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Abstract
Season of birth has been hypothesized to be a risk factor for autism spectrum disorder (ASD). However, the evidence has been 
mixed and limited due to methodological challenges. We examine ASD birth trends for 5,464,628 births across 5 countries. 
ASD birth prevalence data were obtained from the International Collaboration for Autism Registry Epidemiology database, 
including children born in Denmark, Finland, Norway, Sweden, and Western Australia. Empirical mode decomposition and 
cosinor modeling were used to assess seasonality. We show seasonal variation in ASD births for the countries of Finland and 
Sweden. There was a modest increase in risk for children born in the fall and a modest decrease in risk for children born in 
the spring. Solar radiation levels around conception and the postnatal period were inversely correlated with seasonal trends 
in ASD risk. In the first multinational study of birth seasonality of ASD, there was evidence supporting the presence of 
seasonal trends in Finland and Sweden. The observations that risk was highest for fall births (i.e., conceived in the winter) 
and lowest for spring births (i.e., conceived in the summer), and sunlight levels during critical neurodevelopmental periods 
explained much of the seasonal trends, are consistent with the hypothesis that a seasonally fluctuating risk factor may influ-
ence risk of ASD.
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Introduction

ASD is a set of heterogeneous complex neurodevelopmen-
tal conditions, characterized by early-onset difficulties in 
social communication and unusually restricted, repeti-
tive behavior and interest. Even though genetic factors 
explain much of the variation in ASD risk [1], environ-
mental factors acting during the prenatal, perinatal, and 
postnatal periods also influence risk [2]. The changing of 
the seasons is associated with multiple environmental fac-
tors relevant to fetal development including reproduction, 
nutrition, infections, and chemical exposures [3–7]. The 
possibility of seasonality influencing risk of ASD was first 
raised in the 1980s [8]. However, studies of seasonality in 
ASD have reported mixed findings, such as an increased 
risk among children born in March [9]; excesses in other 
months [10]; or no seasonal trends at all [11, 12]. Incon-
sistent findings may be due to a number of factors, includ-
ing differences in populations; geographic regions; lack of 
control for trends in ASD surveillance and ascertainment; 
and small samples.

The aim of the present analysis was to apply rigorous 
parametric and non-parametric statistical techniques to 
detect patterns of seasonality. We also aimed to assess 
whether such seasonality was consistent with observed 
trends in sunlight. Given the importance of vitamin D for 
proper neurodevelopment [13, 14] and the seasonal vari-
ability of sunlight, solar radiation is one factor that may 
help explain any observed seasonal trends.

Methods

Analysis of seasonal trends in ASD risk is complex 
because non-etiological calendar trends exist in ASD 
prevalence data. In particular, an inverse-U shape is seen 
in the prevalence rates by month of birth in each country 
(Fig. 1). The upward-sloped component of the inverse-U 
corresponds with the commonly reported increase in ASD 
prevalence over the years. Evidence suggests that most of 
this increase is probably due to non-etiological reasons, 
such as increases in awareness and changes in diagnostic 
criteria and reporting practices [15–17]. The downward-
sloped component is an artifact of shorter length of follow-
up: the less time a participant is followed, the less opportu-
nity there is for a diagnosis of ASD, so children born more 
recently will have a lower probability of diagnosis. Thus, 
analyses need to account for these trends. The following 
analyses were applied to each country. First, the relative 
odds of ASD for different months of birth were examined 
in logistic regression models with adjustment for calendar 

time. Second, empirical mode decomposition (EMD) was 
used to remove calendar trends and decompose the ASD 
prevalence time series into component signals. Third, the 
component signals were analyzed for seasonality and com-
pared against data regarding solar radiation.

ASD birth prevalence data were obtained from the Inter-
national Collaboration for Autism Registry Epidemiology 
(iCARE), a multinational research consortium promoting 
autism research. Our analysis included children born in 
Denmark (N = 1,172,516 born 1987–2004 with follow-up 
through 2009); Finland (N = 1,087,827 born 1987–2004 
with follow-up through 2009); Norway (N = 1,057,578 
born 1987–2004 with follow-up through 2006); Sweden 
(N = 1,841,192 born 1987–2004 with follow-up through 
2009); and Western Australia (N = 305,515 born 1987–1999 
with follow-up through 2004) [18]. Ethical approvals, with 
waivers for informed consent, were obtained for each site. 
Case identification and validation, registry reporting, and 
data harmonization across sites is described elsewhere [19].

Analyses were performed using R 3.4.1 [20]. Logistic 
regression using generalized additive models in the R pack-
age mgcv was used to calculate odds ratios (ORs) and 95% 
two-sided confidence intervals. Indicator variables were 
used for month of birth, with the month of January as the 
Ref. [21]. Penalized regression splines were used to adjust 
for birth year [22].

EMD is a non-parametric tool to decompose non-linear 
and non-stationary time series into a finite number of compo-
nent signals called intrinsic mode functions (IMFs) through 
an adaptive algorithm [23]. Previous use of EMD in epide-
miology studies include analyses of dengue, depression, and 
hepatitis B and C [24–26]. The IMFs are computed by first 
defining two cubic spline functions as interpolations from the 
local maxima and the local minima. IMFs satisfy the following 
criteria: the number of extrema and zero crossings differ by 
at most one; and at any point, the local average is zero. These 
functions are averaged, and the mean is then subtracted from 
the original data. If the remainder satisfies IMF criteria, then 
the process is stopped. Otherwise, the remainder is treated as 
a new time series and the above steps iterated. We used EMD 
to decompose the ASD prevalence time series for each country 
into component IMFs for further analysis (Supplement Fig-
ures 1–5). Because the data exhibited mode-mixing of multiple 
sine components due to signal intermittency, ensemble EMD 
was implemented. The basic premise of ensemble EMD is that 
a small amount of white noise is added to the data. EMD was 
then applied with resulting IMFs defined as the mean of an 
ensemble of trials. White noise of 10% of the standard devia-
tion of the original time series was added and the ensemble 
mean of 100 iterations was calculated. [27] The IMFs were 
assessed for statistical significance using permutation testing 
in order to determine whether they were different from ran-
dom noise. The ensemble EMD and permutation testing were 
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implemented using R code by Xie et al. [28] IMFs with sig-
nals beyond permutation testing-defined 99% confidence limits 
were then modeled using cosinor modeling in order to confirm 
seasonality. Cosinor regression models are a flexible method 
often used for studies of seasonal variation [29]. Models had 
the following form:

IMF(t) = �
0
+ �

1
× cos

2�t

T
+ �

2
sin

2�t

T

where T = length of time of one period. T was set to 365 days 
in order to confirm the IMF data fit with a hypothesized 
seasonal model and t = the underlying time-scale variable, 
i.e. the number of days since Jan 1, 1987.

IMFs consistent with seasonal variation were then cross-
correlated against incident solar radiation to determine 
the lagged time with which the largest correlations in the 
hypothesized direction were seen. The lagged sunlight 
data were then input into regression models to determine 

Fig. 1   ASD prevalence time series (cases per 10,000) by country and birth month
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how much of the variance in the ASD seasonal IMFs they 
explained.

Solar radiation data were derived from satellite obser-
vations from the NASA Prediction of Worldwide Energy 
Resource [30]. Average monthly solar radiation (specifically: 
average insolation on a horizontal surface, MJ/m2/day) for 
the capital cities were calculated. Solar radiation and EMD 
residuals were standardized by their respective means and 
standard deviations to arrange the plots on the same z-score 
scale.

Results

The sample consisted of 5,464,628 live born children, 37,734 
with a recorded ASD diagnosis. ASD prevalence rates for 
each country are provided in Supplement Table 1. Analysis 
of ASD risk with reference to January showed that for Fin-
land and Sweden, there were multiple months in the latter 
part of the year for which excess ASD risk was detected 
(Table 1). For Finland, there was 14–21% increased risk of 
ASD for the birth months of July, October, and December 
as compared with January. Similarly, for Sweden, there was 
13–25% increased risk of ASD for the birth months of July, 
September, October, November, and December. In Denmark, 
there was an 11% increased risk in September; in Norway, a 
26% decreased risk in February; and no differences for any 
month for Western Australia.

We then performed EMD to decompose the ASD 
prevalence time series and examined the component sig-
nals (Fig. 2). Permutation testing indicated the follow-
ing IMFs were significantly different from random noise: 
Denmark—IMF 5 and the residue; Finland—IMFs 3-5 
and the residue; Norway—IMF 6 and the residue; Swe-
den—IMFs 3, 5, and the residue; W. Australia—IMFs 4, 
5, and the residue. Of these IMFs, IMFs 5, 6, and the resi-
due were clearly part of aforementioned calendar trends 

(Supplement Figures 1–5). Of the remaining statistically 
significant IMFs, IMFs 3 for both Finland and Sweden 
exhibited periods of approximately 1 year in length, con-
sistent with the presence of yearly seasonal component for 
these countries. There was no support of similar seasonal 
components for Denmark, Norway, or Australia.

Next, we fitted cosinor models with a defined period of 
1 year to IMFs 3 of the ASD time series for Finland and 
Sweden. These independent cosinor models were simi-
lar with each other. For Finland: β0 = 0.06, β1 = − 0.75, 
β2 = − 4.99, while for Sweden: β0 = 0.03, β1 = − 0.39, 
β2 = − 4.46. (Figure 2). Using the fitted cosinor models, 
we estimated the excess cases that were attributable to sea-
sonal trends for these countries. Estimates of excess rates 
were consistent with the general pattern of the odds ratios 
estimated from logistic regression, in finding excess cases 
occurring in the latter months of the year (Table 2). The 
peak excess was observed for children born in the month 
of October: 5.1 and 4.5 extra ASD cases per 10,000 for 
Finland and Sweden, respectively, while the lowest rates 
were observed for the birth month of April, with 5.0 and 
4.4 fewer ASD cases per 10,000 births for Finland and 
Sweden, respectively.

We next examined the cross-correlations between these 
seasonal IMFs and incident solar radiation. The largest 
inverse correlations were seen with lags of − 10 months, 
i.e., around conception (Finland: − 0.67; Sweden: − 0.55) 
and + 2  months, i.e., 2  months after delivery (Fin-
land: − 0.71; Sweden: − 0.59) (Fig.  3). Linear regres-
sion of the seasonal IMFs and solar radiation with a lag 
of − 10 months yielded adjusted R2 values of 0.49 and 
0.35 for Finland and Sweden, respectively. Correspond-
ing adjusted R2 values for lag + 2 months were 0.50 and 
0.34. Thus, changes in solar radiation 10 months prior or 
2 months after birth explained approximately one-third to 
one-half of detected seasonal trends in ASD prevalence.

Table 1   Relative odds and 95% 
confidence intervals of ASD 
by birth month with respect to 
January

Bold values indicate p < 0.05

Denmark Finland Norway Sweden Western Australia

Jan Ref. Ref. Ref. Ref. Ref.
Feb 1.09 (1.00, 1.18) 1.00 (0.89, 1.13) 0.74 (0.56, 0.99) 1.01 (0.93, 1.10) 0.98 (0.73, 1.32)
Mar 0.99 (0.91, 1.08) 0.99 (0.88, 1.11) 0.93 (0.72, 1.21) 1.01 (0.93, 1.09) 0.94 (0.70, 1.26)
Apr 1.00 (0.91, 1.08) 1.07 (0.95, 1.20) 0.81 (0.62, 1.07) 0.99 (0.91, 1.07) 1.16 (0.87, 1.54)
May 1.02 (0.94, 1.11) 0.99 (0.88, 1.11) 1.04 (0.81, 1.35) 1.08 (1.00, 1.17) 0.98 (0.73, 1.32)
Jun 1.07 (0.98, 1.16) 1.01 (0.90, 1.13) 1.04 (0.80, 1.35) 1.02 (0.94, 1.11) 0.91 (0.67, 1.23)
Jul 1.04 (0.95, 1.13) 1.14 (1.02, 1.27) 1.06 (0.82, 1.37) 1.13 (1.04, 1.22) 1.03 (0.77, 1.37)
Aug 1.01 (0.93, 1.10) 1.10 (0.98, 1.23) 0.92 (0.70, 1.21) 1.05 (0.97, 1.14) 1.22 (0.92, 1.61)
Sep 1.11 (1.02, 1.21) 1.12 (1.00, 1.25) 1.02 (0.78, 1.33) 1.16 (1.07, 1.26) 1.1 (0.82, 1.45)
Oct 1.07 (0.98, 1.17) 1.21 (1.08, 1.35) 0.99 (0.76, 1.30) 1.19 (1.09, 1.29) 0.94 (0.70, 1.26)
Nov 1.06 (0.98, 1.16) 1.11 (0.99, 1.25) 1.03 (0.78, 1.35) 1.24 (1.14, 1.34) 1.15 (0.87, 1.54)
Dec 1.03 (0.95, 1.13) 1.18 (1.05, 1.32) 1.18 (0.91, 1.53) 1.25 (1.15, 1.35) 1.00 (0.74, 1.34)
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Discussion

We found evidence supporting the presence of seasonal 
trends in Finland and Sweden, with a modest increase in 
ASD risk for births in the fall months (i.e., conceived in 
the winter), and the lowest risk for births in the spring 
months (i.e., conceived in the summer). The peak in ASD 

cases was observed for the birth month of October while 
the trough was observed for April. Strong evidence of sea-
sonality in ASD births was found for Finland and Sweden, 
but not for Denmark, Norway, or Australia. It is possible 
that background noise for these countries was too strong 
to extract the same seasonal signals that were detected in 
Finland and Sweden. This ‘noise’—in other words, any 
other influence on ASD prevalence rates—could be com-
posed of multiple causes, such as sudden changes in diag-
nostic criteria or reporting practices, or changes in other 
risk factors. Additional factors that may have influenced 
results could be country-specific. For Norway, the reported 
prevalence of ASD was low and predominantly childhood 
autism, which reduced statistical power. For Australia, if 
sunlight is a factor contributing to seasonal effects, it may 
be possible that sunlight levels are generally high and do 
not fall below a threshold that would induce variability in 
ASD risk. The finding of no seasonality for Denmark is 
consistent with a prior study [12].

The present findings of higher ASD prevalence for fall 
births and lower prevalence for spring births is difficult to 
compare against other seasonality studies of ASD and for 
other disorders such as schizophrenia, bipolar disorder, and 
major depressive disorder, since earlier studies did not use 
signal decomposition methods to determine seasonal pat-
terns. We note that even while our logistic regression analy-
sis adjusted for birth year, any potential seasonal signals 

Fig. 2   Seasonal IMFs in ASD 
prevalence time series and fitted 
cosinor models

Table 2   Difference in number of ASD cases per 10,000 births by 
birth month attributable to seasonal variation (estimate and 95% con-
fidence interval)

Finland Sweden

Jan − 0.7 (− 1.5, 0.1) − 0.4 (− 1.2, 0.5)
Feb − 3.1 (− 3.9, − 2.3) − 2.6 (− 3.5, − 1.7)
Mar − 4.6 (− 5.4, − 3.8) − 4.0 (− 4.9, − 3.1)
Apr − 5.0 (− 5.7, − 4.2) − 4.4 (− 5.3, − 3.5)
May − 4.0 (− 4.8, − 3.2) − 3.7 (− 4.6, − 2.8)
Jun − 1.9 (− 2.7, − 1.1) − 1.9 (− 2.8, − 1.0)
Jul 0.7 (− 0.1, 1.5) 0.3 (− 0.6, 1.2)
Aug 3.1 (2.4, 3.9) 2.5 (1.7, 3.4)
Sep 4.7 (4.0, 5.5) 4.1 (3.2, 5.0)
Oct 5.1 (4.3, 5.8) 4.5 (3.6, 5.4)
Nov 4.0 (3.2, 4.8) 3.7 (2.8, 4.6)
Dec 2.0 (1.2, 2.7) 2.0 (1.1, 2.9)
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were contaminated by background noise as demonstrated by 
the EMD analysis. Such contamination would likely be pre-
sent also in other seasonality studies. In general, we would 
expect that empirical mode decomposition, which explicitly 
extracted signals while removing noise from the data, would 
perform more capably in noisy data situations than methods 
that merely attempted to adjust for such components.

Our study has a number of strengths. First, we had the 
opportunity to compare seasonal trends across multiple 
countries. Although we were not able to detect seasonality 
in all five countries examined, the similarity of observed 
trends for both Finland and Sweden supported the exist-
ence of a common seasonal component to ASD prevalence, 
reducing the likelihood that this finding was due to chance. 
Second, the inclusion of multiple years of birth cohorts 
allowed for the detection of a long-term stationary seasonal 
trend that did not change from year to year, thus providing 
greater confidence that detected seasonal trends were not 
just a chance occurrence. Finally, the use of both parametric 
and non-parametric methods to decompose the ASD data 
represents a significant methodological advance in the study 
of seasonality of ASD.

There were some limitations with the analysis. First, 
some studies have suggested that seasonal effects on devel-
opmental outcomes may be at least partially attributable to 
non-causal factors such as socioeconomic status or mater-
nal intelligence [31]. The EMD analyses were performed 
on aggregated time series data and thus could not take into 
account such covariates. However, we performed a sensi-
tivity analysis for the Swedish data, where we had access 
to data on maternal education. Log odds estimates for each 
month differed on average by 4% (Supplement Table 2). This 
suggests that confounding by such factors was not likely to 
explain the observed seasonal trends. Interestingly, a recent 
GWAS study of schizophrenia arrived at a similar conclu-
sion in determining that any seasonality effect was likely 
due to a pathogenic environmental exposure [32] Second, 
EMD decomposes time series into IMFs which may be sub-
jectively interpreted. We addressed this limitation by apply-
ing stringent statistical thresholds to identify only the most 
likely signals, thus reducing the risk of false positives. We 
also used cosinor modeling to determine that candidate sig-
nals were consistent with what would be expected from sea-
sonal trends. This parametric method helped provide eye-test 

Fig. 3   Cross correlation functions and lagged plots relating solar radiation as a predictor of seasonal ASD prevalence. The dashed blue lines rep-
resent an approximate 95% confidence interval for what is produced by white noise
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assurance that identified seasonal signals were indeed valid. 
Another limitation is that sunlight in the capital cities of 
Helsinki and Stockholm was used as proxies for sunlight 
exposure across the entire countries of Finland and Sweden.

Sunlight may play a role in the mechanism underlying 
seasonality. Our analyses indicated inverse correlations 
between sunlight levels around the time of conception and in 
the postnatal period and ASD prevalence. This is consistent 
with recent studies suggesting that low maternal levels of the 
photodependent vitamin D may be associated with increased 
risk of ASD in the offspring [33–35]. However, other causal 
factors, including latitude, diet and dietary supplements, and 
behaviors, might also affect in utero vitamin D exposure. In 
addition, several unrelated causal factors, such as maternal 
viral infections and particulate matter air pollution, might 
also contribute to the presence of seasonal trends.

Conclusion

In one of the largest analyses of ASD birth seasonality and 
the first multinational study to date, there was evidence sup-
porting the presence of seasonal trends in Finland and Swe-
den, but not for Denmark, Norway, and Western Australia. 
The highest risk was observed for fall births and the lowest 
risk for spring births. Assuming that season of birth is a 
proxy for temporally fluctuating environmental conditions, 
this study provides further support of the involvement of 
non-genetic risk factors in the etiology of ASD.
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