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A B S T R A C T

Cardiovascular mortality is very high in chronic and end-stage
kidney disease (ESKD). However, risk stratification data are
lacking. Sudden cardiac deaths are among the most common
cardiovascular causes of death in these populations. As a result,
many studies have assessed the prognostic potential of various
electrocardiographic parameters in the renal population. Recent
data from studies of implantable loop recordings in haemodial-
ysis patients from five different countries have shed light on a
pre-eminent bradyarrhythmic risk of mortality. Importantly,
heart block addressed by permanent pacing system was detected
in a proportion of patients during the prolonged recording peri-
ods. Standard electrocardiogram is inexpensive, non-invasive
and easily accessible. Hence, risk prediction models using this
simple investigation tool could easily translate into clinical prac-
tice. We believe that electrocardiographic assessment is cur-
rently under-valued in renal populations. For this review, we

identified studies from the preceding 10 years that assessed the
use of conventional and novel electrocardiographic biomarkers
as risk predictors in chronic and ESKD. The review indicates
that conventional electrocardiographic markers are not reliable
for risk stratification in the renal populations. Novel parameters
have shown promising results in smaller studies, but further val-
idation in larger populations is required.

Keywords: cardiovascular, CKD, ECG, ESRD

I N T R O D U C T I O N

Non-dialysis chronic kidney disease (CKD) is characterized by
much higher cardiovascular mortality and morbidity when
compared with the general population. This risk increases expo-
nentially in end-stage kidney disease (ESKD) [1]. US Renal reg-
istry data indicate that sudden death and/or fatal arrhythmia is
the documented cause of death in�26% of ESKD patients [2].
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Although atherosclerotic disease is common in CKD and
ESKD, evidence indicates that it accounts for only a small pro-
portion of cardiovascular deaths in this population [3].
Furthermore, extrapolating evidence from the general population
for cardiac risk modification has proven to be of limited benefit
in dialysis patients. Statin therapy for primary prevention does
not reduce cardiac risk in dialysis patients [4] and coronary re-
vascularization [3], or use of implantable cardioverter defibrilla-
tors [5] based on the current guidelines (i.e. guidelines developed
based on studies in cardiac patients), does not reduce arrhythmic
mortality in CKD and ESKD patients. In the general population,
most fatal arrhythmic events are triggered by underlying myocar-
dial ischaemia, usually in the presence of coronary artery disease
[6], and are frequently tachyarrhythmias although bradyarrhyth-
mic sudden deaths also occur. In advanced CKD and ESKD, the
mechanism, timeline and specific rhythm of such events are not
fully understood. Non-conventional cardiovascular risk factors
such as electrolyte imbalances, volume shifts and blood pressure
changes have been implicated in extremely high sudden death
rates after the long interdialytic interval of the typical three ses-
sion of haemodialysis (HD) a week [7]. Recent studies of pro-
longed implantable loop recording in five different HD cohorts
have suggested that bradyarrhythmic events may be more com-
mon than ventricular arrhythmia in causing sudden cardiac
deaths (SCDs) [8]. Although the underlying mechanisms are far
from clear, �10% of the patients in these cohorts were noted to
have heart block or other bradyarrhythmia that could be treated
with permanent pacing systems, and this itself should make the
case for more frequent use of standard electrocardiogram (ECG)
in dialysis populations. In recent years, data from experimental
and population-based studies have led to advances in our under-
standing of the underlying cardiovascular disease mechanisms.
This led to focussing on the dynamic interplay between myocar-
dial structural changes, vascular changes, autonomic imbalance,
inflammation, and fluid and electrolyte shifts that can lead to
arrhythmias [9].

The presumed high burden of arrhythmic deaths in dialysis
patients has led to a renewed interest in the evaluation of elec-
trocardiographic parameters as potential risk predictors. The
standard 12-lead ECG is an easily accessible and inexpensive
bedside test. Moreover, the implementation of advanced soft-
ware in most modern electrocardiographic machines means
that vectorcardiographic indices can be derived with accuracy
from standard 12-lead ECGs.

A I M S O F T H E R E V I E W

This review aims at providing an overview of studies that
assessed the use of selected electrocardiographic and vectorcar-
diographic parameters taken from standard 12-lead and contin-
uous Holter electrocardiography for the purpose of cardiac risk
stratification in the CKD and ESKD populations.

R E V I E W M E T H O D O L O G Y

Data sources and search strategy

MEDLINE through PubMed, Google Scholar and Cochrane
Library were searched to identify potentially relevant articles

and abstracts. Furthermore, we reviewed the bibliographies of
the selected articles for additional relevant studies. The search
terms are presented in Table 1.

Eligibility of studies

Studies in any of the CKD, HD and peritoneal dialysis (PD)
populations were considered for inclusion if they met the fol-
lowing criteria: published between January 2007 and December
2016; investigated at least 50 participants in the initial cohort;
had a mean follow-up time of at least 1 year; any external, non-
invasive ECG methodology (standard 12-lead, Holter, etc.);
assessed death and/or cardiac outcomes as an endpoint; studied
the association of left ventricular hypertrophy (LVH), QTc in-
terval, QRS complex, PR interval, QRS–T angle and/or heart
rate variability (HRV) with these endpoints.

Figure 1 shows a schematic representation of the different
components of a standard ECG in sinus rhythm. Figure 2 shows
a representation of QRS–T angle from vectorcardiograms.

Cardiac outcomes included coronary events, arrhythmic
events, cardiac failure or a combination of these. Death in-
cluded all-cause mortality and, where available, sudden death as
defined by the authors.

Studies are presented in two categories, one for dialysis and
the other for CKD. Due to the paucity of studies including PD
patients, studies in PD and HD are not listed separately.

Table 1. Keywords used as Boolean operators or search terms

Renal disease Outcomes Parameters

CKD Survival LVH
HD Death QTc
PD Mortality QT
Chronic kidney

disease
Cardiovascular

outcomes
PR

Renal disease Cardiac outcomes QRS–T angle
Haemodialysis TCRT
Haemodialysis HRV
Peritoneal dialysis Left ventricular hypertrophy
Dialysis Heart rate variability

ECG
Electrocardiogram
Electrocardiographic

PR QT
QRS

RR
Varia�on in RR = HRV

FIGURE 1: Schematic diagram of ECG (sinus rhythm).
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E C G P R O G N O S T I C I N D I C E S

Electrocardiographic LVH

LVH is a common finding in advanced CKD and ESKD
[10]. Up to 75% of patients have LVH upon initiation of main-
tenance dialysis [10], and increased echocardiographic left ven-
tricular mass index (LVMI) is associated with adverse
cardiovascular outcomes and SCD [11]. A summary of studies
detailed below is found in Table 2.

Dialysis. Covic et al. [12] evaluated the prognostic value of
estimating LVH by 12 different sets of commonly used
electrocardiographic criteria in a retrospective, observational,
single-centre study, which included both prevalent HD and PD
patients [12]. Novacode, a method that does not use voltage cri-
teria but incorporates repolarization indices into an algorithm,
was found to be predictive of cardiovascular mortality, while 11
other methods, including the widely used Sokolow–Lyon and
Cornell criteria, were not.

A Korean prospective observational study of incident HD
patients [13] compared the prognostic value for cardiovascular
mortality of commonly used ECG criteria for LVH, namely
Sokolow–Lyon and Cornell, with the voltage duration product
method that encompasses the QRS duration. The diagnosis of
LVH using voltage duration product methods was an indepen-
dent risk factor for cardiovascular outcomes, but LVH defined by
fixed voltage Sokolow–Lyon and Cornell was not. Approximately
half of the individuals with an echocardiographic diagnosis of
LVH did not have a matching electrocardiographic one.

Krane et al. [14], in a study of 1253 maintenance HD
patients with diabetes, identified that ECG LVH with Sokolow–
Lyon criteria was predictive of sudden death and stroke [hazard
ratio (HR) ¼ 1.60, 95% confidence interval (CI) 1.05–2.44;
P¼ 0.027], but not of all-cause mortality, cardiac deaths and
myocardial infarction, although a trend towards statistical sig-
nificance for cardiovascular endpoints was observed.

Cice et al. [15], in a prospective study of normotensive main-
tenance HD patients without coronary artery disease, found
that the strain pattern on the ECG was associated with cardio-
vascular and sudden death.

CKD. There is a paucity of studies assessing the association
between ECG diagnosis of LVH and mortality or cardiovascular
outcomes. Agarwal and Light, in a cross-sectional study of 387
patients that included 243 patients with various degrees of CKD,

FIGURE 2: A representation of QRS–T angle from
vectorcardiograms.

Table 2. Studies evaluating the association of electrocardiographic LVH with clinical outcomes in chronic renal disease

References Population Sample size Follow-up Results Comments

Covic et al. [12] Prevalent HD and PD 418 67 months ( mean) LVH by Novacode predictive of
cardiovascular mortality (HR ¼
3.04, 95% CI 1.11–8.28; P < 0.05)

11 other methods not
predictive

Kim et al. [13] Incident HD 317 27.4 months (mean) LVH by Sokolow–Lyon voltage
duration product (HR ¼ 3.43,
95% CI 1.32–892; P ¼ 0.011) and
Cornell voltage duration product
(HR ¼ 3.07, 95% CI 1.16–8.11; P
¼ 0.024) predictive of cardiovas-
cular mortality

50% discordance between
ECG and echocardio-
graphic diagnosis of LVH

Cice et al. [15] Prevalent HD 407 46 months (mean) LVH with strain predictive of car-
diovascular deaths (P < 0.05) and
sudden deaths (P < 0.01)

Univariate analysis

Krane et al. [14] HD with diabetes 1253 48 months (mean) LVH with Sokolow–Lyon criteria
was predictive of sudden death
(HR ¼ 1.60, 95% CI 1.05–2.44; P
¼ 0.027)

A trend towards higher
risk for cardiovascular
endpoints was detected

Agarwal and Light [16] CKD, excluding ESRD 387 90 months (median) LVH with Sokolow–Lyon criteria
prognostic for all-cause mortality
(HR ¼ 2.84, 95% CI 1.50–5.37; P
< 0.001)

Multivariate analysis in-
cluding adjustment for
blood pressure

Electrocardiography for risk prediction in CKD 1091



found a statistically significant association between diagnosis of
LVH with Sokolow–Lyon criteria and all-cause mortality. The
LVH group had perhaps unsurprisingly higher baseline blood
pressure readings, but the association between LVH and mortal-
ity still persisted even after adjustment for blood pressure [16].

Comment. The electrocardiographic detection of LVH in
CKD patients correlates poorly with LVH diagnosis using echo-
cardiography. This observation is in line with the findings in
the general population [17], suggesting that changes in electrical
remodelling depicted by ECG LVH do not reflect anatomical
structural changes established by echocardiogram and that they
carry additional independent prognostic information. On the
other hand, the predictive value of ECG LVH with fixed voltage
criteria is variable in dialysis patients and this may be the result
of a variable and fluctuant impact of fluid and electrolyte status
on the ECG waveform. Timing of the ECG is important as fluid
removal immediately after dialysis leads to an increase in ECG
voltage due to impedance changes, which is gradually attenu-
ated as fluid accumulates until the next dialysis session [18]. As
a result, an inter-dialytic ECG may obfuscate the presence of
LVH in a patient with large inter-dialytic fluid gains, which it-
self is in turn an independent mortality risk factor [19].

QT interval

The electrocardiographic QT interval represents the time
from the onset of ventricular depolarization to the completion
of repolarization. QTc is the value of QT after correction for
heart rate. The Bazett formula is the most commonly used
method for QT correction in clinical studies [20]. Other formu-
lae (Fridericia, Framingham, Hodges, etc.) tend to provide simi-
lar estimates when resting heart rates are close to 60 b.p.m. [21].
Clinically meaningful prolongation of QTc is often defined as
QTc>460 ms in women and QTc>450 ms in men [22].

Electrocardiographic QT duration reflects both cardiac con-
duction and repolarization and is influenced by electrolyte
shifts, myocardial ischaemia and structural heart disease. QTc
prolongation increases the risk of ventricular tachyarrhythmia.
A summary of studies detailed below is found in Table 3.

Dialysis. Hage et al. [23] found that QT prolongation was an
independent predictor of all-cause mortality in a prospective
cohort of both HD and PD patients evaluated for renal trans-
plantation (HR¼ 1.008, 95% CI 1.001–1.014; P¼ 0.016). This
study did not show any difference in the proportion of patients
with QT prolongation between HD and PD.

In another prospective study of both incident and prevalent
dialysis patients evaluated for renal transplantation, Flueckiger
et al. [24] showed similar associations between the prolongation
of the QT interval and all-cause mortality in 930 patients (HR
¼ 1.71, 95% CI 1.11–2.63; P¼ 0.0158).

Genovesi et al. [25] used 24-h Holter electrocardiography in
a cohort of 122 prevalent HD patients. The mean QTc was esti-
mated in three periods: during dialysis treatment for 4 h, 4 h af-
ter dialysis treatment and the remaining 16 h after dialysis
treatment [25]. After a median follow-up of 3.9 years, QTc pro-
longation was found to be independently associated with SCD
(HR ¼ 8.33, 95% CI 1.71–40.48; P¼ 0.009). Interestingly, the

mean QTc interval did not change significantly during or after
dialysis.

In contrast to the previous observational studies, a large
multicentre randomized controlled trial of statin therapy in dia-
betic HD patients, the German Diabetes and Dialysis study
(4D, Die Deutsche Diabetes Dialyse Studie), did not find any as-
sociation between the duration of the QTc interval and cardio-
vascular outcomes [14].

CKD. In the CKD population, several observational studies
have identified a link between QTc duration and cardiovascular
outcomes [24, 26, 27]. Deo et al., in a prospective study of al-
most 4000 CKD patients, found that prolongation of the QTc
interval was associated with all-cause and cardiovascular mor-
tality. This association, however, ceased to exist in sub-group
analysis adjusted for LVMI and left ventricular ejection fraction
(LVEF) [27].

Similarly, Dobre et al. [26] in a study of mainly CKD 3
patients demonstrated that QTc was associated with cardiovas-
cular events.

In the National Health and Nutrition Examination Survey
III, the addition of QTc in the adjusted model that included tra-
ditional risk factors for cardiovascular mortality improved risk
prediction for all-cause and cardiovascular mortality. The main
strengths of this study were the large sample size (6565 individ-
uals) and the long follow-up period (median follow-up
13.3 years).

Comment. Fluid and electrolyte shifts may affect QT inter-
val; fluid and potassium removal both contribute to QTc pro-
longation at the end of the dialysis, whereas calcium changes
are less consistent and can have a variable effect on the QTc
[18]. Genovesi et al. [28] have previously reported that low po-
tassium and calcium dialysate are associated with prolongation
of QTc interval towards the end of HD. Also, Bazett’s correc-
tion, which has been used in many of the studies, is known to
lead to artificially prolonged QTc values in the presence of in-
creased heart rate. Although this is of little concern when deal-
ing with singular QTc measurements in any given patient, it
might represent a potential source of bias in statistical studies
linking outcomes to QTc duration.

QRS complex—amplitude and duration

The electrocardiographic QRS complex represents the elec-
trical activation of the ventricular myocardium, spreading from
septal activation to the depolarization of the base of the ventric-
ular free walls.

A broad QRS complex (>120 ms) has been used as a marker
of cardiac dyssynchrony in studies evaluating the incidence of
SCD in patients with heart failure [29], and is one of the criteria
for resynchronization therapy in congestive heart failure [30].

Dialysis. A Spanish prospective study of 285 incident HD
and PD patients with generally well-preserved left ventricular
function did not show any independent association between
QRS duration and SCD incidence [31].
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CKD. The use of the QRS complex for cardiovascular risk
prediction is poorly investigated and appears to be unreliable as
an independent marker based on the currently available evi-
dence. Research suggests that the QRS interval duration
increases with the progression of CKD [32].

In a prospective study of 3587 individuals with mainly early
to moderate CKD [mean estimated glomerular filtration rate
(eGFR) 50–60 mL/min/1.73 m2, median follow-up 7.5 years),
Deo et al. identified prolongation of the QRS interval as an in-
dependent risk predictor for cardiovascular death, even after
adjustment for LVMI and ejection fraction. For QRS duration
of 100–119 ms, the HR was 1.64 (95% CI 1.20–2.25) and for
QRS>120 ms, the HR was 1.75 (95% CI 1.17–2.62) [27].

Comment. The amplitude of the QRS complex increases af-
ter HD [33, 34]. The latter is thought to be a result of the
changes in body fluid volume. Fluid removal also leads to a de-
crease in tissue conductivity which, as a result, affects the sur-
face voltage of the electrocardiographic complexes [35].
Therefore, the change of the QRS amplitude with different fluid
status is a result of different thorax impedance and not of elec-
trophysiological cardiac changes.

LBBB versus RBBB QRS morphology

There are few data available in comparing left bundle branch
block (LBBB) versus right bundle branch block (RBBB). In the
study of diabetic patients on HD by Krane et al. [14], neither
RBBB nor LBBB showed any association with mortality or car-
diovascular outcomes in multivariate analysis adjusting for
comorbidities and demographics. The presence of LBBB may
obscure the electrocardiographic diagnosis of LVH as they both
cause conduction delays and as a result the inclusion of LBBB
as a separate variable in a model that includes electrocardio-
graphic LVH is not without problems [36]. Covic et al. [12],

in a study of HD patients that compared different electrocardio-
graphic methods of LVH estimation and their association with
outcomes, also noted that LBBB was associated with all-cause
mortality in univariate analysis. However, they suggested cau-
tion while using LBBB and ECG LVH in the same model.

PR interval

The electrocardiographic PR interval represents the propa-
gation of the myocardial electrical impulse between atrial depo-
larization and the onset of ventricular depolarization, and is
normally between 120 and 200 ms. The PR interval is also af-
fected by fluid and electrolyte shifts. In the general population,
prolongation of the PR interval has been associated with in-
creased risk of developing atrial fibrillation, of requiring pace-
maker implantation and of overall mortality [37]. A summary
of the studies detailed below is found in Table 4.

Dialysis. Flueckiger et al. [24], in their study of 930 trans-
plant candidates undergoing HD, demonstrated that prolonged
PR interval was associated with all-cause mortality in multivari-
ate analysis (HR¼ 1.97, 95% CI 1.18–3.29; P¼ 0.090).

Green et al. [11] undertook a prospective observational
study of 211 HD and 112 PD patients and identified a signifi-
cant association between prolongation of the PR interval and
cardiovascular outcomes in univariate, but not in multivariate,
analysis (mean follow-up 3.6 years).

Another prospective study of 116 HD patients by Badarau et
al. evaluated that the PR interval derived from standard ECGs
were acquired 5 min before and 30 min after a HD session. In
this study, for the majority of patients, the PR interval decreased
after dialysis and in multivariate Cox regression analysis, the
difference between the pre- and post-dialysis PR interval dura-
tion was identified as an independent predictor of cardiovascu-
lar outcomes with longer PR having a lower risk (HR for log of

Table 3. Studies evaluating the association of QTc with clinical outcomes in chronic renal disease

References Population Sample size Follow up Results Comments

Hage et al. [23] HD and PD evaluated
for transplantation

280 40 months (mean) QTc independent predictor of survival
(HR¼ 1.008, 95% CI 1.001–1.014; P¼ 0.016)

Flueckiger et al. [24] CKD 5 and ESRD
evaluated for renal
transplantation

930 37.2 months
(median)

QTc >450 ms associated with risk of death
in adjusted analysis (HR¼ 1.71, 95% CI
1.11–2.63; P¼ 0.0158)

Deo et al. [27] CKD 3939 90 months
(median)

Prolonged QTc associated with all cause
(HR¼ 1.46, 95% CI 1.16–1.84) and cardio-
vascular mortality (HR¼ 1.72, 95% CI 1.19–
2.49)

Association with cardio-
vascular death ceased to
exist in subgroup adjusted
analysis that included
LVMI and LVEF

Dobre et al. [26] CKD 3–5 1165 123.6 months
(mean)

Prolonged QT was associated with 61%
higher risk for cardiovascular events
(HR¼ 1.61, 95% CI 1.16–2.23)

Predominantly CKD 3
(95.6% of study
population)

Genovesi et al. [25] HD 122 46.8 months
(median)

Prolonged QTc independently associated
with all cause mortality (HR¼ 2.16, 95% CI
1.20–3.91; P¼ 0.011) and sudden death
(HR¼ 8.33, 95% CI 1.71–40.48; P¼ 0.009)

Krane et al. [14]
Malik et al. [71]

HD with diabetes
CKD

1253
6565

48 months (mean)
159.6 months

QT interval not associated with outcomes
QTc improved the risk prediction of tradi-
tional models (P < 0.00001 for all-cause
mortality and P < 0.00001 for cardiovascular
mortality)

Electrocardiography for risk prediction in CKD 1093



change in PR¼ 0.387, 95% CI 0.251–0.597; P< 0.001), but not
of all-cause mortality [38].

A Brazilian prospective observational study aimed to evalu-
ate the incidence of arrhythmias and their associations with
ECG findings in a cohort of 100 HD patients using implantable
loop recorders. During a follow-up period of 424 6 124 days,
prolongation of the PR interval was found to be independently
associated with the development of bradyarrhythmias [39].

CKD. In a prospective study of 3587 patients with different
stages of pre-dialysis CKD, a prolonged PR interval was identi-
fied as an independent predictor of cardiovascular mortality
(HR¼ 1.62, 95% CI 1.19–2.19) [27].

In contrast, Kestenbaum et al. [40] prospectively studied
600 individuals with a moderate degree of CKD (median eGFR
53 mL/min/1.73 m2) and did not observe any independent as-
sociation between PR prolongation and incident cardiovascular
events [40].

Comment. In conclusion, the PR interval demonstrates vari-
able associations with mortality in CKD and ESKD that may be
explained by fluid and electrolyte influences on PR interval.
The link between prolonged PR interval and mortality is
unclear, but it may be related to mortality associated with bra-
dyarrhythmias or atrial fibrillation.

QRS–T angle

In the last decade, there has been increasing interest in the
spatial QRS–T angle that is defined as the angular difference be-
tween the orientation of the three-dimensional (3D) QRS and T
vectorcardiographic loops that are either directly captured or
calculated from the standard 12-lead recordings. This is because
the angle has emerged as a novel marker for cardiac risk stratifi-
cation [41]. A number of studies in different populations have
demonstrated an association between a wide spatial QRS–T an-
gle and cardiovascular and all-cause mortality [42].

The spatial QRS–T angle can easily be measured either on
vectorcardiograms recorded using the Frank electrode positions
[43] or by following orthogonal transformation from a digital
12-lead ECG using conversion systems such as Kors or inverse

Dower matrices [44, 45]. In these methods, the spatial orienta-
tion of the orthogonal XYZ leads is defined anatomically and is
subject independent. A novel descriptor uses singular value de-
composition to construct a mathematically derived subject-
dependent 3D space optimizing the orthogonal leads in order
to capture most of the ECG energy in each individual, and
calculates the difference between the global direction of depo-
larization and repolarization expressed as an average cosine of
the angles between the QRS and T vectors [total cosine R-to-T
(TCRT)] [46]. Figure 2 depicts the TCRT.

The definition and range of normal and abnormal QRS–T
angles in healthy individuals depend on the method of estima-
tion as well as on gender, age and underlying heart rate [47–50].
The spatial QRS–T angle may be calculated by several methods
including using the peak angular difference between the QRS
and T-vectors, their mean angular difference [51], the angle be-
tween the spatial mean QRS vector and spatial peak T-vector
[52] and by using the average cosine of the angles between the
QRS and T-vectors [53]. Therefore, ‘absolute’ values of the
QRS–T angle should only be referenced in relation to the indi-
vidual studies and methods they derive from. A summary of the
studies detailed below is found in Table 5.

Dialysis. Several studies evaluated the prognostic value of
spatial QRS–T angle for all-cause and cardiovascular mortality
in dialysis patients. In a retrospective study of 277 incident HD
and PD patients, de Bie et al. [54] identified abnormal spatial
QRS–T angle as an independent predictor of all-cause mortality
(HR¼ 2.33, 95% CI: 1.46–3.70; P< 0.01) and SCD (HR¼ 2.99,
95% CI 1.04–8.60; P< 0.05) after multivariate analysis [54]. An
abnormal spatial QRS–T angle was defined as >130� in men
and >116� in women in that study, and the length of follow-up
was 2.1 6 1.7 years.

In a pilot study of 81 prevalent HD patients, which used con-
tinuous Holter electrocardiographic recordings, Poulikakos et
al. [55] reported higher TCRT values (expressed in degrees) in
individuals who suffered major arrhythmic events (TCRT)
[56].

Couderc et al. calculated the QRS–T angle from ECG Holter
recordings in a study of 50 prevalent HD patients. They

Table 4. Studies evaluating the association of PR interval with clinical outcomes in CKD

References Population Sample size Follow-up Results Comments

Flueckiger
et al. [24]

CKD 5 and ESRD
evaluated for renal
transplantation

930 37.2 months (median) PR interval was associated with all-cause mortality
(HR ¼ 1.97, 95% CI 1.18–3.29; P ¼ 0.090)

Deo et al. [27] CKD 3939 90 months (median) PR >200 ms is associated with cardiovascular mortality
(HR ¼ 1.62, 95% CI 1.19–2.19)

Green et al. [11] HD and PD 323 43.2 months (mean) No independent association between PR interval and
cardiovascular outcomes in multivariate analysis

Kestenbaum
et al. [40]

CKD 600 110.4 months (median) No independent association between PR prolongation
and incident cardiovascular events

Badarau
et al. [38]

HD 116 17.5 months (median) Log pre- and post-dialysis difference in PR interval pre-
dicts cardiovascular events (HR ¼ 0.387, 95% CI
0.251–0.597; P < 0.001)

Silva et al. [39] HD 100 14 months (mean) The duration of the PR interval was independently asso-
ciated with bradyarrhythmias (odds ratio ¼ 1.05, 95%
CI 1.02–1.08; P < 0.001)

Candidates for re-
nal transplantation
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demonstrated a statistically significant greater average QRS–T
angle in the first 6 h after initiation of the dialysis session com-
pared with pre-dialysis that correlated with all-cause mortality
[57].

A large prospective study of incident HD patients by
Tereshchenko et al. evaluated the spatial QRS–T angle for risk
stratification in a cohort of patients of predominantly African
origin with overall normal LVEFs. The authors calculated the
QRS–T angle as the angle between spatial mean QRS vector
and spatial peak T-vector in averaged XYZ ECG from 5 min
signal-averaged ECGs. In multivariate adjusted analysis, a spa-
tial QRS–T angle >75� was independently associated with all-
cause (HR¼ 2.38, 95% CI 1.41–4.04; P¼ 0.001) and cardiovas-
cular mortality (HR¼ 2.99, 95% CI 1.31–6.82; P¼ 0.01) [52].

CKD. There were no suitable studies at the time of this review.

Comment. The QRS–T angle has showed promising results
for risk prediction in dialysis patients. However, there is a need
for standardization of the measurement [53] so that normal
limits and clinically relevant risk stratification dichotomies can
be established.

HRV

HRV gained popularity, among other ECG parameters, be-
cause of its importance for cardiovascular risk prediction [58,
59]. HRV measurement is based on different assessments of the
oscillations of the intervals between consecutive cardiac beats. It
has been used as a surrogate method of assessing the sympa-
thetic and parasympathetic cardiac autonomic modulation [60].
Reduced HRV has been associated with increased mortality in
different populations including healthy individuals and patients
post-myocardial infarction [61, 62]. HRV can be measured using
time- and frequency domain methods as well as employing non-
linear dynamics analyses. Standards of HRV assessment are
available [63, 64] and are followed in most of the risk assessment
studies. A summary of studies detailed below is found in Table 6.

Dialysis. In a study of 383 incident and prevalent HD
patients, Oikawa et al. [65] reported an independent association
between reduced overall HRV and all-cause (HR ¼ 2.181, 95%

CI 1.530–3.108; P< 0.001) and cardiovascular mortality (HR¼
2.114, 95% CI 1.200–3.725; P¼ 0.01) [65].

A study of 81 PD patients also reported on the prognostic
value of spectral HRV assessment for all-cause mortality during
4 years of follow-up [66]. In a prospective study of 281 prevalent
HD patients, Suzuki et al. evaluated different HRV measures.
Time and spectral assessment of short-term HRV indices pre-
dicted mortality but after adjusting for age, LVEF, serum albumin,
C-reactive protein and calcium� phosphate product, only one of
the nonlinear dynamics parameters was an independent mortality
predictor (HR¼ 1.46, 95% CI 1.16–1.85; P¼ 0.001) [67].

Badarau et al. [38] reported an association between very low
frequency HRV and all-cause mortality in a study of 116 HD
patients (HR ¼ 1.741, 95% CI 1.047–2.895; P¼ 0.033), but did
not find such an association with the other spectral HRV
components.

In the latter two studies, the 24-h Holter ECG was recorded
during interdialytic interval, whereas in other studies, it took
place on a dialysis day that included the dialysis session.

CKD. A multicentre prospective study of 305 patients with
CKD stages 3–5 demonstrated a strong association between de-
creased spectral HRV parameters and the cumulative probabil-
ity of adverse cardiovascular events [68].

Comment. The variable results of studies using out-of-hos-
pital 24-h Holter ECGs can be explained by the difficulty in
standardizing the environmental factors that influence HRV as-
sessment, including HD [69], during the recording. Indeed, to-
tal 24-h R–R interval variability analysis of recordings in truly
ambulating out-of-hospital patients is of little prognostic value
because of the differences in the environmental challenges to
which the autonomic system responds, and is no longer recom-
mended as a favoured approach for autonomic nervous system
assessment [70, 71].

It has also been reported that high phosphate and parathy-
roid hormone levels [72] and fluid overload [73] are associated
with reduced HRV in HD patients, whereas daily HD [74] and
haemofiltration [75] are associated with less pronounced reduc-
tions in HRV compared with standard HD.

Table 5. Studies evaluating the association of spatial QRS–T angle and outcomes in ESRD

References Population Sample size Follow-up Results Comments

de Bie et al [54] HD and PD 277 25.2 months
(mean)

QRS–T angle independent predictor of all
cause mortality (HR ¼ 2.33, 95% CI 1.46–
3.70; P < 0.01) and SCD (HR ¼ 2.99, 95%
CI 1.04–8.60; P < 0.05)

Single surface
ECG

Poulikakos
et al. 2014 [55]

HD 81 18 months Extremely high TCRTs in patients who expe-
rienced arrhythmic events

Holter

Couderc et al. [57] HD patients above the
age of 40 with history
of diabetes or hypertension

50 13 months Statistically significant increase of the QRS–
T angle after the dialysis session in the non-
survivor group (P < 0.05)

Holter

Tereshchenko
et al. [52]

Incident HD 358 864.6 person
years

Spatial QRS–T angle >75� was indepen-
dently associated with all-cause (HR ¼ 2.38,
95% CI 1.41–4.04; P ¼ 0.001) and cardiovas-
cular mortality (HR ¼ 2.99, 95% CI 1.31–
6.82; P ¼ 0.01)

5 min SA ECG
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C O N C L U S I O N

A number of electrocardiographic parameters have been used
as potential risk predictors in advanced renal disease and dialy-
sis with variable results. The use of conventional ECG parame-
ters is severely limited by the influence of fluid and electrolyte
shifts on their measurements. Inconsistency and lack
of reproducibility make them unreliable as independent
biomarkers.

In the case of the PR interval prolongation, in particular the
link between abnormal PR and mortality might reflect the mor-
tality risk associated with bradyarrhythmias or atrial fibrillation.
In the determination of electrocardiographic LVH, the use of
Novacode has shown promising results. Novacode has the ad-
vantage of not relying on voltage criteria, but requires computer
processing of EGC waveform. Hence, unlike conventional
methods such as Sokolow–Lyon, LVH cannot be determined by
manual observation.

We elected to omit QTc dispersion from the review in order
to keep the presented results more relevant. Previous research has
indicated that QT dispersion as a metric is problematic as it has
very poor reproducibility and cannot be used consistently for risk
stratification. There is also some controversy regarding the mean-
ing of QT dispersion as some previous research has questioned
whether it truly represents repolarization heterogeneity [76, 77].

Novel markers, such as the QRS–T angle, have shown prom-
ising results in HD cohorts. However, the definitions of abnor-
mal QRS–T angle vary significantly depending on the method
of calculation used. Further standardization is therefore re-
quired. Moreover, the prognostic value of the QRS–T angle
needs to be evaluated in larger prospective studies. In general,
there is a paucity of studies assessing electrocardiographic
markers as risk prediction tools in PD when compared with HD.

In summary, larger and more comprehensive studies are re-
quired, including those assessing the evolution of electrocardio-
graphic changes from CKD to HD and PD and the relation of
these changes to cardiac mortality. In addition, every opportu-
nity should be taken to include serial ECG recordings in all
larger randomized controlled trials examining cardiovascular

and mortality outcomes. Risk stratification models that incor-
porate echocardiographic, electrocardiographic and laboratory
parameters together will likely lead to more sensitive and spe-
cific risk prediction. Finally, the serious and potentially treatable
bradyarrhythmias being detected by implantable loop recording
in dialysis patients would itself justify a more regular and per-
haps protocolled use of ECG in these populations.
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