 21 2.83 379 21 221 1.64 068 40 0499 0.21 -121 244
ASST
SSRT neutral 19 29347 5879 19 28034  41.52
SSRT fearful 19 31394 6796 19 2799 38.15

et al. 2010), proving to be a successful method of arousal
induction, nevertheless indicating suppression of the baro-
reflex where increased blood pressure is associated with
cardiac slowing. Moreover, the yohimbine group present-
ed increased negative affective state ratings relative to
placebo, with no differences in positive affective state
ratings. This is consistent with previous findings indicat-
ing anxiogenic effects of yohimbine (Mattila et al. 1988;
Cameron et al. 1994; Cimolai and Cimolai 2011; Elman
et al. 2012; Moran-Santa Maria et al. 2014).

The yohimbine group outperformed the placebo group at
response inhibition in the ASST, as predicted. There were no
group differences in performance in either risk-taking, or re-
flection, or temporal impulsivity tasks. However, increased
arousal, indexed by heightened DIA BP following drug ad-
ministration, was associated with less impulsive behaviour in
the MCQ (temporal impulsivity) and marginally the ASST
(motor impulsivity) tasks, albeit regardless of the emotional
context, but more impulsive behaviour on the IST RC task
(increased reflection impulsivity). Additionally, the behav-
ioural performance was associated with the changes in blood
pressure only, and not self-reported mood differences, indicat-
ing that an increase in physiological arousal is driving the
effects. However, no association between trait impulsivity

@ Springer

and resting state arousal was found; thus, the findings provide
only partial support for our hypotheses.

Motor impulsivity

The yohimbine group showed lower motor impulsivity than
placebo in the ASST, regardless of emotional context. This
relationship, however, was only present when we controlled
for individual differences in sensation seeking, indicating that
personality characteristics might be an important factor for the
role of arousal in inhibitory control. It seems vital to note that
in one study, sensation seeking correlated with performance
on the Stop Signal Task (Muhlert et al. 2015), suggesting that
sensation seeking might play an important role in motor
inhibition.

Overall, the findings of decreased motor impulsivity in the
yohimbine group, which showed an increased level of arousal,
and the correlational results of increased DIA BP following
the drug administration versus baseline linked to better re-
sponse inhibition (although this relationship did not survive
the correction for multiple comparisons), in the fearful con-
text, support our hypothesis of reduced motor impulsivity in a
state of heightened physiological arousal. These results also
corroborate previous findings. For example, abrupt alerting
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Fig. 3 Measurements of a systolic blood pressure, b diastolic blood
pressure and ¢ heart rate of the yohimbine and placebo groups across
the session. Error bars represent standard error. Significant difference
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#h < .01 (placebo group); “p<.05, “*p <.01, **¢p < 001 (main
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cues (i.e. an irrelevant external signal that appears briefly),
which temporarily increase psychophysiological arousal (i.e.
phasic alertness), were found to improve the ability to stop an
already initiated response (Weinbach et al. 2015). Similarly,
response inhibition capacity seems to be affected by acute
changes in cardiovascular arousal state within the cardiac cy-
cle, such that participants are more likely to successfully in-
hibit motor responses during cardiac systole (increased state
of physiological arousal) than diastole (lower state of cardiac
arousal) (Rae et al. 2018). SSRT, an index of difficulty at
motor response inhibition, also decreases after acute exercise
(Joyce et al. 2009; Chu et al. 2015). Moreover, atipamezole,
another antagonist of a,-adrenergic receptors, decreases SSRT
in a rodent version of Stop Signal Task (Bari and Robbins
2013). Taking the previously reported data and our findings
together, we conclude that a moderate increase in the level of

arousal is related to a decrease in motor ‘stopping’
impulsivity.

However, we observed no group differences in motor im-
pulsivity in the neutral and fearful conditions on the ASST.
This may suggest that putative yohimbine-induced changes in
the processing of emotional faces (Schwabe et al. 2013) may
not be interfering with response inhibition capacities.
However, this may be partly attributable to possible sex dif-
ferences associated with yohimbine-induced effects on emo-
tional processing (Schwabe et al. 2013). The sample sizes of
our study were not powered to disentangle these effects reli-
ably (however, see the Appendix in the Electronic
supplementary material for details). Future studies should ad-
dress this issue.

Temporal impulsivity

Although we did not observe any group differences in perfor-
mance in any other tasks apart from ASST, we found associ-
ations between post-drug administration arousal change and
impulsive decisions. Specifically, increased DIA BP follow-
ing drug administration was associated with fewer impulsive
choices in the MCQ task, suggesting that increased arousal at
subject level was associated with lower temporal impulsivity.
Previous studies examining the relationship between physio-
logical arousal and delay discounting mainly studied stress
reactivity: the reported findings are mixed. For example, fe-
male participants with higher HR reactivity to acute stressors
show larger delay discounting (more temporal impulsivity),
but this trend does not hold in males (Diller et al. 2011).
These results indicate that the stress reactivity of the autonom-
ic nervous system might be related to impulsivity. On the other
hand, others do not find significant associations between HR
and HR reactivity with delay discounting rates (e.g. Kimura
etal. 2013). Instead, stress increases delay discounting only in
individuals manifesting a cortisol increase, a putative bio-
marker of stress. A recent study (Lempert et al. 2017) using
within-subjects design reported that blunting arousal levels by
administration of the {3-adrenergic receptor antagonist pro-
pranolol also did not affect temporal discounting rates.
Together, these results indicate that the effects of arousal on
delay discounting might not be straightforward and may main-
ly depend on individual changes in arousal level, which may
affect biological changes in different ways.

Probability discounting

In contrast to temporal discounting, we found no association
between the change in arousal and probability discounting.
Indeed, in rodents during risky decisions, yohimbine does
not affect probabilistic discounting per se (Montes et al.
2015) but rather impairs the flexibility of response adjust-
ments. Thus, when reward probabilities are initially large
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and then decrease (descending condition), yohimbine in-
creases the number of risky choices in later blocks. The re-
verse is true for ascending condition (when the reward prob-
abilities are initially small and then increase)—yohimbine re-
sults in reduced preference for riskier options. In our study, the
trials of different probabilities were intermixed (there was no

Neutral Fearful

ascending/descending condition); hence, risky decisions were
more likely to be tested. The observed lack of an effect of
yohimbine in our task confirms the notion that noradrenergic
activation may not directly impact risky decisions. These find-
ings appear in contrast to the observation that increased phys-
iological arousal following physical exercise is associated

Table4 Correlations between changes in physiological and mood state parameters (delta = average post-drug measurement — pre-drug measurement)

and performance on the impulsivity tasks

Pearson correlations DIA BP delta SYS BP delta HR delta PANAS PA delta PANAS NA delta
SSRTN
Pearson’s 0.182 -0.177 0.039 0.084 -0.182
p value 0.275 0.288 0.818 0.623 0.282
N 38 38 38 38 38
SSRTF
Pearson’s r —0.371%* —0.335% 0.021 -0.010 -0.015
p value 0.022 0.040 0.899 0.953 0.932
N 38 38 38 38 38
IST FW P (correct)
Pearson’s —0.091 0.065 0.174 —0.037 0.211
p value 0.564 0.682 0.271 0.820 0.185
N 42 42 42 42 42
IST RC P (correct)
Pearson’s — 0.444** -0.214 —0.141 —0.281 -0.079
p value 0.003 0.173 0372 0.075 0.622
N 42 42 42 42 42
MCQ proportion LDR
Pearson’s r 0.496%* —0.036 0.006 -0.185 0.285
p value 0.001 0.826 0.969 0.259 0.078
N 40 40 40 40 40
PDInh
Pearson’s r —0.098 0.056 0.112 —0.117 -0.176
p value 0.536 0.724 0.480 0.466 0.271
N 42 42 42 42 42

Values in italics depict correlations that survived the Bonferroni correction for multiple comparisons (p <.006)

*p <.05 (uncorrected); **p < .01 (uncorrected)
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with less risky behaviour in a gambling task (Schmidt et al.
2013). However, we asked explicit hypothetical choices, in
contrast to gambling game paradigms, in which the outcomes
are real (Schmidt et al. 2013). It is plausible, therefore, that the
type of risk task (hypothetical vs real) is differentially affected
by arousal level. The same may apply to temporal discounting
task which also included hypothetical decisions only. Future
studies should assess the differences between the role of
arousal on decision-making involving real versus hypothetical
gains.

Reflection impulsivity

To our knowledge, this is the first investigation of the role of
physiological arousal mediated by noradrenergic mechanisms
in reflection impulsivity. Our results suggest that the DIA BP
reactivity negatively correlates with the degree of information
sampling in the IST RC condition. Therefore, the results pro-
vide an indication that individuals showing a greater increase
in DIA BP also gathered less information before deciding in
the task. Importantly, this relationship was only present in the
reward conflict condition, in which the potential gains de-
crease as participants sample more data (information
sampling/reward trade-off), and not in the fixed win condition,
in which gathering as much information as possible is the
most advantageous strategy. Therefore, state arousal may

Dlastolic BP Change

affect reflection impulsivity in more challenging and more
ambiguous circumstances.

Conclusions

In conclusion, our findings indicate that yohimbine-induced
arousal is associated with decreased motor impulsivity, sug-
gesting that yohimbine treatment might prove us a means of
reducing ‘stopping’ impulsivity. Moreover, increased arousal,
at the individuals’ level, is associated with decreased temporal
but increased reflection impulsivity. Probability discounting, a
measure of risk taking, was not related to arousal level. These
results further support the notion that distinct subtypes of im-
pulsivity are differentially affected by modulators.
Additionally, we did not find, in this normative sample, evi-
dence for the under-arousal hypothesis of impulsivity (Barratt
1985; Eysenck and Eysenck 1985; Zuckerman 1969), since
we did not observe any relationship between resting measures
of arousal and trait impulsivity.

These data highlight the importance of state of physiolog-
ical arousal in behavioural impulsivity.
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