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Radiomics based likelihood 
functions for cancer diagnosis
Hina Shakir1,2, Yiming Deng   1, Haroon Rasheed2 & Tariq Mairaj Rasool Khan3

Radiomic features based classifiers and neural networks have shown promising results in tumor 
classification. The classification performance can be further improved greatly by exploring and 
incorporating the discriminative features towards cancer into mathematical models. In this research 
work, we have developed two radiomics driven likelihood models in Computed Tomography(CT) images 
to classify lung, colon, head and neck cancer. Initially, two diagnostic radiomic signatures were derived 
by extracting 105 3-D features from 200 lung nodules and by selecting the features with higher average 
scores from several supervised as well as unsupervised feature ranking algorithms. The signatures 
obtained from both the ranking approaches were integrated into two mathematical likelihood functions 
for tumor classification. Validation of the likelihood functions was performed on 265 public data sets of 
lung, colon, head and neck cancer with high classification rate. The achieved results show robustness of 
the models and suggest that diagnostic mathematical functions using general tumor phenotype can be 
successfully developed for cancer diagnosis.

Early diagnosis of cancer can cause timely medical intervention and effective treatment thus preventing pro-
gression of the disease from early to advance stages. In such cases, the mortality rate among cancer patients can 
be significantly reduced. Thus, there is a need of exploring advanced methods for early cancer detection with 
minimal human intervention.

In recent years, automated cancer diagnostic has emerged as an active area of research. Among several pro-
posed solutions, computational modeling has shown promising results towards cancer diagnosis but these are 
few to the authors’ best knowledge. Majority of the proposed models have been investigated for lung cancer 
since lung cancer is one the major causes of death among cancers patients for the last decade1. In the work 
towards quantitative models, Wu et al.2 presented a likelihood probability model for cancer incidence as a func-
tion of age and the number of periodic X-ray screening a male patient has undergone. A multi-factorial likelihood 
model was proposed by3 for MMR gene variant classification of colon cancer based on tumor characteristics and 
bio-informatics. Beane et al.4 integrated genomic and clinical features to develop a prediction model for cancer 
diagnosis. However, these models offer a few limitations such as a small number of potential predictors, generally 
low overall predictive performance, and methodological constraints.

With all the wealth of knowledge available for the estimation of severity of the disease, the prediction models 
proposed in the literature are found largely to depend upon the demographics and clinical history of the patient. 
Recent advances in image acquisition procedures, regularization and image analysis have transformed the quanti-
tative imaging descriptors. These new characteristics could potentially be used as non-invasive diagnostic or pre-
dictive biomarkers for cancer. Radiomics is an emerging field of study that uses data mining algorithms to extract 
quantitative features from the medical images5. These quantitative features commonly known as radiomic features 
provide information about the gray-level patterns and their associations within a region of interest. The radiomic 
feature analysis has enabled breakthrough to the identification of novel prognostic imaging biomarkers resulting 
in better understanding of cancer and development of computer aided diagnosis solutions6,7. Development of 
radiomics driven effective mathematical frameworks based on general diagnostic phenotype can further boost 
the estimation process of cancer diagnosis, just before the symptoms manifest.

In this research study, we have proposed two mathematical likelihood functions for the diagnosis of cancer in 
CT images. The likelihood functions classify the tumors using the radiomic features with high diagnosis power. 
Our study showed that it is possible to build a radiomics signature for cancer diagnosis based on general tumor 
phenotype. The ranking and selection of radiomic features were carried out based on their average scores assigned 
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by 6 supervised and 7 unsupervised feature selection approaches. The training of the proposed classification 
functions with radiomics integration was performed on 200 lung cancer datasets. The likelihood functions were 
validated on 165 lung, 35 colon, 30 head and neck malignant tumors and 35 benign lung nodules which shows 
the robustness of models. The classification results were evaluated in terms of accuracy, sensitivity and specificity. 
Our presented mathematical models achieved superior tumor classification results when compared with the other 
state-of-the-art classification algorithms.

The rest of this paper is structured as follows. First, an introduction of the proposed research study, related 
work and our research contribution are outlined. Then the proposed radiomics based likelihood functions are 
discussed. Results of the proposed method are followed by a discussion. The research work is summarized with 
a conclusion.

Related Work
Radiomic features are quantitative features which are computed to characterize a disease in the medical images. 
The role of radiomic features in tumor classification has been researched from the broader perspectives of neural 
networks and machine learning algorithms. Radiomics based classification using machine learning algorithms is 
a more popular approach and investigates a set of features helpful towards diagnosis followed by the application 
of classifiers. In this regard, the relationship between radiomic features and the tumor histology was investigated 
by Wu et al.8 by applying classifiers of random Forests, naive Bayes, and K-nearest neighbors to the radiomic 
features. Chen et al.9 proposed a radiomics signature of four Laws features including minimum, energy, skewness 
and uniformity and employed Sequential Forward Selection (SFS) and Support Vector Machine (SVM) classifiers 
for nodule classification. A hierarchical clustering method was used by Choi et al.10 to identify bounding box 
anterior–posterior dimension and the standard deviation of inverse difference moment as the top two distinct 
features for lung cancer diagnosis.

Another progressive approach towards tumor classification is the development of radiomics based efficient 
neural networks. Liu et al.11 proposed a multi-view convolutional neural networks (MV-CNN) which used mul-
tiple views as input channels, to classify the lung nodules in CT images. Causey et al.12 proposed a classification 
neural network based on deep learning features of a lung nodule in CT images. A computer aided diagnosis sys-
tem was proposed by Kumar et al.13 which extracted deep features using an auto-encoder coupled with a decision 
tree classifier to classify the benign and malignant lung nodules.

Contribution of the proposed work.  The proposed research work contributes radiomics based likelihood 
functions for the diagnosis of cancer in contrast to the previously proposed classification methods in8–13 which 
were motivated by machine learning and neural networks. A mathematical solution incorporating radiomics is 
investigated to address the tumor classification problem. The proposed computational approach enables accurate 
and fast classification of a tumor as malignant or benign in CT images and can be further taken up by advance 
mathematical models to gain in-depth insights of the disease.

To formulate the likelihood functions, diagnostic radiomic signatures were developed which can efficiently 
detect lung, colon, head and neck cancer. The radiomic signatures were incorporated into mathematical functions 
which were in turn employed for tumor classification. The performance of radiomic signatures suggest that a 
radiomic signature can successfully classify a tumor based on the general tumor phenotype.

In addition, the research work has intuitively ranked the 3-D radiomic features of a tumor according to their 
diagnosis power towards cancer. Two feature ranking lists were prepared using the average score obtained from 
seven supervised and six unsupervised ranking algorithms. The presented selection approach resulted in accurate 
feature ranking as it performed feature ranking using multiple ranking algorithms and assigned each algorithm 
equal weight towards feature selection. In the past studies, feature selection was done by employing any one 
renowned feature selection algorithm subjecting the ranking potentially to errors8,10. This is particularly true 
since there is no study available in the literature regarding the performance of contemporary feature selection 
algorithms. Hence, the selection of a feature selection algorithm could affect the features ranks for cancer diag-
nosis. The assigned rank scores in our study were validated by integrating the two highly ranked features into the 
proposed likelihood functions for cancer diagnosis.

Materials and Methods
The work flow of the proposed classification functions is shown in Fig. 1. After the data acquisition, tumors 
segmentation and features extraction; feature selection was performed using two groups of supervised and unsu-
pervised ranking algorithms respectively on the radiomic features of training data sets. Two lists of highly ranked 
features were obtained from the two selection approaches and the top selected features data were optimally fit into 
non-linear regression functions.

Data sets description.  The experimental data comprised of 400 lung CT datasets which were accessed 
from Lung114, LIDC15, LUNGx16 and RIDER17 databases. The other datasets included 35 CT volumes of 
colon cancer and 30 CT datasets of pre-treatment head and neck cancer (tumor diameter > 10 mm) acquired 
from CT colongraphy(CTC)18 and Head-and-neck squamous cell carcinoma (HNSCC)19 databases respec-
tively. Since the largest number of annotated public datasets with benign and malignant tumors are available 
for lung nodules only, the training cohort was chosen from the lung CT databases. It comprised of 165 
malignant and 35 benign lung nodules. The validation cohort included lung nodules, tumors in head, neck 
and colon. A summary of the employed databases, distribution of the nodule sizes and their types is given 
in Table 1.

Tumor segmentation from CT images.  The segmentation of lung nodules, polyps in colon and tum-
ors in head and neck were performed using 3-D Slicer platform20. The Lung1 database provides the manual 
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segmentation mask for each dataset but the remaining annotated datasets were segmented using the Grow-Cut 
segmentation algorithm of the platform. The Grow-Cut method is known to perform segmentations which are in 
high agreement with the manual segmentations21.

Radiomic features extraction.  Followed by the segmentation, a total of 105 3-D radiomic features 
were computed for every tumor. The extracted features belong to 6 feature classes including Shape, Gray level 
Difference Method (GLDM), First Order Statistics, Gray Level Size Zone Matrix (GLSZM), Gray Level Run 
Length Matrix (GLRLM) and Neighborhood Gray-Tone Difference Matrix (NGTDM). The number of features 
selected from each feature class are reported in Table 2. The description of feature classes and complete list of 105 
extracted radiomic feature are provided in Supplementary Table S1.

Reliability test and reduction of radiomic features.  Prior to the feature selection process, reliabil-
ity of the computed features was evaluated by carrying out the well- known test of Test-retest reliability. For 
this purpose, RIDER database has made 20 lung CT datasets available obtained on same-day repeat Computed 
Tomographic (CT) scans in lung cancer patients. We computed Concordance Correlation Coefficient (CCC) 
for all the features from repeat scans of RIDER database; and features obtaining a CCC greater than 85% were 
retained while the rest were excluded. The computed 105 radiomic features were also subjected to Kruskal Wallis 
test commonly known as One-way ANOVA test to find out the cancer discriminating features for 5% significance 
level. Based on the results of two tests discussed above, 51 reliable and discriminating features were selected which 
are listed in Supplementary Material S1.

Figure 1.  Work flow of the proposed method for nodule classification.

Training database (no. of sets) Validation Database (no. of sets) Min. Diameter (mm) Median Diameter (mm) Max. Diameter (mm)

Malignant Nodules Lung1(165), RIDER(10) Lung1(155), CTC(30), 
HNSCC(35), LIDC(10) 7.015665 66.06505 215.9035

Benign Nodules LUNGx(35) LIDC(35) 5.738865 41.58367 221.052

Table 1.  Distribution summary of employed databases, nodules sizes and their classes.

Features Class No. of computed features (n = 105)

Shape 13

Gray level Difference Method (GLDM) 14

Gray-Level Co-Occurrence Matrix (GLCM) 23

Neighborhood Gray-Tone Difference Matrix (NGTDM) 5

First order statistics 18

Gray Level Size Zone Matrix (GLSZM) 16

Gray Level Run Length Matrix (GLRLM) 16

Table 2.  Description of computed radiomic features.
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Feature ranking algorithms.  The finally selected stable and distinct features were ranked according to 
their diagnosis power towards cancer to further eliminate the redundant features towards classification problem. 
For this purpose, feature selection algorithms from filter methods and wrapper methods were both considered. 
The filter methods adopt an unsupervised approach and analyze the inherent distribution properties of the fea-
tures whereas wrapper methods try to correlate the features properties with class labels. The chosen algorithms 
under the umbrella of each method are briefly discussed in the following sub-section.

Radiomic feature ranking using filter methods.  A total of seven filter based selection algorithms22–28 
were chosen based on their high ranking performance reported in the literature for feature ranking. The algorithm 
in22 selects the features exhibiting minimum correlation with each other, whereas the Laplacian score23 computes 
a score for each feature to reflect its locality preserving power. In greedy feature selection technique24, a nearest 
neighbor graph is drawn for all the selected features and the reconstruction error is iteratively computed for the 
data matrix for the current selected subset to assign ranks. A minimum information loss index for feature ranking 
is proposed by Mitra et al.25. Multi-cluster feature selection (MCFS)26 technique selects and ranks the features 
by measuring the correlations between different features by solving the process as a sparse Eigen-problem and a 
L1-regularized least squares problem. The clustering algorithm27 takes into account the relevance of each feature 
by incorporating it into the framework of Local Learning-Based Clustering (LLC) algorithm. Feature ranking 
by Zhao et al.28 is initiated by building a normalized Laplacian matrix from features’ pair-wise similarity graph.

Radiomic features ranking using wrapper methods.  The feature selection process was repeated with 
the wrapper methods using six well-known ranking algorithms29–34. ReliefF Algorithm29 penalizes the features 
that give different values to neighbors of the same binary class, and ranks the features higher that give different 
values to neighbors of different classes. Feature based Neighborhood Component Analysis (fNCA)30 learns fea-
ture weights for minimization of an objective function that measures the average leave-one-out regression loss 
over the training data. Fisher Score31 assigns a score to every feature by measuring the ratio of inter-class separa-
tion and intra-class variance. The Infinite Latent Feature Selection (ILFS)32 algorithm assign ranks to the features 
by measuring relevancy of all the possible subsets of features using conditional probability. Features Selection via 
Eigenvector Centrality33 ranks the features by mapping the features to a clustering graph and then explores the 
statistical relationship between pairs of the features. In feature selection with Concave Optimization34, the dis-
crimination between two feature classes is made via a separating plane which is obtained by investigating a set of 
features which could differentiate between the two classes.

Final feature ranking.  Using the above-mentioned sets of algorithms, the radiomic features were ranked 
separately using the wrapper methods and the filter methods. The scores assigned to every feature by each group 
of ranking algorithms were averaged to obtain the final rank scores of all the features. As mentioned earlier, the 
purpose of averaging the scores was to assign equal weight to each ranking algorithm in order to obtain accurate 
feature scores. The average scores of the top 25 selected features computed from the wrapper methods and the 
filter methods respectively are shown in Fig. S2. In Fig. 2, the distributions of chosen features with respect to their 
selection method are compared. Evidently, more features from the shape and first order feature classes appear in 
the top 25 ranking list showing better diagnosis capabilities than the other classes.

The objective of the study was to develop a radiomic signature with two highly discriminative features which 
are also independent to each other. Such features could be treated as independent variables for the formulation 
of a likelihood equation. It is noteworthy that more than two features selection did not appear feasible as it could 
have lead to increased complexity thus reducing the efficiency of the model. We observed that besides the feature 
classes, computed radiomic features can be broadly categorized in terms of texture and shape. While the shape class 
describes the shape characteristics of the nodule, the remaining five feature classes compute several properties of 
the nodule gray levels based on its texture. Since shape and texture offer distinct information about the nodule state, 
these could be treated independent to each other. Therefore, we chose one feature describing the shape and the 

Figure 2.  Distribution of top 25 ranked radiomic features with respect to the feature classes.
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other depicting the texture of the nodule as two independent features from the higher ranks of the top 25 ranking 
list. The selected features are incorporated as independent variables into the proposed likelihood functions.

Results
The feature extraction in our experiments was carried out using PyRadiomics package35, whereas the test-retest 
reliability and Kruskal Wallis test on the computed features were performed using MATLAB R2018b platform. 
The feature ranking algorithms and the likelihood functions were also programmed in MATLAB environment. 
In the following section, we identify the radiomics features for likelihood function formulation followed by per-
formance evaluation of the proposed scheme.

Development of diagnostic radiomic signatures.  Surface Volume ratio(SVR) was the first chosen feature 
with the highest score in the wrapper based ranking list. It belongs to the shape class and defines the compactness of 
the nodule. The second selected feature was sum entropy(SE) which is a sum of differences between the neighbor-
hood gray- values. It ranked number 2 on the list, belongs to GLCM class and describes the texture of the nodule. 
Therefore, the first diagnostic radiomic signature derived from the filter methods ranking comprises of SVR and SE.

The first selected feature from the  filter based ranking approach was Large Area Low Gray Level 
Emphasis(LALGLE) with the highest score on the list. LALGLE belongs to GLSZM feature class and describes 
the texture of the nodule. It measures the distributions of low intensity based large zones.Volume was the second 
chosen feature from the shape class with 5th rank on the list, since the top 4 features depicted the texture of the 
nodule. The above selection lead to second diagnostic radiomic signature obtained from the wrapper methods 
ranking and comprises of LALGLE and volume of the tumor.

Formulation of radiomics based likelihood functions.  The features’ quantitative values in the radiomic 
signatures were considered as two independent variables x1 and x2, then the state (cancer vs. non-cancer) of the 
nodule for these two features became the dependent variable y.

Using 200 training data sets of benign and malignant tumors, the relationship between developed radiom-
ics signatures and the malignancy/benign status of a tumor was quantitatively analyzed and was found to be 
non-linear. In order to optimally fit a non-linear function to the radiomics data and tumor class, non- linear 
regression functions36 were investigated and the functions fitting the data with minimum possible standard error 
were finally selected for classification. For this purpose, the above developed two radiomic signatures as two pairs 
of independent and discriminative features were used to formulate the likelihood models of cancer.

First mathematical likelihood function (MLF I) using filter methods.  The first non-linear regression 
function fit to the radiomics data using wrapper based selection method is given as follows:
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Here x1 denotes the volume value of the test tumor and x2 describes the Large Area Low Gray Level Emphasis 
value of the test tumor. The value of y is 0 for non-cancer state; and 1 for cancer state of the test nodule. The coef-
ficients of the proposed likelihood function in Eq. (1) are as follows:

� = − .a 2 45226185349294; = .b 0 568013700683048; = − . −c E2 32311348575522 02; 
= − . −d E2 68371595182609 02; = . −e E3 61336660703077 03; = − . −f E1 08094045817984 04; 
= . −g E9 40291849279405 07.

The computed average standard error for the y estimates is 0.30.

Second mathematical likelihood function (MLF II) using wrapper methods.  The following likeli-
hood function is proposed using the radiomic signature from filter based ranking method:
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Here x1 denotes the SVR of the test tumor and x2 denotes the SE value of the test tumor. The value of y is 0 for 
non-cancer state and 1 for cancer state of the test tumor. The coefficients of Eq. (2) assume the following values:

= .a 0 747801694861307; = .b 2 22684037581268; = − .c 5 58568390095777;
= .d 3 631765847909; = − .e 0 730551994128231; = . −f E1 28142101694647 02.

The computed average standard error for the y estimate is 0.20. The mathematical functions described by Eq. 
(1) and Eq. (2) are the proposed radiomics based likelihood functions for cancer diagnosis. These functions can 
classify a tumor as malignant or benign once the required radiomic features are extracted from CT images and 
input into their corresponding equations.

Performance metrics.  The performance of the proposed functions for tumor classification is measured in 
the subsequent sections.

Lung nodule classification.  The likelihood equations, MLF I and MLF II were tested on the radiomic fea-
tures of 165 malignant nodules and 35 benign nodules from the test cohort. An optimal threshold of ≥ .y 0 51 was 
chosen to classify a nodule as malignant where as any value of y less than 0.51 classifies the nodule as benign.  
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The diagnosis results of the two models are tabulated in Table 3. Here TP denotes the true positive and is the 
number of nodules correctly classified malignant whereas FP denotes the false positive and indicates the number 
of nodules wrongly classified as malignant. FN denotes the false negative and is the number of nodules wrongly 
interpreted as benign; and TN is the true negative value and denotes the number of nodules correctly classified 
benign. While MLF I classified 155 malignant and 28 benign nodules correctly, MLF II performed better with 
correct diagnosis of 161 malignant and 33 benign lung nodules.

The performance of the classification models was quantitatively evaluated with the accuracy, specificity and 
sensitivity metrics defined as follows:

=
+

+ + +
Accuracy TP TN

TP FN FP TN( ) (3)

=
+

Specificity TP
TP FP( ) (4)

=
+

Sensitivity TN
TN FN( ) (5)

The first likelihood function MLF I achieved 91.5%(CI:0.864–0.949) accuracy, 95.68%(CI:0.892–0.967) sen-
sitivity and 73.68%(CI:0.579–0.85) specificity in lung nodule classification. Second likelihood function MLF II 
on the other hand, resulted in an accuracy of 97.0%(CI:0.936–0.989), sensitivity of 98.77%(CI:0.939–0.990) and 
specificity of 89.19%(CI:0.8139–0.9842) for nodule classification.

Furthermore, the receiver operating characteristic curves(ROCs) were plotted in Fig. 3 to illustrate the 
diagnostic ability of two proposed likelihood equations. Higher area under the curves(AUCs) values indicate 
higher accuracy when two or more methods are compared for various thresholds. The achieved AUCs for MLF 
I and MLF II were 92.68% and 98.81% respectively which confirm that both the models can discriminate highly 
between diseased and the non-diseased nodules.

Malignancy detection in colon, head and neck tumors.  A threshold of y = 0.51 and above used in 
lung nodule classification experiments was also employed for colon, head and neck cancer detection. The like-
lihood function MLF I detected cancer in 26 out of 35 tumors in colon and 25 out of 30 head-and-neck tumors. 

Patient Test = Positive Test = Negative

MLF I Classification

Cancer 155(TP) 10(FN)

No Cancer 7(FP) 28(TN)

MLF II Classification

Cancer 161(TP) 4(FN)

No Cancer 2(FP) 33(TN)

Table 3.  Nodule classification results.

Figure 3.  ROC Curves for proposed likelihood functions MLF I and MLF II.
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Figure 4.  Visualization of (a) stable and reliable radiomics features using PCA transformation in image space 
(b) radiomic signature (surface volume ratio, sum entropy) from MLF II in image space.

Figure 5.  Quantitative classification results of MLF I and II for malignant and benign tumors from LIDC, CTC 
and HNSCC databases.

https://doi.org/10.1038/s41598-019-45053-x
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The cancer detection rate of MLF I has an accuracy of 74.28% and 83.33% respectively. The second likelihood 
function MLF II detected cancer in 30 out of 35 colon tumors and 27 out of 30 head and neck tumors correctly 
with a detection rate of 85.71% and 90% respectively.

Comparison of MLF I and MLF II.  Although both the likelihood functions have proven to be capable of 
tumor classification in lung, colon, head and neck; the performance of MLF II was found superior for cancer detec-
tion (Acc.% is 97% for lung, 85.71% for colon and 90% for head and neck). The features including surface to vol-
ume area and sum entropy in MLF II showed strong ability of cancer diagnosis. The effectiveness of the proposed 
radiomic signature (surface volume ratio, sum entropy) integrated in MLF II is further demonstrated through their 
visualization in Fig. 4. Evidently, while the PCA transformed new features failed to differentiate between malignant 
and benign nodules in Fig. 4(a), surface volume ratio and sum entropy together have successfully identified most 
of the cancerous and non-cancerous tumors in Fig. 4(b). This comparison further supports the features ranking 
carried out by the chosen feature selection approach. The achieved results suggest that a diagnostic radiomic signa-
ture comprising of one shape and one textural feature can successfully detect multiple types of cancer.

It was observed that classifications performed by MLF II(SE = 0.20) were largely correct with values of y 
obtained either close to 0 or 1 showing excellent classification results. However, MLF I mis-classified quite a few 
nodules around the chosen cut-off value of y of 0.51. This is most likely due to the comparatively larger standard 
error(SE = 0.3) contributed by MLF I. The discussed scenario is illustrated in Fig. 5 by reporting the quantitative 
classification results of both the models for test benign and malignant tumors from LIDC, CTC and HNSCC data-
bases. The obtained values of y in MLF I in the test cases of benign and malignant lung nodules are close to 0.5 and 
represent wrong diagnosis. On the contrary, the achieved values of y in MLF1 and MLF II for all the other reported 
cases of lung, colon, head and neck cancer show correct diagnosis and are close to the expected value of 0 or 1.

Discussion
Radiomics have been an active area of research for medical image analysis and have shown strong correlation with 
diagnosis and prognosis of cancer. There are still many primary cancer types where the application of radiomics 
for tumor classification needs in-depth exploration. This includes colon, head and neck cancer as well. Pallamar  
et al. in37 have investigated the potential of texture analysis for the differentiation of benign and malignant head 
and neck tumors in MRI images. The best classification results varied between 81.48%(n = 27) and 92.59%(n = 27) 
for 1.5 Tesla and 3.0 Tesla acquisition modalities respectively using discriminating features. The results were not 
encouraging for multi-centre study since tumors classification was poor if benign and malignant tumors were 
scanned on different sites. The proposed MLF I and MLF II classified head and neck tumors(n = 30) with a detec-
tion rate of 83.33% and 90% respectively. The proposed likelihood functions are not only at par with the published 
results in37 but are also robust and independent of acquisition protocols. This is true because the training of the 
likelihood functions was carried out on datasets acquired from different scanners with varying slice thickness.

Colon cancer is the other cancer where the diagnostic potential of radiomics has remained untapped. Huang 
et al. in38 has investigated the gene candidate Notch1 for benign and malignant colon tumors. The Notch 1 expres-
sion was expressed in 58% of the colon cancer patients(n = 462). The application of MLF 1 and MLF II for colon 
cancer detection is the first attempt to employ radiomics for colon cancer diagnosis. The proposed MLF I and 
MLF II classified colon tumors with a detection rate of 74.28% and 85.71% respectively.

A comparison of the proposed classification models with the other published state-of-the-art classification 
methods for lung, colon, head and neck tumors is made in Table 4. Since a large number of the research studies 
on tumor classification for lung cancer are carried out using LIDC database, it is our chosen database as well. 
The lung cancer classification presented by11 reported the highest accuracy of 94.59% (n = 172) using Multi-view 
convolutional neural networks but the number of benign nodules detected are not mentioned. In the research 
work presented by8–10,13, the accuracy, sensitivity and specificity of nodule classification are computed so a full 

Prediction Model
# of Data sets (Tumor site, 
Database) Accuracy Sensitivity Specificity AUC

Wu et al.8 Random forest classifier 152(Lung, LIDC) 55.0% 80.0% 72.0% —

Chen et al.9 SFS, SVM 75(Lung, LIDC) 84.0% 92.85% 72.73% —

Choi et al.10 SVM-LASSO 72(Lung, LIDC) 84.6% 87.2% 81.2% 89%

Liu et al.11 Multi-view convolutional neural networks 172(Lung, LIDC) 94.59% — — 98.1%

Kumar et al.13 Deep convolutional neural network 97(Lung, LIDC) 75.1% 83.35% 61.0% —

Pallamar et al.37 Linear Discriminant analysis, k nearest neighbor 27(Head & Neck, Private)
81.48% 
1.5T
92.59% 
3T

— — —

Huang et al.38 Gene expression 462(Colon, Private) — — — —

Proposed MLF I Curve fitting using non-linear regression
200(Lung, LIDC & Lung1)
35(Colon, CTC)
30(Head & Neck, HNSCC)

91.5%
74.28%
83.33%

95.68% 73.68% 92.68%

Proposed MLF II Curve fitting using non-linear regression
200(Lung, LIDC & Lung1)
35(Colon, CTC)
30(Head & Neck, HNSCC)

97%
85.71%
90%

98.77% 89.19% 98.81%

Table 4.  Comparison of performance metrics of MLF I and MLF II with other state of the art classification 
models.

https://doi.org/10.1038/s41598-019-45053-x


9Scientific Reports |          (2019) 9:9501  | https://doi.org/10.1038/s41598-019-45053-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

comparison becomes possible. The Random forest classifier in8 gave low classification performance with 55% 
accuracy whereas the validations datasets used by9,10,13 are small (n = 75, n = 72, n = 97). The quantitative com-
parison shows that both the likelihood functions MLF I and MLF II have performed better classification than the 
methods proposed in8–11,13 of Table 4 with a larger validation set(n = 200). Between the two models, the diagnosis 
capability of MLF II is proven superior over the other chosen algorithms.

While CT has been used for lung cancer imaging and CT and MRI both have been used as imaging modalities 
for head, neck and colon cancer; the proposed models use CT modality only to classify three cancer types with 
high accuracy. This shows the robustness and benefit of using the proposed likelihood functions over the previ-
ously published models.

Conclusion
In this research work, we have proposed two radiomics based likelihood functions for tumor classification. The 
research experiments showed that a radiomic signature developed using general tumor phenotype can diagnose multi-
ple cancer types. Intuitive and concise feature selection techniques using wrapper methods and filter methods are pre-
sented and compared to distinguish between benign and malignant tumors on CT images. The novelty of our work lies 
in the radiomics based mathematical approach for tumor classification problem for colon, lung, head and neck which 
has the potential to classify several other cancer types. The proposed classification functions are easy to implement and 
have demonstrated better performance in terms of accuracy, sensitivity and specificity when compared with the other 
existing competent techniques. We believe that the presented study opens a new research avenue in the domain of 
mathematical and stochastic modelling and has strong potential for further exploration in cancer diagnostics.

Data Availability
The datasets can be accessed from the following URLs for reproducibility purpose: LIDC, Lung1, RIDER, 
LUNGx, CT Colonography, Head and neck cancer, The MATLAB code used to carry out the several tasks in the 
research study can be accessed at: MATLAB Code.
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