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Abstract Introduction: Despite the availability of age- and education-adjusted standardized scores for most
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neuropsychological tests, there is a lack of objective rules in how to interpret multiple concurrent neu-
ropsychological test scores that characterize the heterogeneity of Alzheimer’s disease.
Methods: Using neuropsychological test scores of 2091 participants from the Framingham Heart
Study, we devised an automated algorithm that follows general diagnostic criteria and explores the
heterogeneity of Alzheimer’s disease.
Results: We developed a series of stepwise diagnosis rules that evaluate information from multiple
neuropsychological tests to produce an intuitive and objective Alzheimer’s disease dementia diag-
nosis with more than 80% accuracy.
Discussion: A data-driven stepwise diagnosis system is useful for diagnosis of Alzheimer’s disease
from neuropsychological tests. It demonstrated better performance than the traditional dichotomiza-
tion of individuals’ performance into satisfactory and unsatisfactory outcomes, making it more reflec-
tive of dementia as a spectrum disorder. This algorithm can be applied to both within clinic and
outside-of-clinic settings.
� 2019 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

Alzheimer’s disease (AD) is a chronic neurodegenerative
disorder, which makes up more than 60% of all dementia
cases [1,2]. With a rapidly aging population, projected
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number of cases will triple by 2050 [3]. Cognitive decline
is a key symptom of AD, and neuropsychological (NP) tests
are widely used to assess varying degree of cognitive
dysfunction, especially those affecting attention, memory,
and executive functions [4,5]. Although cognitive
impairment is a sine qua non criterion in AD diagnosis,
the complexity of NP test data poses a challenge for
consistent and accurate interpretation and the number of
experts available to do so are limited, particularly in non-
Western countries. Further, clinical AD trial studies have
largely failed, partly due to the presumption of a more
imer’s Association. This is an open access article under the CC BY-NC-ND
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homogeneous clinical progression [6]. Therefore, variability
in NP profiles based on different AD risk factors and its
implication warrant further investigation.

Currently, age- and education-adjusted standardized
norms are available to serve as a reference for individual
NP test scores [7,8], but performance variability does not
lend itself easily to a set of decision rules, nor are discrete
cutoff values generalizable across all influencing factors.
For example, although the Mini-Mental State Examination
has well-established threshold scores [9–11], the score can
vary significantly among people based on education and/or
age [12]; floor and ceiling effects are additional important
limitations. The Mini-Mental State Examination is also
insensitive in detecting cognitive abnormalities during the
earliest stages of AD [13–15], and its cutoff values rely on
a single total score, making it difficult to determine the
cognitive etiology of poor performance and the subtype of
dementia.

Another challenge in AD diagnosis is the evaluation and
interpretation of NP test results. Deciding cognitive status
based on NP performance is clinician-subjective. Most con-
ventional analyses also assume linear correlation between
cognitive diagnoses and a single test, which is not reflective
of dementia as a spectrum disorder. Therefore, there is clin-
ical utility in applying new analytic approaches that can
assess cognitive performance objectively across its multiple
dimensions.

Machine learning techniques can readily derive informa-
tion from complex data such as NP scores and uncover new
knowledge to predict disease outcomes and improve the
clinical decision-making process. Decision tree is one of
the most widely used machine learning methods that in-
volves breaking up a complex diagnostic process into a se-
ries of simpler rules, eventually leading to a multistage
decision-making algorithm, and overcoming the knowledge
bottleneck imposed by human experts [16]. It has been
applied to a broad range of tasks from credit risk assessment
to medical diagnosis [17,18]. Although the receiver-
operating characteristic curve is often used to determine cut-
off values of medical measures [19], isolation of a single
cutoff value for a given NP test may compromise the overall
accuracy of the prediction model. As an alternative, a deci-
sion tree can use multilevel cutoff values determined via dis-
cretization technology, which could enhance overall
prediction accuracy for complex diseases such as AD. It is
also important to consider the relevance of various NP tests
in the diagnostic process as it has been widely accepted that
certain tests are more sensitive in detecting cognitive decline
than others [20,21]. Given the heterogeneity of AD,
cognitive impairment may affect different cognitive
domains for different subpopulations. It is, thus, important
to use feature selection techniques to distinguish subsets of
NP measures that are predictive of AD based on different
demographic and AD risk factors.

Leveraging the rich collection of NP tests available at the
Framingham Heart Study (FHS), the objective of this study
is two-fold: (1) identify the most informative NP tests and
(2) build a multilevel diagnostic decision tree to systemati-
cally screen for dementia.
2. Methods

2.1. Study population

The FHS is a longitudinal community-based multigener-
ational observational study initiated in 1948. In 1976, the
FHS started cognitive screening of a subset of Original par-
ticipants and subsequently extended it to all participants in
all cohorts. Details of the dementia surveillance have been
previously reported [22–24]. Given that sporadic AD is a
disease that primarily affects individuals of advanced age,
only participants from the Original, Offspring, Omni 1,
and New Offspring Spouse cohorts [25], aged 70 years and
older, were included in our study sample [26,27].

Thirty-two tests comprise the NP test protocol. Given that
some tests were administered only to a subset of participants,
the current analysis focused on 11 tests that were conducted
on more than 85% of all participants. These tests included
Wechsler Memory Scale Logical Memory [28]—Immediate
Recall (LMi), Delayed Recall (LMd), and Recognition; Vi-
sual Reproductions28—Immediate Recall (VRi), Delayed
Recall (VRd), and Recognition; Paired Associate
Learning28—Immediate Recall (PASi), and the Similarities
Test from the Wechsler Adult Intelligence Scale [29]. Addi-
tional tests included the Boston Naming Test (30-item Even
Version; BNT30) and recall of hard scores from PAS imme-
diate (PASi_h) and delayed conditions (PASd_h), measures
of confrontational word retrieval and verbal learning,
respectively [28,30].

FHS dementia diagnosis is based on the Diagnostic and
Statistical Manual of Mental Disorders, Fourth Edition
[31], and AD diagnosis met criteria as specified by the Na-
tional Institute of Neurological and Communicative Disor-
ders and Stroke and the Alzheimer’s Disease and Related
Disorders Association [32]. Dementia diagnosis is evaluated
and verified through an adjudication panel, which includes at
least one neuropsychologist and one neurologist and has
been previously described [33]. Each NP assessment was
assigned to one of these three outcomes: healthy control,
AD, and non-Alzheimer’s dementia (NAD). Refer to
Supplementary Fig. 1 for sample selection flowchart.

2.2. Decision tree for dementia diagnosis

We implemented a supervisedmachine learning approach
to recognize dementia diagnosis—both AD and NAD—
from the NP assessment perspective. Our key approach is
a Chi-square Automatic Interaction Detection decision tree
[34], which identifies a series of diagnostics rules and ar-
ranges them in a tree-like manner in order of importance.
Starting from the root node—the topmost decision step—
Chi-square Automatic Interaction Detection adopts a top-
down approach to select the optimal NP test that is most



Table 1

Demographics, NP test scores, and APOE genotypes of the studied

population

Characteristics

Healthy

control

(n 5 3514)

Alzheimer’s

disease

(n 5 555)

Non-

Alzheimer’s

dementia

(n 5 443)

Age at NP examination

Mean (SD) 79 (6) 85 (6) 84 (6)

Range 70–101 70–103 70–97

Male, no. (%) 1521 (43.3) 179 (32.3) 220 (49.7)

Highest level of education

attained

Valid education

data, no. (%)

3510 (99.9) 549 (98.9) 442 (99.8)

High school and

below, no. (%)*

1491 (42.5) 358 (65.2) 241 (54.5)

Beyond high

school, no. (%)*

2019 (57.5) 191 (34.8) 201 (45.5)

APOE ε4 allele

Valid genetic

data, no. (%)y
3369 (95.9) 530 (95.5) 413 (93.2)

APOE ε4 (2), no. (%)* 2794 (82.9) 346 (65.3) 327 (79.2)

APOE ε4 (1), no. (%)* 575 (17.1) 184 (34.7) 86 (20.8)

NP test scores, mean (SD)

LMi 11.2 (3.7) 4.8 (3.8) 7.9 (3.9)

LMd 10.2 (3.9) 3.0 (4.0) 6.5 (4.1)

LMr 9.4 (1.4) 7.1 (2.3) 8.5 (1.7)

VRi 7.1 (3.0) 3.1 (2.3) 4.0 (2.5)

VRd 6.1 (3.1) 1.6 (1.9) 2.7 (2.4)

VRr 2.6 (1.1) 1.3 (1.1) 1.7 (1.1)

PASi 12.8 (3.3) 8.4 (2.9) 9.9 (2.8)

PASd_h 2.0 (1.3) 0.5 (0.9) 1.0 (1.1)

PASi_h 4.4 (3.0) 1.1 (1.7) 2.0 (2.0)

SIM 15.5 (3.9) 9.8 (5.0) 11.6 (4.7)

BNT30 26.1 (3.4) 19.4 (5.9) 22.3 (5.4)

Abbreviations: APOE, apolipoprotein E; BNT30, Boston Naming Test

(30-item Even Version); NP, neuropsychological; LMd, Logical Memory

(Delayed Recall); LMi, Logical Memory (Immediate Recall); LMr, Logical

Memory (Recognition); PASd_h, Hard score of Paired Associate Learning

(Delayed Recall); PASi, Paired Associate Learning (Immediate Recall); PA-

Si_h, Hard Score of Paired Associate Learning (Immediate Recall); SD,

standard deviation; SIM, Similarities Test; VRd, Visual Reproductions (De-

layed Recall); VRi, Visual Reproductions (Immediate Recall); VRr, Visual

Reproductions (Recognition).

*Values are calculated based on a subset with valid data.
yParticipants who did not consent to genetic analyses, had an APOE ε2/ε4

genotype, or with no APOE information were excluded.
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important to cognitive outcomes. It designates a set of cutoff
values for the chosen NP test via ChiMerge [35] and
branches out to two or more lower-level (internal) nodes.
This process is repeated at every internal node until the sam-
ple size in a specific node is less than 50 [36,37]. The
performance of the model was evaluated by ten-fold cross
validation [38].
2.3. Identification of most informative NP tests for
cognitive diagnosis

The 11 NP tests were ranked, based on their strength of
association with cognitive outcomes, using three feature
selection techniques, namely Information Theory-based
filtering [39], Correlation-based Feature Selection Adapting
Greedy Search [40], and Classification and Regression Trees
(CART) [41]—each representative of a class of feature se-
lection methods (filter, wrapper, and embedded, respec-
tively). The top five most informative NP tests were
selected using majority voting. To demonstrate AD hetero-
geneity, a similar selection process was performed for each
subpopulation, stratified by sex (male/female), education
level (beyond high school/high school graduate and below),
and apolipoprotein E (APOE) ε4 status [OMIM 107741].
For APOE-stratified analyses, participants who did not con-
sent to genetic analyses or without APOE information were
excluded (200 observations). Similarly, participants with
missing education information were excluded from the
education-stratified analyses (11 observations). Results
from feature selection were further validated using k-means
cluster analysis [42] and hierarchical clustering [43]. Addi-
tional decision trees were constructed using only the
selected tests to avoid model overfitting and to increase
generalizability of the algorithm. Refer to Supplemental
materials for further details.

Written informed consent was obtained from all partici-
pants, and this study was approved by the Institutional Re-
view Board of Boston University Medical Campus. All
data collection methods used in this study were monitored
by a National Heart, Lung, and Blood Institute Observa-
tional Study Monitoring Board and followed the Strength-
ening the Reporting of Observational Studies in
Epidemiology reporting guideline.
3. Results

This study included 4512 sets of NP scores from 2091
participants (55.8% female), aged 796 6 years. On average,
each participant underwent 2.2 NP examinations. Among
these observations, 555 were marked as AD, 443 as NAD,
and the remaining were healthy controls (Table 1).
3.1. Dementia diagnosis from NP tests by decision tree

Fig. 1 shows the decision tree for dementia diagnosis. An
illustration of tree generation is described in the
Supplemental Results. The tree consists of five levels, with
27 internal nodes and 48 terminal nodes. Among the 11
NP tests, all but Logical Memory (Recognition) were repre-
sented. LMd was selected as the root node
(P , 1.0 ! 10215), which branches to six internal nodes.
The highest AD diagnostic accuracy yielded by this single
decision step was 68.6%—the leftmost branch where LMd
�1.0. With the introduction of other NP tests at subsequent
nodes, the model appraises the individual overall cognitive
performance, based on a set of NP scores rather than one
single test score, and provides the diagnostic accuracy
accordingly. For example, the leftmost path, besides LMd
�1.0, is comprised of a BNT30 score from 0 to 23



Fig. 1. Clinical cognitive screen decision tree based on all NP tests in total population. Each rectangle represents a branch node, which is a decision step where

participants are divided into different subgroups based on the designated NP test score. Each pie chart represents a terminal node and is divided into color-coded

slices to illustrate the probability of the three cognitive outcomes (AD, NAD, and HC). The outcomewith the highest probability is indicated alongside each pie

chart. Abbreviations: AD, Alzheimer’s disease; BNT30, Boston Naming Test (30-item Even Version); HC, healthy control; NP, neuropsychological; LMd,

Logical Memory (Delayed Recall); LMi, Logical Memory (Immediate Recall); NAD, non-Alzheimer’s dementia; PASd_h, Hard score of Paired Associate

Learning (Delayed Recall); PASi, Paired Associate Learning (Immediate Recall); PASi_h, Hard Score of Paired Associate Learning (Immediate Recall);

SD, standard deviation; SIM, Similarities Test; VRd, Visual Reproductions (Delayed Recall); VRi, Visual Reproductions (Immediate Recall).
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(P , 1.0 ! 10211), VRd score of 0.0 (P 5 .0036), and PA-
Si_h score of 0.0 (P 5 .0023), and this set of decision rules
yielded the highest AD diagnostic accuracy sensitivity of
88.1%. This decision tree has an overall accuracy of
73.9%, with an all-cause dementia sensitivity of 85.0%.

Decision trees for different subpopulations were pre-
sented in Supplementary Figs. 2–7, with their individual
performances and NP test cutoff values reported in
Supplementary Table 1 and Supplementary Table 7, respec-
tively.
3.2. Most informative NP tests for AD diagnosis

Table 2 shows the top five most informative NP tests with
regard to cognitive outcomes, determined via each of the
three feature selection methods. Both CART and Informa-
tion Theory approaches identified the same set of five NP
tests—LMd, VRd, LMi, VRi, and BNT30—for the total
sample population, while the Correlation-based Feature Se-
lection Adapting Greedy Search approach differed by pick-
ing PASi over VRi. As demonstrated in a previous study21,
LMd was consistently selected as an important feature for
dementia diagnoses.While the BNT30 played amore impor-
tant role for dementia diagnosis in men, PAS was preferred
for women. A similar trend was observed in the stratified an-
alyses for education and APOE ε4 status.

Fig. 2 represents the decision tree derived based on the
top five most informative NP tests for total sample popula-
tion. It consisted of five levels, with 19 internal nodes and
38 terminal nodes. Similar to Fig. 1, LMd was chosen as
the root node. Its overall accuracy was 73.3%, with an all-
cause dementia sensitivity of 84.5%. Supplementary Figs.
8–13 are decision trees created using only the optimal NP
tests for different subpopulations. Their individual overall
performance and NP test cutoff values are summarized in
Supplementary Tables 2 and 8, respectively. Based on these
results, the optimal tests had not only comparable perfor-
mance with their full NP test-set counterparts but also
reduced tree nodes, which would promote better ease of
use for health-care workers.
4. Discussion

Cognitive domains are interconnected and may be simul-
taneously affected under diseased state, hence the complex
and heterogeneous nature of AD [44]. Accurate dementia
diagnosis requires the understanding of these relationships
across all cognitive domains and the appreciation of various
NP test outcomes concurrently. The current diagnostic pro-
cess, however, depends heavily on the prior knowledge
and experience of specialty clinicians, who often subjec-
tively evaluate selected NP tests when making an AD
diagnosis. This study comprehensively evaluated the rela-
tionships among various NP tests in a data-driven manner.
None of NP tests alonewas sufficient to separate participants
with or without dementia. It is thus important to consider
multiple NP tests for dementia diagnosis. The grading sys-
tem for each NP test not only aids differential diagnoses
but also transcends the traditional dichotomization—accept-
able and unsatisfactory results—of individuals’ neurocogni-
tive performance, making it more reflective of dementia as a
disease with a continuous spectrum of cognitive impairment.
To our knowledge, this is the first study that uses a data-
driven approach to leverage the multitude of NP test scores
and simplify them into a set of intuitive instructions. Our
approach could facilitate AD diagnosis for experienced
clinicians in minimizing the subjectivity that is introduced
in practitioners’ decision-making process. Other health-
care providers, who might lack sufficient clinical knowledge
and training for AD diagnosis, could also potentially
apply it.

We also evaluated the contribution of each NP test to the
diagnosis of dementia. LMd was consistently identified as
the most important performance indicator for AD diagnosis,



Table 2

NP tests selected by different feature selection methods for different subpopulations

CART CBFSGS Information gain Majority voting

Total LMd, VRd, LMi, VRi, BNT30 LMd, VRd, BNT30, PASi, LMi VRd, LMd, LMi, VRi, BNT30 LMd, VRd, LMi, VRi, BNT30

Sex

Male LMd, VRd, LMi, BNT30, VRi LMd, VRd, BNT30, LMi, SIM LMd, VRd, LMi, BNT30, VRi LMd, VRd, LMi, BNT30, VRi

Female LMd, VRd, PASi_h, LMi, PASi VRd, LMd, BNT30, PASi, LMi VRd, LMd, LMi, PASi, PASi_h LMd, VRd, PASi_h, LMi, PASi

APOE ε4 allele*

APOE ε4 (2) LMd, VRd, LMi, BNT30, VRi LMd, VRd, BNT30, SIM, LMi VRd, LMd, LMi, VRi, BNT30 LMd, VRd, LMi, BNT30, VRi

APOE ε4 (1) LMd, VRd, LMi, PASd_h, PASi_h LMd, VRd, LMi, BNT30, VRi LMd, VRd, LMi, PASi, VRi LMd, VRd, LMi, VRi, PASi

Education

High school

and below

LMd, VRd, BNT30, LMi, VRi LMd, VRd, BNT30, LMi, SIM LMd, VRd, LMi, BNT30, VRi LMd, VRd, BNT30, LMi, VRi

Beyond high

school

LMd, VRd, LMi, PASd_h, PASi VRd, LMd, PASi, BNT30, VRi VRd, LMd, VRi, PASi, LMi LMd, VRd, LMi, VRi, PASi

NOTE. Participants who did not consent to genetic analyses, had an APOE ε2/ε4 genotype, or with no APOE information were excluded.

Abbreviations: APOE, apolipoprotein E; BNT30, Boston Naming Test (30-item Even Version); CBFSGS, Correlation-based Feature Selection Adapting

Greedy Search; LMd, Logical Memory (Delayed Recall); LMi, Logical Memory (Immediate Recall); NP, neuropsychological; PASd_h, Hard score of Paired

Associate Learning (Delayed Recall); PASi, Paired Associate Learning (Immediate Recall); PASi_h, Hard Score of Paired Associate Learning (Immediate

Recall); SIM, Similarities Test; VRd, Visual Reproductions (Delayed Recall); VRi, Visual Reproductions (Immediate Recall).

*APOE ε4 (2): APOE genotype ε2/ε2, ε2/ε3 or ε3/ε3; APOE ε4 (1): APOE genotype ε3/ε4 or ε4/ε4.
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which aligned with the widespread use of verbal memory as
a diagnostic tool. The overall performance of the reduced
feature set decision tree (Fig. 2) was comparable to that of
the decision tree based on all NP tests (Fig. 1): overall accu-
racy (73.9% vs. 73.3%) and all-cause dementia sensitivity
(85.0% vs. 84.5%). This approach minimized model overfit-
ting, and it can also potentially reduce time and effort
required for clinical screening of dementia. We validated
our findings using hierarchical clustering (Supplementary
Fig. 14). Although both dendrograms identified three
distinct clusters, the distinguishability was more pronounced
for the reduced feature set dendrogram, which indicated that
the use of optimal NP tests would potentially minimize data
redundancy and better represent the inherent patterns within
the NP data. In addition, with fewer NP tests to consider, we
were able to reintroduce an additional 310 observations with
valid NP scores for selected NP tests (LMd, VRd, LMi, VRi,
and BNT30) and observed similar prediction accuracy
(Supplementary Fig. 15).

This study effectively demonstrated the cognitive hetero-
geneity of AD and more importantly the need to consider the
multiplicity during the diagnostic process. For example, re-
sults of the sex-stratified analysis revealed different optimal
NP profiles that are most predictive for AD diagnoses in both
sexes (Table 2, Supplementary Figs. 2 and 3), which is in
agreement with previous findings of sex differences
observed in various NP tests [45,46]. Heterogeneity of a
disease is not unique to AD, as evident by various risk
prediction models and diagnostic criteria having sex-
specific algorithms to account for the effect modification
by sex [47–49]. Despite well-established sex differences in
cognitive performance, none of the current AD diagnostic
criteria offer sex-specific decision rules. To meet the objec-
tives of AD precision medicine, accurate patient stratifica-
tion is crucial, and this study showed machine learning as
one of the viable approaches that can help to do so. It is
important to appreciate the effects of selected demographic
and AD risk factors, as these not only enable more compre-
hensive dementia diagnosis decision-making but also have
implications on patient selection in clinical trials.

Our study has several strengths. First, FHS started
cognitive assessment in 1976 and has continued to monitor
the participants for dementia over the next 4 decades. The
long follow-up period and minimal loss to follow-up
makes FHS an ideal population to examine late-onset dis-
eases such as AD [25]. Second, dementia diagnosis of FHS
participants were adjudicated by a panel of subject-matter
experts, who evaluated multiple sources of information,
thus minimizing outcome misclassification bias. Third,
the FHS NP test battery consists of a wide array of
commonly administered NP tests, which is ideal in trans-
lating the results for practical uses for clinicians and re-
searchers. With feature selection, experts can focus on a
subset of relevant NP tests to efficiently appreciate the
overall data. Fourth, this data-driven approach surpasses
the conventional model of dichotomizing individuals’ per-
formance into normal and impaired categories, by adopt-
ing a performance scale that is more representative of
the spectrum of symptoms often exhibited by individuals
with AD. Fifth, in contrast to other dimensionality reduc-
tion techniques such as those based on projection or
compression, we chose to use feature selection, to avoid
transforming the original values of the NP scores. With
the original semantic nature of variables preserved, the
discrete cutoff values allows easy interpretability, hence
making it easy for assessors to follow the decision tree.
Finally, the standard set of if-then diagnostic rules not
only renders the implementation easy and scalable but
also encourages reproducible science. As data accumulate,
the accuracy of the algorithm will improve as well.

In terms of limitations, our study participants have higher
levels of educational attainment compared to the general



Fig. 2. Clinical cognitive screen decision tree based on optimal NP profiles (five tests) in total population. Abbreviations: AD, Alzheimer’s disease; BNT30,

Boston Naming Test (30-item Even Version); HC, healthy control; NP, neuropsychological; LMd, Logical Memory (Delayed Recall); LMi, Logical Memory

(Immediate Recall); NAD, non-Alzheimer’s dementia; PASd_h, Hard score of Paired Associate Learning (Delayed Recall); PASi, Paired Associate Learning

(Immediate Recall); PASi_h, Hard Score of Paired Associate Learning (Immediate Recall); SD, standard deviation; SIM, Similarities Test; VRd, Visual Re-

productions (Delayed Recall); VRi, Visual Reproductions (Immediate Recall).
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public and are individuals predominantly of European
descent. NP examinations were restricted to those conducted
in English because of the limited number of evaluations done
in Spanish. Therefore, results of this study may not be gener-
alizable to populations of lower educational status, other
races and non-English–speaking groups. In addition, the de-
cision tree presented in this study solely uses information
from NP tests. Given that FHS adjudication panel diagnosed
dementia cases using multiple information sources, NP test
results alone may not be adequate for definitive AD diag-
nosis. Hence, it should be viewed as an objective screening
algorithm to identify high-risk individuals for further inves-
tigations to confirm AD diagnosis and potentially help
reduce health-care costs related to overtesting. Further,
only a subset of 11 tests were used and thus did not represent
the full spectrum of cognitive domains assessed. It is
possible that applied to a broader range of tests, a different
profile of important NP features could emerge across the
various AD risk factors. Similar to all clinical guidelines,
these diagnosis instructions need to be periodically updated
with the accumulation of additional data.
5. Conclusion

A summary of the critical achievements of our study are
as follows: (1) intuitive and objective diagnostic criteria has
been created as a set of if-then rules, which can be translated
for actual clinical use that accounts for the complexity of AD
clinical expression; (2) cutoff values of different tests have
been identified with the ability to indicate a scale of severity
and accurately reflect the spectrum of symptoms related to
the heterogeneity of AD; and (3) the heterogeneity of AD
in the context of NP tests has been verified by identifying
important NP tests and predictive NP profiles for AD in sub-
populations.
Future work includes development of an AD diagnosis
support system based on a heterogeneous set of rules.
When the individual’s NP record is obtained, the system
can automatically match the corresponding rule and make
a diagnosis in a stepwise way that reflects a distinct AD sub-
type. Using concept learning methods, we can then build a
general definition of AD that includes heterogeneous repre-
sentation. With accumulation of additional longitudinal NP
data, we will focus on the diagnosis of preclinical AD that
is anticipated to have even a broader range of heterogeneity.
We anticipate developing methods to diagnose conversion to
AD within 5 to 10 years.
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RESEARCH IN CONTEXT

1. Systematic review: Despite the availability of age-
and education-adjusted standardized scores for
most neuropsychological tests, there is a lack of
objective rules on how to interpret multiple concur-
rent neuropsychological test scores that characterize
the heterogeneity of Alzheimer’s disease (AD).
Relevant studies are cited.

2. Interpretation: Stepwise diagnosis rules that evaluate
information from multiple neuropsychological tests
were derived to produce an intuitive and objective
AD dementia diagnosis with more than 80% accu-
racy. Heterogeneous AD profiles based on specific
AD risk factors were also identified.

3. Future directions: Future work includes the develop-
ment of an AD diagnosis support system based on a
heterogeneous set of rules. Automated diagnosis
rules have potential applications in both within clinic
and outside-of-clinic settings. With accumulation of
additional longitudinal NP data, we will focus on the
diagnosis of preclinical AD that is anticipated to have
an even broader range of heterogeneity.
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Incidence of dementia over three decades in the Framingham Heart

Study. N Engl J Med 2016;374:523–32.

[23] Farmer ME, White LR, Kittner SJ, Kaplan E, Moes E, McNamara P,

et al. Neuropsychological test performance in Framingham: a descrip-

tive study. Psychol Rep 1987;60(3 Pt 2):1023–40.

[24] Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: a prac-

tical method for grading the cognitive state of patients for the clinician.

J Psychiatr Res 1975;12:189–98.

[25] Tsao CW, Vasan RS. Cohort Profile: the Framingham Heart Study

(FHS): overview of milestones in cardiovascular epidemiology. Int J

Epidemiol 2015;44:1800–13.

[26] Gustafson D, Rothenberg E, Blennow K, Steen B, Skoog I. An 18-year

follow-up of overweight and risk of Alzheimer disease. Arch Intern

Med 2003;163:1524–8.

[27] Skoog I, Lernfelt B, Landahl S, Palmertz B, Andreasson LA,

Nilsson L, et al. 15-year longitudinal study of blood pressure and de-

mentia. The Lancet 1996;347:1141–5.

[28] Wechsler D, Stone CP. Wechsler Memory Scale (WMS). New York:

The Psychological Corporation; 1948.

[29] Wechsler D. Wechsler Adult Intelligence Scale (WAIS). New York:

The Psychological Corporation; 1955.

[30] Kaplan E, Goodglass H, Weintraub S, Segal O. Boston Naming Test.

Philadephia: Lea & Febiger; 1983.

[31] American Psychiatric Association. Diagnostic and Statistical Manual

of Mental Disorders. 4th ed.; 1994. Washington D.C.

[32] McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr,

Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s dis-

ease: recommendations from the National Institute on Aging-Alz-

heimer’s Association workgroups on diagnostic guidelines for

Alzheimer’s disease. Alzheimers Dement 2011;7:263–9.

[33] Seshadri S, Beiser A, Au R, Wolf PA, Evans DA,Wilson RS, et al. Op-

erationalizing diagnostic criteria for Alzheimer’s disease and other

age-related cognitive impairment—Part 2. Alzheimers Dement

2011;7:35–52.

http://refhub.elsevier.com/S2352-8737(19)30022-8/sref1
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref2
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref2
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref2
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref4
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref4
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref4
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref5
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref5
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref5
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref6
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref6
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref7
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref7
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref7
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref7
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref8
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref8
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref8
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref8
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref9
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref9
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref9
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref9
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref10
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref10
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref11
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref11
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref11
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref12
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref12
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref12
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref13
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref13
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref13
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref13
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref14
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref14
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref15
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref15
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref15
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref16
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref16
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref17
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref17
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref18
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref18
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref19
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref19
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref19
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref19
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref19
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref20
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref20
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref20
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref20
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref21
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref21
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref21
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref22
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref22
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref22
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref22
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref23
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref23
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref23
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref24
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref24
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref24
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref25
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref25
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref25
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref26
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref26
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref26
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref27
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref27
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref27
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref28
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref28
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref29
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref29
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref30
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref30
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref31
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref31
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref32
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref32
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref32
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref32
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref32
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref33
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref33
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref33
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref33


T.F.A. Ang et al. / Alzheimer’s & Dementia: Translational Research & Clinical Interventions 5 (2019) 264-271 271
[34] Van Diepen M, Franses PH. Evaluating chi-squared automatic interac-

tion detection. Inf Syst 2006;31:814–31.

[35] Kerber R. Chimerge: Discretization of numeric attributes. In: In Pro-

ceedings of the tenth national conference on Artificial intelligence;

1992. p. 123–8.

[36] Laliberte AS, Fredrickson EL, Rango A. Combining decision trees

with hierarchical object-oriented image analysis for mapping arid ran-

gelands. Photogrammetric Eng Remote sensing 2007;73:197–207.

[37] McKee LA, Fabres J, Howard G, Peralta-Carcelen M, Carlo WA,

Ambalavanan N. PaCO2 and neurodevelopment in extremely low birth

weight infants. J Pediatr 2009;155:217–21.

[38] Seni G, Elder JF. Ensemble methods in data mining: improving accu-

racy through combining predictions. Synth Lectures Data Mining

Knowledge Discov 2010;2:1–26.

[39] Guyon I, Elisseeff A. An introduction to variable and feature selection.

J Mach Learn Res 2003;3:1157–82.

[40] Hall MA. Correlation-based feature selection of discrete and numeric

class machine learning; 2000.

[41] Breiman Leo. Classification and regression trees. Routledge; 2017.

[42] WuX, Kumar V, Quinlan JR, Ghosh J, YangQ,MotodaH, et al. Top 10

algorithms in data mining. Knowledge Inf Syst 2008;14:1–37.
[43] Xu D, Tian Y. A comprehensive survey of clustering algorithms. Ann

Data Sci 2015;2:165–93.

[44] Dineen RA, Vilisaar J, Hlinka J, Bradshaw CM, Morgan PS,

Constantinescu CS, et al. Disconnection as a mechanism for cognitive

dysfunction in multiple sclerosis. Brain 2009;132:239–49.

[45] Miller DI, Halpern DF. The new science of cognitive sex differences.

Trends Cogn Sci 2014;18:37–45.

[46] Zec RF, Burkett NR, Markwell SJ, Larsen DL. Normative data strati-

fied for age, education, and gender on the Boston Naming Test. Clin

Neuropsychol 2007;21:617–37.

[47] Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H,

Kannel WB. Prediction of coronary heart disease using risk factor cat-

egories. Circulation 1998;97:1837–47.

[48] D’agostino RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M,

Massaro JM, et al. General cardiovascular risk profile for use in pri-

mary care: the Framingham Heart Study. Circulation 2008;

117:743–53.

[49] Dufouil C, Beiser A, McLure LA, Wolf PA, Tzourio C,

Howard VJ, et al. Revised Framingham Stroke Risk Profile to

Reflect Temporal Trends Clinical Perspective. Circulation 2017;

135:1145–59.

http://refhub.elsevier.com/S2352-8737(19)30022-8/sref34
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref34
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref35
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref35
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref35
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref36
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref36
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref36
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref37
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref37
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref37
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref38
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref38
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref38
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref39
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref39
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref40
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref40
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref41
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref42
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref42
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref43
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref43
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref44
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref44
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref44
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref45
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref45
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref46
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref46
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref46
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref47
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref47
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref47
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref48
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref48
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref48
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref48
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref49
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref49
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref49
http://refhub.elsevier.com/S2352-8737(19)30022-8/sref49

	Using data science to diagnose and characterize heterogeneity of Alzheimer's disease
	1. Introduction
	2. Methods
	2.1. Study population
	2.2. Decision tree for dementia diagnosis
	2.3. Identification of most informative NP tests for cognitive diagnosis

	3. Results
	3.1. Dementia diagnosis from NP tests by decision tree
	3.2. Most informative NP tests for AD diagnosis

	4. Discussion
	5. Conclusion
	Acknowledgment
	Supplementary Data
	References


