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Abstract

Stroke has long been regarded as focal disease with circumscribed damage leading to neurological 

deficits. However, advances in methods for assessing the human brain and in statistics have 

enabled new tools for the examination of the consequences of stroke on brain structure and 

function. Thereby, it has become clear that stroke has impact on the entire brain and its network 

properties and can therefore be considered as a network disease. The present review first gives an 

overview of current methodological opportunities and pitfalls for assessing stroke-induced changes 

and reorganization in the human brain. We then summarize principles of plasticity after stroke that 

have emerged from the assessment of networks. Thereby, it is shown that neurological deficits do 

not only arise from focal tissue damage but also from local and remote changes in white-matter 

tracts and in neural interactions among wide-spread networks. Similarly, plasticity and clinical 

improvements are associated with specific compensatory structural and functional patterns of 

neural network interactions. Innovative treatment approaches have started to target such network 

patterns to enhance recovery. Network assessments to predict treatment response and to 

individualize rehabilitation is a promising way to enhance specific treatment effects and overall 

outcome after stroke.
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1 Introduction

Stroke is the leading cause of adult disability in western countries. The resulting 

neurological deficits have enormous impact on activities of daily living, quality of life, and 

health costs (Dobkin, 1995, Mayo et al., 2002, Feigin et al., 2016). Rehabilitation requires 

an in depth understanding of mechanisms underlying neurological deficits and their recovery 

in order to propose appropriate treatments and to design novel interventional approaches.

Our concepts of the mechanisms underlying stroke deficits have long been influenced by a 

localizationist view, which has been predominant since Broca's discovery of specific deficits 

resulting from a focal brain lesion (Broca, 1861). Later, it was reinforced by neuroimaging 

with assessments of lesion configurations (e.g., Glascher et al., 2009) or functionally 

specific activations of specialized brain areas in healthy subjects (e.g., Belliveau et al., 1991, 

Rao et al., 1993). In this view, neurological deficits result from the destruction of 

circumscribed and functionally specialized brain regions. Similarly, recovery from 

neurological deficits can be seen in a localizationist tradition as the reorganization of 

circumscribed preserved brain areas close to the lesion. Pioneering non- human primate 

studies into brain plasticity after stroke have shown that recovery from neurological deficits 

can arise from reorganization of preserved perilesional areas to the functions previously 

assumed by the damaged tissue (Nudo et al., 1996). Functional imaging in humans has 

shown dynamic changes of task-related activations in nearby perilesional areas after stroke 

(Feydy et al., 2002, Ward et al., 2003, Saur et al., 2006). In consequence, rehabilitation 

treatments are designed to enable repetitive and intensive activation of reorganized 

perilesional areas (Dong et al., 2006, Kleim et al., 2008, Dancause et al., 2011).

However, the brain is a network with extremely dense interconnections. It can therefore be 

expected that a stroke will not only induce local damage resulting in necrosis of brain tissue, 

but will also impact the brain network resulting in malfunction in connected areas that are 

remote from the stroke lesion (Carrera et al., 2014). This argument has already been put 

forward by opponents of Broca, and later by von Monakow with the influential concept of 

diaschisis suggesting a loss of excitability at distant brain areas (von Monakow, 1914). In 

rodent stroke models small focal lesion to the motor cortex caused widespread diaschisis 

within and across both hemispheres (Buchkremer-Ratzmann et al., 1996, 1997). Yet, no 

appropriate imaging and statistical methodology was at first available to investigate these 

predictions in human stroke patients and the clinical importance of the concept has long 

remained controversial.

More recent methods for brain imaging and statistical analysis have opened new 

opportunities for looking into network aspects of brain function in general and of brain 

plasticity in particular. Simulations of neural networks have suggested that stroke lesions 

induce massive network-wide changes in neural activity (Honey et al., 2008, Alstott et al., 

2009). Advances in non-invasive imaging allow us to examine anatomical fibre tracts 
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connecting the brain areas, i.e., structural connectivity, with good precision in human stroke 

patients. Furthermore, we can examine the impact of stroke lesions on functional 

collaborations among distant areas using statistical measure of so-called functional 
connectivity. Finally, we can manipulate neural connections between distant brain areas 

using non-invasive stimulation of the brain across the skull. Together, these developments 

have demonstrated that stroke-related neurological deficits as well as recovery depend on 

network-wide processes.

The present review will first summarize current methodological possibilities and difficulties 

in the assessment of the brain as a network. We will then line out influential new concepts 

on stroke plasticity arising from the assessment of network processes. Finally, we will 

review that a network perspective on stroke has consequences for clinical practice. Most 

importantly, network-wide changes can become target of new treatment approaches. 

Prognosis and treatment can be adapted to individual needs of each patient hence 

contributing to personalized medicine.

As plasticity of motor function has received much more attention and study than cognitive 

domains, most concepts will be derived first for the motor domain. Evidence for an 

extensions of these concepts to language, neglect and other cognitive functions will be 

considered in a second step.

2 Non-invasive assessments of brain networks

2.1 Structural connectivity and diffusion weighted imaging

In the last years, there has been a rise in interest and usage of diffusion weighted imaging 

(DWI) to study brain networks in basic and clinical neuroscience. DWI provides the unique 

opportunity of analysing in vivo white matter bundles connecting specific brain areas within 

highly specialized functional neuronal networks. Determining the structural integrity and 

organization of these connections adds to the understanding of deficits after a focal brain 

lesion, like in traditional localizationism and dysconnection syndromes (Catani et al., 2005, 

Thiebaut De Schotten et al., 2015), but also to the understanding of the mechanisms, course 

and potential of reorganization and recovery processes. These aspects make the technique a 

highly valuable information source to study rehabilitation in stroke (Koch et al., 2017). 

Since the first studies using diffusion tensor imaging (DTI) (Basser et al., 1994) there has 

been a large effort developing novel acquisition techniques giving rise to more detailed 

analyses of underlying neuronal structures like diffusion curtosis imaging (Jensen et al., 

2005a), HARDI (Tuch et al., 2002), q-space imaging (King et al., 1994, Callaghan, 1996) or 

Diffusion Spectrum Imaging (Wedeen et al., 2005). These technical improvements enable 

new insights in clinical neuroscience.

In DWI the MR signal is sensitive to the dispersion of water molecules on a voxel-by-voxel 

basis, iteratively done in multiple directions estimating the distribution of diffusivity in 

space, as well as different amounts of diffusion weighting, which allows more detailed 

analyses of microstructure. The different aspects of acquisition give rise to the two main 

approaches in DWI: microstructural imaging and tractography.
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2.1.1 Microstructural imaging—In microstructural imaging, recent effort has focused 

on developing higher and more complex models describing integrity of neuronal tissue (for a 

detailed review please see (Alexander et al., 2017, Assaf et al., 2017). The tensor model 

introduced in 1994 (Basser et al., 1994) has been and still is most frequently used in clinical 

neuroscience. Microstructural integrity measurements based on the eigenvalues of the tensor 

(axial and radial diffusion), composite scores like mean diffusivity (MD), and fractional 

anisotropy (FA) are sensitive to different degrees of density, orientation and coherence of 

both axonal and myelin features of white matter tracts (for review (Basser et al., 2002, 

Beaulieu, 2002). Still, the tensor model seems to be insufficient (Jeurissen et al., 2013) in 

case of multiple fibre populations or complex fibre architecture like crossing, kissing and 

fanning fibres (Leergaard et al., 2010), as commonly found in brain regions, like e.g., in the 

centrum semiovale or corona radiata, in which association, projection, and commissural 

fibres are co-localized. Additionally, the interpretation of the meaning of alterations in 

diffusion parameters (e.g., reduced fractional anisotropy) for the tissue structure is not 

straightforward (Assaf et al., 2017, O'Donnell et al., 2017). A cautious interpretation of 

change of structural properties after stroke is therefore necessary. This motivated novel 

developments based on i) higher angular estimation of fibre orientation by constrained 

spherical deconvolution (Tournier et al., 2004) optimized tractography (see below) and ii) a 

more complex modelling of microstructure. Latter includes the usage of multi-tensor models 

(Malcolm et al., 2010, Chu et al., 2015) or diffusion kurtosis imaging (Jensen et al., 2005a), 

a model free fitting measuring deviation from a Gaussian distributed signal, which has been 

used for clinical prediction studies evaluating e.g., the corticospinal tract in stroke (Hui et 

al., 2012, Spampinato et al., 2017). A very promising approach, especially for the usage in 

clinical research, is the compartment model framework. In this approach, the description of 

microstructure is not done on a voxel-by-voxel basis, but based on the estimation of different 

compartments within each voxel. Intra-axonal diffusion is modelled as an impermeable 

cylinder or fibre shape with restricted diffusion, while a less restricted diffusion model is 

used for extra-axonal diffusion. Models based on the compartment framework like 

CHARMED (Assaf et al., 2004, 2005) and NODDI (Zhang et al., 2012) gave rise to novel 

indices of microstructural integrity like axonal and neurite density (Alexander et al., 2010) 

and the orientation dispersion index, which found interest in clinical studies on stroke 

(Adluru et al., 2014) and other neurological pathologies (Winston, 2012, Caverzasi et al., 

2016). Compartment modelling of white matter specific diffusion metrics in 44 acute and 

subacute stroke patients reveals a small increase in fibre density, with a strong decrease in 

intra-axonal diffusivity indicating axonal swelling in the lesion (Hui et al., 2012). Still, more 

work is needed to investigate biological fundaments of diffusion signal alterations during the 

time course after stroke. Future perspectives in microstructure modelling include the 

estimation of axon diameter distributions (AxCaliber and ActiveAx) (Assaf et al., 2008, 

Zhang et al., 2011, Benjamini et al.,2016).

2.1.2 Tractography—The diffusion signal is further used to estimate the orientation 

distribution of fibres in every voxel. By following these indirect measurements of fibre 

orientation voxel-by-voxel using deterministic or probabilistic tractography algorithms, it is 

possible to reconstruct long-range white matter pathways in the brain (for detailed 

methodological review please see (Jeurissen et al., 2017, O'Donnell et al., 2017), which has 
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become an essential part in studying structural brain connectivity. The estimation of fibre 

orientation can be based on different models of diffusion reaching from tensor based 

approaches to constrained spherical deconvolution (Tournier et al., 2004, Dell'Acqua et al., 

2013). The latter allows higher angular resolution and thus increased accuracy of 

tractography. Complex fibre architecture can lead to false negative, or - far more relevant - 

false positive results (invalid bundles) as recently shown by an international tractography 

challenge (Maier-Hein et al., 2017). This implies the need for validation of different 

tractography algorithms based on ground truth datasets. Further models of elevating the 

accuracy of fibre tractography have been recently introduced to e.g., include microstructural 

information in the processing and reconstruction of fibres – microstructural informed 

tractography (Daducci et al., 2015, 2016, Girard et al., 2017).

Analysing major white matter bundles found in the human brain have been a key element in 

clinical neuroscience (Thiebaut De Schotten et al., 2015, Maier-Hein et al., 2017). For 

example, the corticospinal tract (CST), the arcuate fascicle (AF) or the superior longitudinal 

fascicle (SLF) have been main targets in studying recovery of motor impairment (for 

detailed review: Koch et al., 2016, Puig et al., 2017, Ramsey et al., 2017), aphasia (Marchina 

et al., 2011, Forkel et al., 2014) and neglect (Lunven et al., 2015) after stroke, respectively. 

Still the SLF for example contains three major subdomains, which include fibre tracts 

connecting specific areas within a parietofrontal distribution (Makris et al., 2005, Schulz et 

al., 2015b, Thiebaut De Schotten et al.,2015). Similar, corticospinal pathways include fibres 

belonging to the pyramidal tract as well as alternate motor fibres and cortico-cerebellar 

pathways, which can be disentangled and have been analysed separately in stroke recovery 

(Lindenberg et al., 2010, Lindenberg et al., 2012, Schulz et al., 2015a, Schulz et al., 2017b). 

Thus, defining precise fibre bundles connecting specific areas of interest by means of 

tractography is a promising approach deepening the understanding of white matter 

connectivity in translational research. Furthermore, those specific connections can be 

modelled in network configurations analysing dependencies of connectivity between certain 

white matter tracts (Granziera et al., 2012, Schulz et al., 2015b, Schulz et al., 2017a).

Finally, tractography is used in a whole brain approach, reconstructing the entire human 

structural connectome. Analysing the high dimensional dataset of hubs and connections 

requires different mathematical approaches to draw conclusions. Hereby, graph theory is 

used to describe network alterations and configurations by means of, e.g., modular small-

worldness or economic features like cost and efficiency and rich club nodes (for further 

information please see section 2.2.4 and more detailed articles on this topic (Sporns et al., 

2005, Hagmann et al., 2008, Bullmore etal., 2009, 2012).

DWI analyses provide the unique opportunity to study adjacent, but also widely distributed 

alterations of neuronal structures and networks, reorganization and microstructural changes 

in reaction to focal pathologies, which makes it a key technique for translational research 

and for studying network alterations in recovery after stroke. Still every result should be 

interpreted with caution and in regards of the limitation of the technique.
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2.2 Assessing functional and effective connectivity

The analysis of functional collaboration between brain areas can in principle be based on 

any imaging technique capable of measuring brain activity. The assessment of hemodynamic 

fluctuations with fMRI, and of electromagnetic neural activity with EEG and 

magnetoencephalography (MEG) have been most influential for the study of network 

functions in humans.

Traditional neuroimaging statistics have mostly treated each brain area as independent from 

the rest and quantified local activations. Conversely, network approaches quantify the 

statistical dependency between two or more recording sites in order to estimate the strength 

of interregional neural interactions (Varela et al., 2001). Interregional neural communication 

is thought to be accompanied by a synchronization, or statistical dependency, of oscillations 

between different brain regions (Fries, 2005). If two or more regions show “similar” or 

interdependent activity they are considered to be interacting and communicating. In the 

following, we will summarize key concepts and problems that are relevant for the 

assessment of brain plasticity after stroke.

2.2.1 Advantages of network imaging—Network approaches to functional imaging 

provide some practical advantages beyond the possibility of taking into account the network 

character of the brain.

In traditional clinical neuroimaging, patients have to perform specific tasks, which are 

designed to activate selected brain regions of interest. Yet, the ability of stroke patients to 

correctly perform tasks is often limited. This is particularly evident in studies that address 

questions related to neurological deficits and their recovery. For instance, studies assessing 

the reorganization of the motor cortex in patients with hemiplegia require the patients to 

perform repetitive movements, which is precisely the task they cannot accomplish in a 

sufficiently controlled manner due to their deficit (Weiller et al., 1992, 1993). Conversely, 

neural communication can be studied not only during tasks, but also during a so-called 

resting-state without explicit task. Studies using functional magnetic resonance imaging 

(fMRI) have shown that spontaneous fluctuations of brain activity at rest are highly 

organized and coherent within specific neuro-anatomical systems (Greicius et al., 2003, Fox 

et al., 2005, Damoiseaux et al., 2006). Furthermore, the pattern of coherence between brain 

regions observed at rest often resembles the pattern of brain activation induced by 

corresponding tasks (Vincent et al., 2007). Thus, a careful analysis of coherence between 

brain regions gives access to the functional brain organization even for resting-state 

recordings.

This approach also offers the possibility to study multiple brain networks concomitantly and 

hence provides a systems perspective on brain function. While classical imaging required a 

separate task for each network/function to be studied, network imaging allows studying, e.g., 

motor and language networks in parallel, as well as their interactions.

2.2.2 Types of neural interactions and their assessment—Many different 

methods for assessing neural interactions have been proposed. In a first approximation, they 

can be grouped into methods for quantification of statistical dependency (functional 
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connectivity, FC), and methods that explain observed dependencies within a model of causal 

influence (effective connectivity, EC) (Friston, 2011).

Neural interactions and hence functional connectivity can occur in different forms. Figure 1 

shows three coupling types which have been observed in the human brain (Guggisberg et al., 

2015). Weak coupling can be associated with synchronization of oscillation phases between 

nodes while the amplitudes of the network nodes remain uncorrelated (Fig. 1A) (Rosenblum 

et al., 1996, Osipov et al., 2003). For instance, the human alpha rhythm shows such phase 

synchronization (Guggisberg et al., 2008, Hillebrand et al., 2012, Marzetti et al., 2013). 

Increasing the coupling strength between the oscillators leads to complete synchronization 

with the appearance of amplitude correlation (Fig. 1B) (Rosenblum et al., 1996, Osipov et 

al., 2003). This can be observed in slow resting-state fluctuations (<0.1 Hz) of the 

hemodynamic fMRI signal (Greicius et al., 2003), and in delta and infra-delta (<4 Hz) 

oscillations of local field potentials recorded with electrocorticography (He et al., 2008). 

Finally, network nodes can synchronize the appearance of bursts of faster rhythms, which 

leads to a correlation of their amplitude envelopes (Fig. 1C) (Bruns et al., 2000, Gonzalez-

Miranda, 2002). Amplitude envelope correlation (AEC) can be observed in human resting-

state alpha and beta-band activity (de Pasquale et al., 2010, Brookes et al., 2011a, Brookes et 

al., 2011b, de Pasquale et al., 2012, Hipp et al., 2012). The relative role of the different 

coupling types is incompletely understood, but it is likely that different coupling types 

account for different aspects of network interactions and may provide complementary 

insights on human brain function and disease (Engel et al., 2013, Guggisberg et al., 2015).

In fMRI studies, FC is most frequently quantified with the canonical correlation coefficient 

(CC) (e.g., Biswal et al., 1995, Greicius et al., 2003, Fox et al., 2005). It quantifies the 

similarity of amplitudes, i.e., complete synchronization, of hemodynamic fluctuations 

between pairs of brain regions or voxels. Alternatively, independent component analysis can 

achieve a full-brain analysis of amplitude similarities which are divided into different spatial 

components (Damoiseaux et al., 2006). These spatial components happen to correspond to 

different functional networks, also named resting-state networks (Raichle et al., 2007, 

Raichle, 2011).

In the case of EEG and MEG, the CC is not well suited for the fast and rich spectral content 

of typical neural oscillations. This is because the CC is modified by the superposition of 

several different frequencies, even though the coupling at a given frequency may remain 

constant. More importantly, time lags between different brain areas, which often occur due 

to neural transmission, additionally bias the magnitude of the CC despite constant coupling 

strength. Instead, EEG/MEG studies most frequently quantify FC with measures of phase 

coupling using indices, such as coherence (Lopes da Silva et al., 1973) or phase locking 

relationships (Lachaux et al., 1999, Stam et al., 2007). Alternatively, AEC (Brookes et al., 

2011b) provides topographies of networks that are more similar to findings in fMRI than it 

is the case for measures of phase coupling (Brookes et al., 2011a). In addition, there are 

many other indices (for a comparison, see, e.g., Dauwels et al., 2010).
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EC tests hypotheses on the information flow between limited numbers of brain regions. It 

embeds experimental measures of FC within different models of interactions which can be 

compared in terms of their statistical evidence (Friston, 2011).

A first approach of EC that is frequently used in EEG/MEG studies is based on 

autoregressive modelling of time series within Granger’s concept of causality (Kaminski et 

al., 2001, Astolfi et al., 2005). It consists in modelling signal fluctuations at a given brain 

area from a mixture of past fluctuations at one or several other areas. Granger causality 

measures are abundantly used for MEG and EEG recordings. Conversely, its application to 

fMRI time series is problematic for several reasons, in particular also due to the limited time 

resolution of fMRI (Friston, 2011).

A second approach, dynamic causal modelling (DCM), is based on a pre-specified model of 

neuronal sources and their directed influence in time. It then explicitly tests which of several 

models best represents the observed signal. This allows formalizing scientific hypothesis 

testing in the context of neural interactions. DCM can be applied to EEG/MEG as well as 

fMRI data, as the generative model of neural sources can be adapted to each imaging 

modality (Friston et al., 2003, Friston, 2011).

EC measures have the advantage of being multivariate, i.e., of taking into account indirect 

neural interactions occurring via an observed third brain area. Furthermore, they enable 

assessing forward and backward connections between two areas separately. This provides 

insights on the strength of information flow for each direction. On the other hand, they 

require some prior knowledge about involved brain areas and likely neural interactions.

2.2.3 Difficulties and potential pitfalls—An important issue in network imaging 

based on fMRI is the presence of motion and physiological artefacts during the scan, which 

give appearance to spurious statistical dependencies between brain sites. This is all the more 

important in the assessment of stroke patients who typically are less able to remain 

immobile. Several algorithms for correction have been proposed, which are based on 

temporal band-pass filtering of BOLD signals, removal of movement regressors, 

independent component analyses, or recordings of physiological signals (Power et al., 2012, 

Satterthwaite et al., 2013, Power et al., 2014). There is an ongoing debate whether the global 

signal, i.e., the average time course of the whole brain, the ventricles, or the white matter, 

should be removed (Saad et al., 2012, Burgess et al., 2016).

Since fMRI measures neural activity only indirectly and given the difficulties with removing 

nonneural signals from the measurements, it is not always straightforward to interpret 

observations in fMRI studies of network interactions (Kelly et al., 2012). This is of 

particular concern in the context of stroke and cerebro-vascular disease, as fMRI signals are 

influenced by vascular pathology or by changes in the hemodynamic response close to the 

lesion. Surprisingly few studies have addressed this issue, but there is evidence for abnormal 

hemodynamic signals in patients with brain lesions which might impact estimates of 

network interactions (D'Esposito et al., 2003, Murata et al., 2006, de Haan et al., 2013, 

Bonakdarpour et al., 2015, Agarwal et al.,2016). For instance, de Haan et al. (2013) found 

decreased hemodynamic responses in structurally intact perilesional brain areas of stroke 

Guggisberg et al. Page 8

Clin Neurophysiol. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



patients without neurological or neuropsychological deficits. In another study, stroke 

patients with aphasia had a delayed hemodynamic response compared to patients with 

aphasia due to a neurodegenerative disorder (Bonakdarpour et al., 2015). Hence, vascular 

pathology may have an unspecific and rather diffuse impact on fMRI signals, which may 

confound with the effect of behaviour.

EEG and MEG have therefore an advantage in stroke patients, as they do not depend on the 

hemodynamic response. On the other hand, they can be subject to problems related to the 

spread of electromagnetic potentials to the surface sensors. The potential arising in a given 

grey matter source spreads with light speed throughout the brain and the scalp and is picked 

up by multiple EEG/MEG sensors. This spread is called volume conduction and is in fact the 

reason we are able to record EEG and MEG at the scalp surface.

Brain lesions may alter the current spread from the brain to the sensors, which might 

decrease the reliability of source localization with EEG and MEG. Simulations in traumatic 

brain injury have indeed demonstrated that the source localization error introduced by 

lesions with high conductivity (i.e., with oedema or fresh blood) can be substantial in the 

vicinity of the lesions and reach tens of millimetres (van den Broek et al., 1998, Irimia et al., 

2013). However, evidence from epilepsy (Brodbeck et al., 2011, Lascano et al., 2016) and 

brain tumours (Martino et al., 2011, Lascano et al., 2014) shows that, despite the presence of 

brain lesions, high-density EEG/MEG provide localization accuracy that is useful for 

guiding the extent of surgery. This demonstrates that the precision EEG and MEG imaging 

is mostly sufficient for localizations at the sub-lobar level. Furthermore, head models taking 

into account lesion and skull configurations are now increasingly available and further 

reduce the error introduced by lesions (Irimia et al.,2013).

Volume conduction also produces a number of pitfalls in the investigation of network 

interactions with EEG and MEG. This is the case not only in stroke patients, but needs to be 

taken into account in all studies. Because of volume conduction, a single source is 

represented in multiple sensors. If we quantify the FC between such sensors, we obtain 

artificial similarity of signals, and hence inflated and distorted values of FC between sensors, 

even if there is in fact no true interaction between the brain areas underneath the sensors 

(Schoffelen et al., 2009).

We can use inverse solutions to estimate neural oscillations in the brain from EEG/MEG 

sensor data. This partially inverts volume conduction. However, inverse solutions provide an 

incomplete removal of volume conduction because even the best available inverse solutions 

have limited spatial resolution. This means that the current reconstructed at a given brain 

location arises in fact not only from activity at this source, but is additionally influenced by 

activity in adjacent locations. This effect is called spatial leakage and entails that neural 

activity reconstructed at a given location is a linear combination of activity from a region 

surrounding this location. Moreover, the spatial resolution of inverse solutions is not 

homogeneous throughout the brain but worse for areas with less sensor coverage such as 

deeper brain regions. Overall, this leads to an overestimation and distortion of the magnitude 

of network interactions (Guggisberg et al., 2008, Schoffelen et al., 2009, Sekihara et al., 

2011).
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These issues can be easily overcome by using appropriate measures of FC. The first such 

measure that was introduced is the imaginary component of coherence (IC) (Nolte et al., 

2004). IC exploits the fact that artificial similarities among time series arising from volume 

conduction and spatial leakage occur with zero phase lag between sites, while true neural 

interactions may require phase delays due to neural transmission. Coherence is complex 

valued with real and imaginary components. The real component represents coupling with 

near zero time lag while the imaginary component represents lagged coupling. We can 

therefore omit the real component of coherence and use only interactions occurring with a 

certain time lag represented by IC (Sekihara et al., 2011). Although this may also remove 

true coupling occurring with zero phase lag, the remaining lagged interactions usually 

suffice for most applications. Other corrections are also available (Stam et al., 2007, Brookes 

et al., 2011a, Ghuman et al., 2011, Pascual-Marqui et al., 2011, Hipp et al., 2012). 

Furthermore, Granger causal measures of EC inherently ignore zero-lag interactions and 

hence control for volume conduction. Despite the availability of appropriate solutions, some 

studies still do not use them and report possibly spurious and artificial interactions.

Most experts recommend combining inverse solutions with corrected measures of FC to 

reconstruct neural brain interactions as this allows integrating information on head geometry 

for a more precise localization of interacting areas (Gross et al., 2013). In some cases, where 

the location of the sources is not important, it is also possible to compute FC directly 

between EEG or MEG sensors as long as corrected measures of FC are used. In the case of 

EC, the combination with inverse solutions is more debated as EC measures may be 

sensitive to phase changes introduced by such preprocessing steps (Kaminski et al., 2014).

2.2.4 Graph theory—Analyses of FC and EC produce multidimensional arrays of 

results. Graph theory provides a means for dimension reduction. It abstracts from single 

interactions between pairs of regions and instead derives network properties on a more 

global level (Bullmore et al., 2009, Stam et al., 2012, De Vico Fallani et al., 2014). These 

properties can be computed in principle from any kind of measure of FC or EC.

Graph theory distinguishes between nodes and edges of a network. In neuroimaging, nodes 

correspond to brain areas and edges to neural interactions. It is hence possible to 

characterize the properties of a given brain area in the network, or to characterize aspects of 

network interactions (Newman, 2004, Bullmore et al., 2009, Stam et al., 2012). When 

characterizing nodes in the context of stroke plasticity, the property of node degree or node 
centrality is of particular interest. It indicates the number of connections or the sum of 

interactions of a brain area of interest with the rest of the brain network. Although different 

versions of this measure are available, they all quantify the overall importance of the brain 

area in the network.

When considering network interactions, it is often investigated whether the brain network 

has small-world properties, i.e., whether it provides an optimal compromise between local 

specialization and global integration. To achieve this, it should have high local 

connectedness among neighbouring brain areas and, at the same time, high long-distance 

connectedness to more distant brain areas. The healthy human brain was found to show such 

smallworldedness (Achard et al., 2006).
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2.3 Non-invasive brain stimulation

Non-invasive brain stimulation techniques allow us to study the organization and 

reorganization in the intact and diseased human brain. In this section, we will review how 

brain network function is assessed using two non-invasive neurophysiological methods such 

as transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (TES). 

For TMS techniques, single pulse TMS, and paired pulse TMS are used while single stimuli 

are used for TES.

Non- invasive brain stimulation is also used to modulate the excitability of the stimulated 

neuropil. In the post- stroke recovery period it is used in combination with rehabilitation 

strategies. One of these strategies is the use of repetitive transcranial magnetic stimulation 

(rTMS) which has the potential to improve motor recovery after stroke (Khedr et al., 2005, 

Mansur et al., 2005, Khedr et al., 2010, Buetefisch et al., 2011b). For transcranial electrical 

stimulation protocols, most evidence is available for transcranial direct current stimulation 

(tDCS) (Nitsche et al., 2000, 2011). Protocols using alternating current (Antal et al., 2008) 

or random noise (Terney et al., 2008) will not be reviewed in this article.

In the following sections we will illustrate how TMS with its high temporal and 

topographical resolution provides means to measure excitability of functional connections 

within a cortical area (intracortical) and between cortical areas (intercortical) located in the 

same hemisphere or across hemispheres of the intact and lesioned brain such as stroke. In 

the second part we will discuss how rTMS and tDCS are used to modulate excitability in the 

stimulated neuropil and connected brain areas to study their function, their contribution to 

behaviour or impact on excitability of the probed neuronal network and as a new strategy in 

rehabilitation of stroke patients.

2.3.1 TMS derived excitability measures of neuronal networks—TMS is an 

established non-invasive brain stimulation technique, in which the focal application of brief 

magnetic fields evokes electrical currents in the cerebral cortical neuropil. Depending on the 

orientation of the coil, the configuration of the pulse and the intensity of the stimulation, the 

transient current activates the fast conducting pyramidal tract neurons (PTN) trans-

synaptically through horizontal connections. A motor evoked potential (MEP) that is 

recorded with electromyography (EMG) via surface electrodes mounted over the targeted 

muscle reflects the number and excitability of the activated neurons..

2.3.2 Excitability of primary motor cortex and its corticospinal projections—
The TMS or TES evoked MEPs are means to probe the entire pathway from primary motor 

cortex to alpha motorneurons with their projections to the muscle via the peripheral nerve. 

The smallest stimulation intensity required to elicit an MEP defines the resting motor 

threshold (RMT) (Rossini et al., 1994, Mishory et al., 2004). As TMS activates the PTN 

transyaptically, the motor threshold (MT) depends on the excitability of the synapses of 

stimulated cortico-cortical axons making contact with the PTN (Amassian et al., 1987). The 

MT is obtained at the location of the scalp that produces the largest MEP response of the 

target muscle with the smallest intensity of stimulation, the so-called hot spot. The presence 

of a measurable MEP indicates functional connectivity along the entire pathway. This is very 
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valuable information in neurological diseases affecting these neuronal structures. In patients 

after stroke, TMS provides means to measure the functional efficacy of the corticospinal 

output system early after the infarction. Specifically, within the first 72 hours after stroke, an 

absent MEP has been related to poor functional recovery (Binkofski et al., 1996, Nardone et 

al., 2002, Stinear et al., 2012). For localization of the site of excitability changes within the 

corticospinal system, additional measures are necessary. Other additional measures that help 

to differentiate the site of changes in excitability include the assessment of spinal excitability 

by means of F-waves (Mercuri et al., 1996) or the H-reflexes (Fuhr et al., 1991).

More detailed analysis of M1 excitability is derived from stimulus response curves (SRC) 

where TMS is applied to a M1 hot spot at increasing intensities and evoked MEP amplitudes 

are plotted against intensities (Ridding et al., 1997). Increases in MEP amplitude with 

increasing TMS intensities reflect recruitment of neurons that are either intrinsically less 

excitable or more distant from the hot spot (Ridding et al., 1997). The curves follow a 

sigmoid function that is characterized by three curve parameter when modelled with the 

Boltzman function (slope, maximum MEP amplitude (MEPmax), and intensity of the 

stimulator output to produce 50% of MEPmax (k)). When SRC is measured at a constant 

level of motor activity, these 3 curve parameter completely characterize the input- output 

relationship of the M1 cortiospinal pathway (Capaday, 1997, Devanne et al., 1997, Capaday 

et al., 1999).

Using a single intensity to study excitability of M1 output is problematic because the 

location of the MEP on the SRC in not known. Changes in M1 excitability will result in 

greater increases in MEP amplitude with its location on the slope when compared to its 

location on the plateau. In stroke patients, evoking an MEP with M1 stimulation of the 

affected hemisphere requires higher intensities resulting in abnormally high RMT 

(Boroojerdi et al., 1996, Liepert et al., 2000b, Manganotti et al., 2002, Freundlieb et al.) and 

SRCs are shifted to the right with less steepness of the slope and smaller MEPmax (Figure 

2) (Buetefisch et al., 2018). The calculation of the curve parameter with the Boltzman 

function is the most comprehensive analysis of the SRC but limited to curves with a defined 

plateau. In stroke patients this may not be feasible and calculation of the area under the 

curve or the sum of MEP amplitudes derived from stimulation at increasing intensities can 

be used.

2.3.3 Excitability of M1 intracortical circuitry—The excitability of M1 intracortical 

circuitry can be estimated indirectly by means of a paired pulse TMS paradigm. In this 

paradigm two pulses are delivered through the same coil. A suprathreshold test stimulus 

(TS) is preceded by a subthreshold conditioning stimulus (CS) at different interstimulus 

intervals (ISI) (Kujirai et al., 1993). With short ISI of 2-4 ms the CS produce an inhibitory 

effect of the subsequent TS evoked MEP and is referred to as short interval intracortical 

inhibition (SICI) (Kujirai et al., 1993). Most investigators use an intensity for TS and CS 

that is based on the individual’s RMT. For TS the intensity is usually set at 120% RMT and 

for CS at 80% RMT (Kujirai et al., 1993). Alternatively, investigators set the intensity of the 

TS to produce an MEP of about 1mV because CS has its maximum inhibitory effect on the 

test MEP amplitudes of 1- 4 mV (Sanger et al., 2001). MEP amplitudes below 0.2 mV 

should be avoided as the inhibitory effect of CS reaches a floor effect. While a strong linear 

Guggisberg et al. Page 12

Clin Neurophysiol. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



relationship between RMT and intensity of CS that produces maximum inhibition can be 

demonstrated in healthy subjects, there is no relationship between these two parameter when 

testing M1 excitability in stroke patients (Butefisch et al., 2003, Butefisch et al., 2008). This 

would question the usefulness of MT as a reference for selecting the appropriate intensity 

for CS. Because RMT is abnormally high in the affected hemisphere, the CS intensity 

corresponding to 80% RMT is maybe too high to capture the inhibitory effect of these lower 

threshold inhibitory interneurons. Instead, it is recommended to test multiple subthreshold 

CS intensities between 60%-80% MT. As the threshold for inhibitory neuronal circuitry is 

lower than that for excitatory neuronal circuitry (Schafer et al., 1997, Chen et al., 1998, 

Butefisch et al., 2003) testing the effects of lower CS intensity on the test MEP allows the 

separation of the effects mediated by these respective networks in more detail (Schafer et al., 

1997, Chen et al., 1998, Fisher et al., 2002, Butefisch et al., 2003) (Figure 3).

The CS likely evokes an inhibitory postsynaptic potential through activation of low threshold 

inhibitory neuronal circuitry (see below) which inhibits the TS related generation of action 

potential in connected pyramidal tract neurons (Kujirai et al., 1993). This effect is mediated 

by positive GABAA-receptor modulators (Ziemann et al., 1996) and arises in close 

proximity to the stimulated area (Di Lazzaro et al., 1998).

In addition to the assessment at rest (termed resting-state SICI), measurement of SICI during 

the pre-movement period (termed event-related SICI) allows to determine intracortical 

inhibition during the course of a movement (e.g., (Heise et al., 2010, 2013)). With this 

approach, one gains information on resting-state levels of intracortical inhibition and 

additionally about time-locked modulation of intracortial inhibition towards movement onset 

with high temporal resolution. Typically, in healthy subjects, intial resting-state inhibition 

turns close to movement onset into dishinbition/facilitation promoting the motor cortex to 

perform the movement (Heise et al., 2010). In contrast to the healthy situation, chronic 

stroke patients show an impaired range of modulating inhibition to disinhibition in the pre-

movement period closer to the onset of movements. This was associated with residual motor 

function (Hummel et al., 2009). In a longitudinal study of stroke patients, resting state SICI 

did not add to the prediction of functional outcome after one year (Liuzzi et al., 2014). 

However, the patients, who showed disinhibition in event-related SICI in the acute phase 

post-stroke recovered best within the year. Thus, resting-state SICI and event-telated SICI 

represent not identical, but differential properties of intracortical inhibition.

At longer ISI of 8-30 ms the effect of the CS on the TS evoked MEP is facilitatory, termed 

intracortical facilitation (ICF) (Kujirai et al., 1993). The neuronal populations mediating ICF 

are less well understood but they are distinct from those mediating SICI and appear to be 

located in cortex (Ziemann et al., 1996, Di Lazzaro et al., 2006). In this paradigm the 

facilitatory effect of CS is not affected by the strength of the TS (Sanger et al., 2001). After 

stroke ICF remains usually unchanged (Liepert et al., 2000a, 2000b, Butefisch et al., 2003).

The role of GABA receptor type B-expressing interneurons can be probed by the 

contralateral cortical silent period protocol, in which a single suprathreshold TMS pulse (i.e. 

above MT) is delivered during tonic muscle activation of the targeted muscle. This results in 

the disruption of M1 activity that is reflected in EMG silence following the MEP lasting 
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40-300 ms (Fuhr et al., 1991, Inghilleri et al., 1993). Other TMS paradigms probing 

intracortical inhibition are the long-interval intracortical inhibition (LICI) (Wassermann et 

al., 1996, Inghilleri et al., 2003) and the short- latency afferent inhibition protocols 

(Mariorenzi et al., 1991).

2.3.4 Excitability of primary motor cortex and its cortico-cortical 
connections.—The influence of other brain areas projecting to M1 can be assessed by 

probing the effect of a conditioning stimulus (CS) applied through a coil placed over the 

brain area of interest followed by a suprathreshold test stimulus (TS) applied through the 

coil overlaying the M1 hot spot of a target muscle. The paired pulses are intermixed with 

single TS and single CS pulses applied at random. By measuring the effect of the CS on the 

MEP amplitude evoked by a TS the excitability of the connection between M1 and the other 

brain area of interest is determined (Koch et al., 2007, Koch et al., 2008a, Liuzzi et al., 2010, 

2014). Because of its excellent temporal resolution, TMS in this design can be used to 

determine time dependent changes in the excitability of cortical projections to M1 in 

processes of interest. For example, this approach has been used to examine the connections 

between M1 and posterior parietal cortex (Koch et al., 2007, 2009b) or premotor cortex 

(Baumer et al., 2009, Davare et al., 2009) of either side (for review (Koch et al., 2009a)).

2.3.5 Excitability of interhemispheric connections between primary motor 
cortices.—In addition to the corticospinal projections and cortico-cortico connections 

within the same hemisphere, the primary motor cortices of the two hemispheres are 

connected to each other. The majority of these connections are located in the corpus 

callosum and are primarily excitatory (for detailed review (Dancause et al., 2015). An 

inhibitory effect from one M1 on the homotopic area of the other M1 can be demonstrated 

with TMS when the CS is applied to one M1 and the TS to the homotopic area of the other 

M1, termed interhemispheric inhibition (IHI) (Ferbert et al., 1992). The intensities of the 

TMS pulses are usually adjusted to produce a MEP of about 1 mV and the ISI is typically 10 

ms (Ferbert et al., 1992). In contrast to SICI the inhibitory effect of CS is inversely 

influenced by the strength of the TS with less inhibitory effect at higher intensities (MEP 

amplitudes > 1 mV) (Daskalakis et al., 2002). Usually, the paired pulses are intermixed with 

single TS and single CS pulses applied at random. The amount of IHI from one motor cortex 

on the other motor cortex is expressed as percentage of the mean MEP amplitude of the 

single TS pulses (Ferbert et al., 1992). The differential effect of TS intensity on the 

inhibitory effect of CS would suggest that the neurons mediating IHI have a lower threshold 

or are located more superficially (Daskalakis et al., 2002).

While resting IHI is measured with the subject at rest, active IHI is measured during 

movement preparation. In healthy subjects the inhibitory effect of one M1 on the other M1 

decreases during the preparatory phase of movement execution (Murase et al., 2004). The 

extent of IHI depends on the movement kinematics (Duque et al., 2005, Wischnewski et al., 

2016). As background EMG activity may increase closer to the onset of movement, 

quantification of EMG background is necessary to exclude the possibility that EMG 

background related increases in test MEP amplitude result in less inhibitory effect of the CS 

(Wischnewski et al., 2016). Resting and active IHI are affected by stroke (Butefisch et al., 
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2008, Jones et al., 2013, Dancause et al., 2015). See discussion below. Taken together, TMS 

protocols with their excellent topographical and temporal resolution allow to gain 

information during rest, but also during the pre-movement period. These two situations 

represent different properties of cortical processing and provide thus a more complete 

picture of motorcortical physiology.

2.3.6 Repetitive transcranial magnetic stimulation (rTMS)—When adhered to the 

published guidelines (Rossi et al., 2009), rTMS can be used safely to modulate excitability 

in the stimulated M1 (Chen et al., 1997, Maeda et al., 2000, Sommer et al., 2002, Bagnato et 

al., 2005, Fitzgerald et al., 2006, Di Lazzaro et al., 2008), but also remotely (Strens et al., 

2002, Kobayashi et al., 2004, Chung et al., 2015), which in specific settings can produce 

measurable behavioral effects. In this regard, rTMS when applied to the brain area of 

interest is a means to probe its contribution to the studied task.

In general, rTMS applied to M1 at high frequency is thought to produce an excitatory effect 

(Pascual-Leone et al. 1994;Di Lazzaro et al. 2002; Fitzgerald et al. 2006;Daskalakis et al. 

2006), while rTMS at low frequency produces an inhibitory effect (Chen et al. 1997; 

Daskalakis et al. 2006; Fitzgerald et al. 2006). For example when low frequency rTMS of 

M1 is coupled to the execution of a movement in a strict temporal relationship, the 

stimulated M1 excitability is increased and behavior improved (Bütefisch et al., 2004, 

Buetefisch et al., 2014a). However, more recent findings have demonstrated that effects of 

rTMS are highly variable, such that effects can even be inversed (Hamada et al., 2013, 

Wiethoff et al., 2014, Hordacre et al., 2015, Li et al., 2015, Nicolo et al., 2015a, Vallence et 

al., 2015). Moreover, the results of meta- analyses on the effectiveness of rTMS in stroke 

rehabilitation therapy do not agree on the available evidence to either support or reject it 

(Adeyemo et al., 2012, Hsu et al., 2012, Elsner et al., 2013, Hao et al., 2013). Better 

characterization of brain changes induced by rTMS is necessary to understand the potential 

impact of rTMS on the functional anatomy and plasticity of synaptic networks, to optimize 

therapeutic rTMS protocols, and to assess their safety.

2.3.7 Repetitive transcranial electric stimulation—Under the label repetitive 

transcranial electric stimulation, approaches based on transcranial direct current stimulation 

(tDCS), transcranial alternating current stimulation (tACS) and transcranial random noise 

stimulation (tRNS) are summarized. In the following, we will focus on tDCS, as the large 

bulk of studies with tES has been done by applying tDCS. In accordance with current 

guidelines (Antal et al., 2017) tDCS is a safe and well tolerated technique to modulate 

cortical excitability, neuronal plasticity and behaviour non-invasively (Hummel et al., 2005c, 

Nitsche et al., 2008). In tDCS a low current is delivered through the skull via two surface 

electrodes (Nitsche and Paulus 2000) ranging from approaches with larger, topographically 

less specific to multiple smaller electrodes with higher topographical resolution (Antal et al., 

2017). For motor cortex stimulation, the stimulating electrode is placed over M1 and a 

reference electrode over the contralateral supraorbital ridge. The application of the weak 

current over the cerebral cortex induces polarity-specific alteration of stimulated neuropil, 

which can outlast the stimulation for minutes to hours, an ideal time window for 

rehabilitative treatment sessions. The primary mechanism of tDCS is a subthreshold 
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alteration of the resting membrane potential, whereas the after-effects seem to resemble 

synaptic plasticity of glutamatergic connections (Liebetanz et al., 2002, Nitsche et al., 2003, 

2004); for review (Stagg et al., 2011). More recently, tDCS related modulation of the local 

field potential depending on the anodal or cathodal polarity of the applied current were 

reported for sensory cortex in the awake animal (Marquez-Ruiz et al., 2012), which 

corresponds to the observed effects on MEP amplitudes when tDCS is applied to M1 

(Nitsche et al., 2000). While these are promising results, the authors of a recent consensus 

paper stated that the “overall, reproducibility remains to be fully tested, effect sizes with 

present techniques vary over a wide range, and the basis of observed inter-individual 

variability in tDCS effects is incompletely understood” (Buch et al., 2017).

3 Principles of network plasticity after stroke

3.1 Structural connectivity

In traditional localizationism, the location and size of tissue-loss in grey matter following an 

occlusion of a cerebral artery in respect to the perfusion territory of anterior, medial or 

posterior cerebral arteries are related to specific functional deficits of an individual patient. 

This leads to inference of highly specialized functions of grey matter regions in the direct 

correlation of area and function. In clinical structural neuroimaging this concept is followed 

by lesion symptom mapping (e.g., Karnath et al., 2018). Still, group analyses in stroke 

patients reveal that the majority of lesions are affecting to a large part white matter or a 

combination of both white and grey matter, whereas isolated grey matter lesions are seen in 

less than 15% (Kang et al., 2003, Wessels et al., 2006, Corbetta et al., 2015). Following, the 

lesion - symptom relationship is accompanied by a lesion - network relationship, in which 

the analyses of white matter networks maintain a crucial role (Fox, 2018). In structural 

connectivity analyses of recovery after stroke, two main aspects of networks are most 

relevant and studied: degeneration (see section 3.1.1) and reorganization (see section 3.1.2), 

which will be the main focus in the following section.

3.1.1 Disconnection and secondary degeneration—The integrity of the CST, as 

the crucial outflow tract of the motor system, is the most investigated white matter pathway 

in studies of motor recovery after stroke. CST integrity has been described with the lesion 

load – the volume overlay of motor fibres and ischemic lesion, the number of connecting 

fibres (Sterr et al., 2010, Zhu et al., 2010, Sterr et al., 2014, Feng et al., 2015), fractional 

anisotropy extracted from DTI (Stinear et al., 2007, Buch et al., 2016b, Guggisberg et al., 

2017), or with motor evoked potentials after TMS (Byblow et al., 2015).

Greater damage to the CST is robustly associated with more severe motor impairment in 

acute and chronic phases as well as with less improvement, as shown in multiple convergent 

studies (Stinear et al., 2007, Kim et al., 2015, Schulz et al., 2015b, Ramsey et al., 2017, 

Peters et al.,2018). More recent studies have additionally demonstrated that severe damage 

to the CST seems to be a main factor leading to a particularly poor pattern of motor 

improvement with severe chronic impairment (Byblow et al., 2015, Feng et al., 2015, Buch 

et al., 2016b, Guggisberg et al., 2017). Indeed, the evolution of motor function after stroke 

follows two divergent paths (Prabhakaran et al., 2008, Winters et al., 2015). Patients will 
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either recover about 70% of maximum possible improvement or show little to no 

improvement. Byblow et al. (2015) observed that absent MEPs in the acute phase after 

stroke reliably predict which patients will follow this particularly poor pattern of recovery. 

Similarly, strong asymmetries in FA of the CST predict the poor outcome pattern in patients 

with severe initial impairment (Buch et al., 2016b, Guggisberg et al., 2017).

The disconnection of association fibres induced by stroke lesions has also a relevant impact 

on the recovery of other cognitive domains, such as aphasia (Hosomi et al., 2009, Kim et al., 

2013, Ramsey et al., 2017), neglect (Lunven et al., 2015, Vaessen et al., 2016), or others 

(Epelbaum et al., 2008, Ramsey et al., 2017). Hereby, the loss of specific white matter tracts 

measured with DTI usually leads to specific loss of functions, known as dysconnection 

syndromes (Catani et al., 2005, Thiebaut de Schotten et al., 2005). This is also seen in pure 

subcortical stroke lesions (Marebwa et al., 2017). In this regard, patients, in whom stroke 

lesions affect areas with a high overlap of association fibres are more likely to suffer from 

deficits in several cognitive domains depending on the affected white matter tracts (Corbetta 

et al., 2015). This is where ‘lottery’ is entering the lesion-function relationship for stroke 

patients and emphasizes how important the individual lesion location in relation to white 

matter tracts might be for prediction of recovery and personalized treatment protocols.

We can thus derive a first principle of network plasticity after stroke stating that stroke 

lesions to specific white matter tracts are associated with particularly severe clinical deficits 

and with less recovery. This has been shown most extensively for damage to the CST and 

motor function, but seems to be valid also for associative tracts and cognitive function.

Several studies have described a secondary reduction of microstructural integrity of the 

ipsilesional CST (Puig et al., 2010, Lindenberg et al., 2012) (for review see (Koch et al., 

2016, Puig et al., 2017)), formally known as Wallerian degeneration. Further, antero- and 

retrograde degeneration has been directly associated with lesions affecting the CST (Liang et 

al., 2007) and the secondary loss of integrity as measured by changes in fractional 

anisotropy (FA) has been found to be a major predictor for motor recovery after stroke 

(Thomalla et al., 2004, 2005, Ma et al., 2014, Guggisberg et al., 2017). In one study, patients 

with particularly poor motor recovery showed secondary degradation of white-matter 

integrity in extensive parts of the affected hemisphere (Guggisberg et al., 2017). Still, there 

are different suggestions about the time course of degeneration over the recovery process, 

some showing a progressive degeneration until the subacute phase (Liang et al., 2007, 

Moller et al., 2007, Yu et al., 2009), some don’t (Radlinska et al., 2010). This might be due 

to the spatial relationship to the lesion and different time points of evaluation. Further, 

stroke-related changes are likely the result of both degeneration and regeneration processes, 

and therefore the mechanisms underlying differences in FA values are likely mixed (Jones et 

al., 2011). When looking at CST FA and motor recovery, different involvement of fibers 

from primary motor cortex (M1), premotor cortex, and somatosensory areas are not 

considered. Considering the fact that only about 40% of the CST is from M1, two large CST 

lesions revealed with CST FA may have different amounts of spared corticospinal fibers 

from the M1. This limits the precision of this measure when looking at correlation of CST 

FA and more specific measures such as hand motor function. In this setting TMS measures 
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of M1 output is a better predictor of spared corticospinal fibers from M1 hand function 

(Buetefisch et al., 2018).

The association between damage to white matter tracts with the respective degeneration and 

functional outcome is seen not only for projection fibres. Some tractography studies could 

show that cortical areas directly connected to subcortical stroke lesions showed a specific 

reduction in cortical thickness explainable by secondary neuro-axonal degeneration (Cheng 

et al., 2015, Duering et al., 2015), in which the white matter loss induces cortical 

disconnection beyond the lesion (Bonilha et al., 2014).

Exploiting the full degree of multidimensionality in structural connectivity whole 

connectome analyses represents another promising method to understand network alterations 

in stroke. In this regard, several studies promote the idea that stroke lesions lead to modular 

fragmentation and clustering resulting in weaker inter-modular integrations and a total 

decrease of information transfer and communicability especially remotely to the lesion. This 

has been shown both, in aphasia (Gleichgerrcht et al., 2015, Yourganov et al., 2016, 

Marebwa et al., 2017) and motor affection (Crofts et al., 2011, Kuceyeski et al., 2014, 2015) 

after stroke, supporting additionally the idea of secondary degeneration. This indicates a 

large effect on local and global networks induced by a focal brain lesion (Saenger et al., 

2017, Foulon et al., 2018). Furthermore, these analyses might be also interesting for 

prediction of functional outcome. Especially the multivariate modelling including both white 

and grey matter information is promising in explaining functional outcome (Barrett et al., 

2016, Yourganov et al., 2016), whereas a preservation of global and local network 

architecture of crucial cortical regions seems important for a sufficient treatment response 

(Bonilha et al., 2016).

Taken together post-stroke disconnection and secondary degeneration are major factors 

impacting on the degree of impairment and recovery. This suggests a second principle of 

network plasticity after stroke. Fibre tracts with stroke damage tend to degenerate during the 

first weeks after stroke, which leads to atrophy of the corresponding grey matter, less clinical 

recovery, and worse long-term outcome. This effect is not restricted to local perilesional 

areas but concerns global brain networks in both hemispheres.

However, other factors are involved in the process of recovery, such as the intrinsic capacity 

of the brain to regain and relearn lost functions after stroke by mechanisms of 

neuroplasticity and functional reorganisation (see below).

3.1.2 Reorganization—Neuroplasticity based on long-term potentiation and depression-

like effects plays a crucial role for functional recovery after stroke and is mostly related to 

synaptic alterations. This paragraph will focus on the growing evidence of remodelling 

capability in white matter pathways detectable by diffusion imaging (for review (Assaf et al., 

2017)). Studies suggest an increase of microstructural integrity following intensive training 

in healthy participants even after five days (Blumenfeld-Katzir et al., 2011) and more 

prominent in a long-term follow up (Bengtsson et al., 2005, Scholz et al., 2009, Sagi et al., 

2012, Zatorre et al., 2012, Thiebaut De Schotten et al.,2014). Animal models suggest, that 

stroke lesions are accompanied by a strong trend of building new structural (Jones et al., 
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2011) and functional connections between specific areas (Frost et al., 2003, Dancause et al., 

2005). Thus, revealing white matter connections which correlate with residual function or 

recovery, and their temporal dynamics, could provide insights into recovery processes of the 

brain in terms of remodelling after focal lesions (Schulz et al., 2015a), thereby bridging the 

gap between animal models and human neuroscience.

In motor recovery, further white matter tracts besides the already discussed CST have been 

in the focus of research. It has been shown, that additional projection fibres like alternating 

motor fibres including the cortico-rubral and cortico-reticular system support the recovery of 

function (Lindenberg et al., 2010, Rüber et al., 2012, Schulz et al., 2017b). There are 

hypotheses, based on animal studies, that these polysynaptic pathways, in comparison to the 

CST, show a higher capacity of remodelling and are therefore most suitable for supporting 

regain of function (for review (Koch et al., 2017)). It is crucial to take the different key hubs 

of the motor network into account including the cerebellum. It has been suggested that 

interactions based on structural connectivity between the cerebellum and the motor cortex 

impact on functional reorganization, residual motor functions and recovery after stroke 

(Wessel et al., 2018). One study by Schulz et al. (Schulz et al., 2015a) demonstrated, that 

both the afferent and efferent connections of the cerebellum with M1 were related to residual 

motor function and skilled motor control in chronic stroke. Moreover, this relationship was 

not seen in healthy participants and was independent of the level of damage to the CST, 

which point towards compensatory mechanisms of reorganization. Determining the 

functional relevance of the different motor tracts provides additional insights in mechanisms 

relevant for recovery, however these approaches are limited by the fact that they have been 

applied independently for each network tract (Koch et al., 2017). To deepen the 

understanding especially on a network level as basis towards making predictions on an 

individual level, it is inevitable to analyse the different tracts together and evaluate their 

interactions, their functional role and differential and synergistic impact for individual 

recovery. First steps in this direction have been achieved in the motor domain. Structural 

connectivity analyses could show that secondary motor areas like SMA and PMd and their 

spinal descending fibres are associated with residual function in chronic stroke patients 

(Schulz et al., 2012, Peters et al., 2018). Additional to the relevance of the CST, intra-

hemispheric parieto-frontal cortico-cortical connections of the lesioned hemisphere between 

the IPS and the PMv and between PMv and M1 are associated with residual motor function 

in the chronic stage of recovery (Schulz et al., 2015b). Moreover, the analysis of 

dependencies within these networks is a very important and promising way to understand 

reorganization in the individual patients. Hereby, a current study showed that the above 

discussed impact of structural connectivity between PMv and M1 contributes only relevantly 

to residual motor function in patients with a severely affected corticospinal tract (Schulz et 

al., 2017a). Contrarily, the impact of alternating motor fibres on motor recovery was 

independent of the affection of the CST and seems to be a more general phenomenon of 

stroke recovery (Schulz et al., 2017b). Still, considering both pathways at the same time 

increased the accuracy of prediction of motor recovery (Lindenberg et al., 2010).

Less is known about structural reorganization processes in regard to the recovery of 

cognitive functions. One study in patients with aphasia could present an increase in the 

integrity of arcuate fascicle following melodic intonation therapy (Schlaug et al., 2009).
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In conclusion, assessments of structural network plasticity have suggested a third principle 

of plasticity, stating that recovery after stroke depends on structural connectivity within 

distributed networks. Thereby, alternative and/or newly formed connections can compensate 

for the loss of usual pathways. This has been shown so far mainly within the motor domain 

and its respective networks.

In this growing field of network alterations after stroke, several questions are still open, 

challenging and interesting for future research. They will guide the way to individualized 

prediction and understanding of recovery processes, selection of personalized treatment and 

predicting the magnitude of therapeutic interventions. To achieve these goals there are 

several limitations, which have to be overcome. Firstly, there is a lack of longitudinal 

evaluation of white matter integrity to detect indices for plastic changes and reorganization 

in white matter tracts. These increases in integrity over time, as reflected in multiple white 

matter metrics (see section 2.1.1), might show indirectly the capacity of reorganization and 

structural plasticity of white matter tissue and its underlying histological mechanisms.

Secondly, the correlations between interindividual variance of microstructure and functional 

outcome and recovery after stroke implies a problem of gaining inferences. Two scenarios 

seem possible. Is the variance in microstructure a direct result of degeneration and/or 

regeneration and reorganization processes in consequence to the ischemic lesion or is it 

explained by a natural variability of structural connectivity pre-existing in healthy 

populations (Thiebaut de Schotten et al., 2011) (Johansen-Berg et al., 2007), genetically and 

epigenetically determined, which gains functional importance after the stroke.

Thus, the (genetically determined) structural prerequisites of a patient might significantly 

contribute to the capacity for functional reorganisation and recovery. Furthermore, the inter-

individual variability of the stroke lesion topography and its affection of white matter fibres 

are not well studied in its relation to motor recovery and reorganization processes. 

Associated white matter diseases like subcortical arteriosclerotic encephalopathy add even 

more complexity to the understanding and have been largely neglected so far. Moving 

towards precision medicine with personalized treatment, the field has to focus on individual 

prediction of outcome and tailored treatment selection. To achieve these goals, factors like 

structural and functional connectivity and lesion load have to be evaluated in combined 

models. One way to account for this is the usage of computational modelling and clustering, 

which achieved increasing interest in clinical neuroscience. For example, support vector 

machine learning approaches are used to analyse functional connectivity in stroke and 

predict individual recovery (Rehme et al., 2015a, 2015b), automatized lesion detection and 

lesion symptom mapping (Rondina et al., 2017) and the analyses of individual phenotypes in 

e.g. depression (Drysdale et al., 2017).

More work is needed to deepen our understanding of different phenotypes of reorganization 

in order to pave the way towards personalized medicine in stroke rehabilitation. For this, 

structural connectivity analyses especially in a multimodal fashion including quantitative 

structural imaging, functional imaging and electrophysiological measurement is very 

promising and will provide deep insights in the systems neuroscience mechanisms of 

functional recovery.
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3.2 Functional network plasticity

A focal stroke lesion leads not only to local dysfunction, but to altered neural 

communication in directly or indirectly connected brain areas. Evidence for this comes from 

realistic modelling of the human brain network (Honey et al., 2008, Alstott et al., 2009) and 

from animal experiments (van Meer et al., 2010). Analyses of functional and effective 

connectivity provide a non-invasive means for empirical assessments of these network 

effects in human stroke patients.

Non-invasive imaging has confirmed that stroke lesions lead to large-scale changes in neural 

interactions across the entire brain, but observations have been quite variable across studies. 

This variability is not surprising given that the examined patients had variable lesions, 

network configurations and that different coupling types were studied using different 

imaging modalities. Overall, network changes were reported in multiple spatial 

configurations which were not limited to specific networks. However, some reproducible 

principles can be derived from the different studies. In the following, we will first 

summarize concepts arising from the disruption of neural interactions and then consider the 

plastic enhancement of neural interactions.

3.2.1 Disrupted functional connectivity and neurological deficits—The first and 

most consistent finding of studies on network effects of stroke has concerned reduced inter-

hemispheric FC between homologous motor, language, and spatial attention areas. These 

changes can be observed already in the acute stroke stage, but remain present up to the 

chronic stage in patients with persisting clinical deficits. Importantly, interhemispheric FC 

disruptions were linearly associated with corresponding neurological deficits of the patients 

(He et al., 2007, Warren et al., 2009, Carter et al., 2010, Golestani et al., 2013, Sasaki et al., 

2013, Urbin et al., 2014). For instance, Carter et al. (2010) observed reduced 

interhemispheric FC between the motor cortices of stroke patients, which was associated 

with motor deficits. FC reductions between parietal brain areas were associated with neglect.

Furthermore, ipsilesional nodes also have reduced interactions with other nodes of a given 

functional network. This has been shown in particular for the motor network (Sharma et al., 

2009). Assessments of EC with dynamic causal modelling have revealed reduced excitatory 

interactions between premotor and primary motor as well as between supplementary and 

primary motor areas (Grefkes et al., 2008). These changes were present in the acute stage 

and tended to normalize in subacute stages in patients with good recovery (Rehme et al., 

2011). Again, disrupted EC was associated with motor impairments.

Other studies have demonstrated reduced FC to nodes of other networks of the ipsilesional 

and contralesional hemisphere (Park et al., 2011, Yin et al., 2012, Wang et al., 2014, Xu et 

al., 2014), although these changes were more variable and dependent on the time after 

stroke.

In sum, ipsilesional nodes can show complex disruptions of FC and EC with various other 

brain areas, both within and across networks, depending on the lesion, the individual 

network configuration, and the time after stroke. In order to abstract from the individually 

variable patterns of affected connections, it is useful to quantify the overall FC of a node of 
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interest with the entire brain. This can be achieved with the graph theoretical measure node 
degree or node centrality (see section 2.2.4). EEG, MEG, and fMRI recordings have 

consistently found reduced node degree in stroke from the acute to the chronic stage after 

stroke and this was linearly correlated with the severity of clinical deficits. For instance, 

network imaging with high-density EEG showed that the more spontaneous neural activity 

in Broca’s area was coherent with the rest of the brain (i.e., the greater the node degree of 

Broca's area), the better patients were able to produce words (see Fig. 4). This has been 

reproduced for motor, language, and spatial attention functions using resting-state recordings 

(Wang et al., 2010b, Dubovik et al., 2012, Westlake et al., 2012, Guggisberg et al., 2015). 

Furthermore, the same observation can be made during movement tasks for motor function 

(Gerloff et al., 2006, De Vico Fallani et al., 2013).

Improvement of neurological deficits during rehabilitation goes in parallel with a 

proportional normalization of FC and degree of a given node (Wang et al., 2010b, Rehme et 

al., 2011, Westlake et al., 2012, Golestani et al., 2013, Wu et al., 2015).

We can thus derive a fourth principle of network alterations after stroke stating that any 

disruption of interactions of a given brain area is associated with proportional deficits in 

functions depending on the node properties. These disruptions can be observed already 

during a resting-state condition without explicit tasks, as well as during task execution. This 

enforces the concept that neurological deficits do not arise only because of local tissue 

damage, but are also associated with a loss of neural interactions of areas that are not 

directly affected by the stroke lesion.

Stroke also seems to impact the topographical characteristics of neural interactions, as 

quantified with graph theory (see 2.2.4). In particular, it reduces local specialization (as 

indicated by a reduction of clustering coefficients and local efficacy), integration capacity, 

and small-world properties of the brain network (Wang et al., 2010b, De Vico Fallani et al., 

2013, Duncan et al., 2016, Adhikari et al., 2017, Caliandro et al., 2017).

EEG and MEG studies suggested that stroke effects on network interactions take place at 

preferential frequency bands. At rest, changes are most visible in the alpha and beta 

frequency bands (Dubovik et al., 2012, Guggisberg et al., 2015, Wu et al., 2015, Caliandro et 

al., 2017). Furthermore, several different coupling types seem to be concerned including 

phase synchronization and AEC(Guggisberg et al., 2015). For instance, Guggisberg et al. 

(2015) found that reduced alpha-band phase synchronization and reduced beta-band AEC in 

stroke patients were linearly correlated with neurological deficits. During motor tasks, the 

most consistent changes have been reported in the beta frequency band (Gerloff et al., 2006, 

De Vico Fallani et al., 2013).

It should be noted that a variation of FC and the associated behavioural impact is not 

specific to stroke, as similar observations have been made in other focal and diffuse 

pathologies and even in healthy subjects showing interindividual variations in performance 

(e.g., Guggisberg et al., 2008, Wang et al., 2010a, Dubovik et al., 2013, Sadaghiani et al., 

2015). Hence, the association between variations in FC and behaviour is a normal 

Guggisberg et al. Page 22

Clin Neurophysiol. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



phenomenon, which can be amplified by stroke or any other pathology leading to disruptions 

in network interactions.

3.2.2 Network plasticity—There is increasing evidence that interregional neural 

interactions are involved in brain plasticity. From animal literature, we know that cortical 

remapping and axonal sprouting is accompanied by coherent neural oscillations between 

perilesional areas and surrounding tissue (Carmichael et al., 2002, Frost et al., 2003, Buch et 

al., 2016a). The study of functional connectivity in human stroke patients provides indirect 

evidence for similar processes in humans. Correlations between network interactions before 

therapy and clinical improvement during therapy periods have been observed at various time 

points after stroke. In particular, nodes associated with deficient neurological functions were 

found to enhance their overall importance in the brain network (i.e., their node degree) by 

increasing their functional connectivity with other areas. This was predictive of future 

clinical improvement (Wang et al., 2010b, Buch et al., 2012, Westlake et al., 2012, De Vico 

Fallani et al., 2013, Nicolo et al., 2015b). For instance, a greater node degree of perilesional 

motor area (at rest and during motor tasks), as quantified with high-density EEG, during the 

first weeks after stroke was associated with greater clinical motor recovery observed in 

subsequent months (Fig. 5). This increase in overall interactions is therefore remarkably 

reproducible and observable during tasks and at rest. It seems to occur typically during the 

first weeks after stroke, after an initial hypoconnectivity in the acute stage.

This leads to the fifth principle stating that preserved ipsilesional brain areas can enhance 

their interactions with the rest of the brain and this might contribute to future clinical 

recovery.

The mechanisms by which network interactions might contribute to plasticity are not well 

understood and will need to be clarified in the future. Recent work suggests that 

synchronous network oscillations may be important for axon myelination which is tightly 

regulated by neuronglia interactions (Fields et al., 2015). FC could thus help preserve and 

strengthen newly-formed projections. Furthermore, the creation of new synaptic connections 

might be associated with a transient increase in synchronous oscillations between the 

involved brain areas.

EEG studies further suggest that beta oscillation frequencies are preferred for recovery-

related neural interactions in the first weeks after stroke (Nicolo et al., 2015b). This might 

reflect distinct molecular environments after unilateral stroke. Animal models of stroke have 

shown that gammaaminobutyric acid (GABA) and glutamate are the two main synaptic 

signalling systems implicated in stroke plasticity. These neurotransmitters also modulate the 

amplitude and phases of EEG rhythms at specific frequencies (Jensen et al., 2005b, 

Yamawaki et al., 2008, Kohl et al., 2010, Ronnqvist et al., 2013, Li et al., 2014). 

Furthermore, the local concentration of GABA at motor nodes was found to be inversely 

correlated with the magnitude of fMRI FC (Stagg et al., 2014). Hence, we can speculate that 

plastic changes in network interactions may reflect alterations in neurotransmitter 

concentrations.
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However, these hypotheses are so far supported only by correlational evidence which needs 

to be confirmed in interventional studies achieving an experimental modulation of network 

interactions. A first step in this direction has recently been provided by a study in 10 patients 

with chronic stroke. An enhancement of the FC (node degree) of preserved ipsilesional 

motor areas with neurofeedback led to a significant increase in motor function. This was not 

the case in a control condition where patients enhanced FC of a brain area not directly 

implicated in motor function with neurofeedback (Mottaz et al., 2018). Hence an 

enhancement of network interactions of specific brain nodes seems to be causally related to 

reduced motor impairment.

3.2.3 Associations with structural connectivity—Disruptions of FC are, at least in 

part, mediated by structural damage to connecting fibres. For instance, disruptions of 

interhemispheric FC are associated with the amount of structural damage to transcallosal 

fibre tracts as measured with DTI (Chen et al., 2013). Similarly, plastic enhancement of FC 

depends on structural integrity of white matter. This has been shown in particular for motor 

function, in which damage of the cortico-spinal tract (CST) was associated with lower FC of 

cortical motor nodes (Carter et al., 2012, Cunningham et al., 2015, Guggisberg et al., 2017). 

However, multimodal assessments have suggested that a combination of CST integrity and 

cortical FC provides superior prediction of motor recovery than structural imaging alone 

(Burke Quinlan et al., 2015, Volz et al., 2015, Wu et al., 2015, Guggisberg et al., 2017). 

Hence, FC changes are partly constrained by structural damage to white matter, but 

variations independent of structure seem to occur and be associated with clinical recovery.

3.3 The influence of the contralesional hemisphere

Ipsilesional M1 (iM1) reorganization plays an important role in post-stroke motor recovery, 

and is a primary target for rehabilitation therapy (Liepert et al., 1998, Wittenberg et al., 

2003, Hummel et al., 2005c, Khedr et al., 2005, Khedr et al., 2010, Buetefisch et al., 2011a, 

Dancause et al., 2011, Zimerman et al., 2012). Yet, reorganization of the contralesional 

hemisphere may serve as additional source for recovery and could be targeted with 

rehabilitation therapy (Chollet et al., 1991, Weiller et al., 1992, Cramer et al., 1997, Cao et 

al., 1998, Dancause et al., 2011). This has been shown mostly for motor function. In this 

section we will review data derived from studies of stroke patients using different modalities 

such as MRI, fMRI, EEG, and TMS to available from animal stroke models to discuss the 

structural and functional changes in the contralesional hemisphere and in the interaction 

between the two hemispheres.

Currently the role of the contralesional M1 (cM1) in motor recovery after stroke and its 

potential as new target for rehabilitation efforts is topic of intense discussions and research 

efforts in humans and animal stroke models (Hummel et al., 2008, Jones et al., 2013, 

Dancause et al.,2015). In task-based fMRI studies cM1 (corresponding to ipsilateral M1 

with respect to the moving hand) activation is consistently reported when patients move their 

affected hand (Calautti et al., 2003, Butefisch et al., 2005, Rehme et al., 2012). In cross-

sectional studies of patients in the subacute phase after stroke a shift from an initially 

abnormal bilateral activation of motor area (Chollet et al., 1991, Weiller et al., 1992, Cramer 

et al., 1997, Cao et al., 1998, Johansen-Berg et al., 2002, Small et al., 2002, Ward et al., 
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2003, Butefisch et al., 2005, Nair et al., 2007) towards a more normal unilateral activation 

pattern of ipsilesional motor areas (corresponding to contralateral motor areas with respect 

to the moving hand) in chronic phase after stroke (Ward et al., 2003) were described. These 

findings were still present when kinematics of the movements were matched (Ward et al., 

2007) and execution of strictly uni-manual movements were confirmed by electromyography 

(Butefisch et al., 2005). Further, abnormally increased cM1 excitability was demonstrated in 

multiple studies when explored with the paired pulse TMS technique (Figure 3, SICI, IHI, 

see above) (Boroojerdi et al., 1996, Shimizu et al., 2002, Butefisch et al., 2003, Murase et 

al., 2004, Butefisch et al., 2008).

The interpretation of these findings is complicated by the fact that the role of iM1 in the 

control of uni-manual hand movements of healthy subjects is not well understood. Demand 

on motor task dependent activity of iM1 is seen (Winstein et al., 1997, Hummel et al., 2003, 

Seidler et al., 2004, Verstynen et al., 2005, Talelli et al., 2008, Buetefisch et al., 2014b) that 

tends to increase as a function of age (Talelli et al., 2008, Zimerman et al., 2014) but does 

not seem to mediate control through uncrossed ipsilateral corticospinal projections 

(Soteropoulos et al., 2011). In the context of an incomplete understanding of the role of iM1 

in motor control, the interpretation of findings pertaining to the role of cM1 in motor 

recovery after stroke remains controversial (for review see e.g. (Hummel et al., 2008)).

From a structural perspective, there is growing evidence of structural connectivity within the 

contra-lesional hemisphere being involved in network reorganization. One longitudinal study 

using diffusion spectrum magnetic resonance imaging could show that intra- and 

interhemispheric structural connectivity of the contra-lesional motor network showed 

changes in microstructural integrity, whereas the change in intra-hemispheric motor network 

correlated strongly with clinical measurements of performance (Granziera et al., 2012). This 

idea was strengthened by additional magnetization transfer ratio measurement combined 

with generalized fractional anisotropy showing both axonal and myelin remodelling in these 

contra-lesional motor pathways (Lin et al., 2015). Also contra-lesional projection fibres 

seem to be involved in process of reorganization, in which decreases as well as increases of 

structural integrity was reported in the contra-lesional CST (Schaechter et al., 2009, Borich 

et al., 2011).

There is also evidence for alterations of neural interactions in the contralesional hemisphere 

after stroke, both from fMRI and EEG analyses (Park et al., 2011, Dubovik et al., 201 2). 

One EEG study has observed pathologically enhanced neural coherence of contralesional 

nodes in patients 3 months after stroke. This hyperconnectivity was correlated with more 

severe neurological deficits in motor and cognitive functions relying on the concerned nodes, 

hence mimicking observations with hyperactivity (Dubovik et al., 2012). Similar 

observations have recently been made with fMRI (Guo et al., 2019).

The factors that influence the extent and outcome of contralesional motor area 

reorganization are not known. As already indicated for task-based fMRI studies of stroke 

recovery, time since stroke is one variable that is consistently reported as impacting measure 

of M1 reorganization and behavior, while the report of the effect of lesion volume on these 

processes are more inconsistent. Schaechter and Perdue (2008) demonstrated in chronic 
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stroke patients a linear relationship between abnormally increased affected hand movement 

related cM1 activity and extend of CST damage. Further, the observed differential effect of 

stroke on cM1 excitability and the relationship between cM1 excitability and IHI (see below 

for deails) (Butefisch et al., 2008) supports the notion that location of the stroke seems to 

impact reorganizational processes. A further factor may be age. Most studies of the healthy 

brain were done in young adults. In older subjects, inhibition of the contralesional motor 

cortex might lead to an impairment of motor functions and learning (Zimerman et al., 2014) 

supporting the view that activity in cM1 during unilateral hand movements might have 

differential functional role in old or neurological patients.

In rodent stroke models, functional and structural reorganizational changes in cM1 are seen 

(for detailed review (Jones et al., 2013, Dancause et al., 2015)) that depend on the lesion size 

(Kim et al., 2010). On a synaptic level, reorganizational changes in cM1 include long-lasting 

down-regulation of GABAA-receptor function (Buchkremer-Ratzmann et al., 1996, 

Neumann-Haefelin et al., 2000) and up-regulation of NMDA-receptor function (Qu et al., 

1998, Witte, 1998), both mechanisms operating in increases of synaptic efficacy such as 

long-term potentiation (LTP). Structural changes included an increase in neuropil volume 

(Hsu et al., 2005), use-dependent dendritic growth followed by dendritic pruning, synapse 

formation and changes in the specific structure of synaptic connections have been described 

(Jones et al., 1994, Jones et al., 1996, Hsu et al., 2005).

Despite intense research efforts, the influence of the reorganized cM1 on recovery after 

stroke is currently not known. In the chronic phase of post-stroke recovery in humans, cM1 

seems to interfere with motor function of the paretic limb in a subset of patients as 

decreasing cM1 excitability by cortical stimulation results in improved performance of the 

paretic limb (Mansur et al., 2005, Fregni et al., 2006, Zimerman et al., 2012). The proposed 

mechanisms underlying this “maladaptive” response (Cicinelli et al., 1997, Traversa et al., 

1998) is thought to include an abnormally increased inhibition of lesioned M1 (ipsilesional 

M1 (ilM1) by the cM1 (Murase et al., 2004, Duque et al., 2005, Hummel et al., 2005c) 

(termed “interhemispheric inhibition model” (Murase et al., 2004)). The assessments of 

effective connectivity of motor networks after stroke with fMRI found excessive inhibition 

from cM1 to the affected M1 which correlated with worse motor function after stroke 

(Grefkes et al., 2008). Finally, there is some evidence that inhibitory rTMS protocols applied 

over the the cM1 can revert this maladaptive influence and improve motor function (Grefkes 

et al., 2010, Hsu et al., 2012).

In contrast to the notion of a negative influence of the contralesional hemisphere, there is 

emerging evidence to suggest a potentially supportive role of contralesional motor areas 

such as dorsal premotor cortex (cPMd) (Johansen-Berg et al., 2002, Lotze et al., 2006, Ward 

et al., 2007) and cM1 (Butefisch et al., 2003, Butefisch et al., 2005, Gerloff et al., 2006, 

Lotze et al., 2006, Nair et al., 2007, Butefisch et al., 2008). After infarction of M1 or its 

corticospinal projections, there is abnormally increased excitatory neural activity and 

activation in cM1 (Liepert et al., 2000a, Shimizu et al., 2002, Butefisch et al., 2003, Lotze et 

al., 2006, Butefisch et al., 2008) that correlates with favorable motor recovery (Butefisch et 

al., 2003, Butefisch et al., 2005, Lotze et al., 2006, Butefisch et al., 2008). Decreasing cM1 

(Lotze et al., 2006) or cPMd (Johansen-Berg et al., 2002, Lotze et al., 2006) activity in these 
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patients may result in deterioration of paretic limb performance. Similarly, inhibiting the 

contralesional hemisphere in rats that recovered from large ischemic infarcts generates more 

behavioral deficits of the impaired forelimb in comparison to control animals (Biernaskie et 

al., 2005).

Very few studies have examined the relationship between increased cM1 excitability and IHI 

to address the question, whether an abnormally increased cM1 excitability results in 

excessive inhibition of the iM1 (Butefisch et al., 2008). In subacute stroke patients with 

infarctions involving M1 or its corticospinal projections, cM1 SICI was abnormally low 

indicating increased cM1 excitability. Importantly, SICI was normal at low CS intensities but 

abnormally decreased at higher CS intensities indicating as shift towards an increase of 

excitatory activity in these neuronal circuits (Butefisch et al., 2008). Further, abnormally 

increased cM1 excitability occurred in the presence of both, normal and abnormally reduced 

resting IHI from iM1 on cM1 and resting IHI from cM1 on iM1 was normal (Butefisch et 

al., 2008). These findings suggest that the increased cM1 excitability can only partially be 

explained by loss of IHI from the lesioned on non-lesioned hemisphere. As decreased SICI 

of cM1 did not result in excessive IHI from the non-lesioned on lesioned hemisphere with 

subsequent suppression of iM1 excitability and all patients showed excellent recovery of 

motor function, decreased SICI of cM1 may represent an adaptive process supporting 

recovery (Witte, 1998, Nudo, 1999).

More recent findings have also cast doubts on the validity of the interhemispheric inhibition 

model for unselected groups of stroke patients. TMS studies and meta-analyses in larger 

stroke populations have not been able to reproduce an over-excitability of cM1 (Stinear et 

al., 2015, McDonnell et al., 2017). Reducing inter-hemispheric inhibition in stroke patients 

later than 2 weeks after stroke did not lead to improvements in motor recovery in recent 

studies (Volz et al., 2017, Nicolo et al., 2018b). Hence, many of the observations underlying 

the interhemispheric inhibition model could not be reproduced in subsequent trials.

Taken together, there is evidence from human and animal studies that activity in cM1 will 

impact motor function of the paretic limb but this may differ for subgroups of patients. The 

precise factors that specifcally influence the role of cM1 in the recovery process are not 

known. Identifying subgroups, which share specfic functional roles of areas of the 

contralesional hemisphere may help move forward towards personalized treatment strategies 

to improve the outcome post stroke.

Variants of the interhemispheric inhibition model have also been proposed for recovery from 

aphasia. Some models of aphasia recovery posit that an overactivity of right language nodes 

may be deleterious for recovery (reviewed in: (Hamilton et al., 2011)). Some evidence for 

this comes from studies in healthy participants suggesting that activation of a bilateral 

network including right temporal and right inferior frontal areas leads to less efficient 

learning than exclusive activation of left areas (Wong et al., 2007, Mei et al., 2008). 

Furthermore, activity in the left hemisphere seems to be more critical for naming 

performance than activity in the right hemisphere in stroke patients (Cao et al., 1999, 

Winhuisen et al., 2005). However, studies using NIBS to inhibit right language nodes in 
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healthy volonteers did not observe improvements in language performance or verbal 

learning (Mottaghy et al., 1999, Nicolo et al., 2016).

Interestingly, the best evidence for a pathological role of contralesional hyperactivity comes 

from studies on spatial neglect (Muri et al., 2013). Decreased activity of the right posterior 

parietal cortex, as measured with functional MRI is accompanied by a significant increase of 

activity in the left posterior parietal cortex (Corbetta et al., 2005). Furthermore, dual-pulse 

TMS studies have suggested that interactions between the left posterior parietal cortex and 

the left (contralesional) motor cortex are enhanced in neglect patients (Koch et al., 2008b). 

Most importantly, several trials have confirmed that inhibitory rTMS applied over the left 

(contralesional) posterior parietal cortex reduces signs of neglect as compared to a sham 

stimulation group, both in neuropsychological tests and everyday living (Nyffeler et al., 

2009, Cazzoli et al., 2012, Koch et al., 2012, Hopfner et al., 2015).

Finally, there is evidence that pathways in the contralesional hemisphere contribute to 

cognitive function after stroke. Structural readouts of the contralesional arcuate fasciculus 

was related to language performance (Dacosta-Aguayo et al., 2014) and recovery of aphasia 

(Forkel et al., 2014), the ventral and dorsal attention networks to spatial attention (Umarova 

et al., 2014).

In sum, these observations lead to a sixth priniciple of network plasticity. The contralesional 

hemisphere shows prominent structural and functional changes after stroke, but their precise 

role for recovery is insufficiently understood. Depending on factors such as lesion 

configuration and time after stroke, the contralesional hemisphere can play a supportive role 

for recovery, or it may participate in maladaptive plasticity.

4 Therapeutic implications

4.1 Modulation of structural connectivity, impact of structural connectivity on therapeutic 
interventions based on brain stimulation.

Despite the improvements of acute therapy in stroke with area-wide coverage with stroke 

units, thrombolysis and mechanical recanalization, there is still a large amount of patients 

suffering from long-lasting deficits after stroke (> 75%) in multiple domains (motor 

function, language/speech, cognition) impacting seriously the patients quality of life, 

independence, social and professional integration. Thus, there is a strong need of further 

improvement in neurorehabilitation treatment strategies. The prediction of the natural degree 

of recovery is an evolving field using functional scores as well as multimodal imaging. 

Markers like initial impairment, imaging of the CST, and TMS-evoked potentials have been 

suggested to be suitable for prediction of motor recovery (Stinear et al., 2012, 2017). The 

predictive value of ipsilesional M1 TMS evoked MEP is high with respect to its sensitivity 

and specificity when obtained within the first week after stroke. The Odds ratios varied 

between 5.49 and 13.50 for functional recovery in the presence of an MEP (Hendricks et al., 

2002). An increase of the acutely (within 3 days of stroke) reduced MEP amplitudes at 1 

month follow up (Binkofski et al., 1996) and greater MEP amplitude in the chronic stage (> 

6 month since stroke) were positively correlated with recovered hand motor function 

(Buetefisch et al., 2018). While there are a few patients with excellent recovery of motor 
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function despite an absent MEP or late MEP reappearance (Traversa et al., 1997), TMS 

measures of MT and SRC curves are sensitive and specific measures of M1 corticospinal 

circuitry and can be used in cross sectional or longitudinal studies of motor recovery after 

stroke.

Still, there remains a large unexplained variability in recovery, especially in patients with a 

moderate-severe initial impairment level. Predictive markers determined from e.g., imaging 

data being associated with treatment responses could serve further in selecting highly 

susceptible patients to certain therapies in the acute, subacute or chronic phase of recovery.

Taken together structural imaging especially when evaluated longitudinally in larger, 

heterogeneous cohorts of stroke patients will pave the way to use this technique for 

prediction of pattern of recovery, degree of recovery, magnitude of treatment effects and thus 

selection of individualized treatment strategies to maximize the effect of neuro-rehabilitative 

treatments. Bringing this information together with data form functional imaging and 

cognitive, functional abilities might even be more powerful to define phenotypes of patients 

at an early stage to provide the optimal treatment at each stage of the recovery process, 

especially promising for techniques like brain stimulation with a large heterogeneity in the 

treatment response.

In addition, white matter tracts, which are crucial for neurological function (see section 

3.1.1) are becoming a target for therapy. There is first evidence that NIBS might be able to 

enhance integrity of white matter tracts (Kim et al., 2010, Zheng et al., 2015, Guo et al., 

2016). For instance, tDCS reduced neuronal axon degradation at the internal capsule in rats 

(Kim et al., 2010). In human stroke patients, ipsilesional high-frequency rTMS over motor 

cortex improved integrity of the cortico-spinal tract, as reflected by higher fractional 

anisotropy (FA) (Guo et al.,2016). Similarly, cathodal tDCS over the contralesional M1 

reduced secondary white-matter degradation of patients with severe motor impairment 

(Nicolo et al., 2018a).

4.2 Modulation of ipsilesional network interactions

The observation that network interactions are correlated with current and future neurological 

function directly leads to the question whether their modulation through therapy might be 

feasible and clinically useful. We will first consider traditional behavioural treatment 

approaches and then explore newer concepts.

It is important to note that current therapy approaches with intensive exercise already are 

associated, among other neural effects, with concomitant enhancements of FC and EC 

(Rehme et al., 2011, Westlake et al., 2012, Golestani et al., 2013, Wu et al., 2015). The 

causal relevance of network effects of traditional therapies is currently unknown. 

Nevertheless, given the limited efficacy of exercise in some patients, there is an interest in 

new treatment approaches which might further enhance network interactions and clinical 

recovery.

Several reports have demonstrated that non-invasive cortical stimulation can enhance motor 

cortical excitability, functional reorganization, and the beneficial effects of motor training on 
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performance in the healthy brain (Muellbacher et al., 2000, Bütefisch et al., 2004, Hummel 

et al., 2005a, 2005b, Khedr et al., 2005, Reis et al., 2009, Hummel et al., 2010, Buetefisch et 

al., 2011a, Dancause et al., 2011, Zimerman et al., 2013, Buetefisch et al., 2014a, Zimerman 

et al., 2014) and stroke affected brain (Hummel et al., 2005a, 2008, Khedr et al., 2010, 

Buetefisch et al., 2011a, Zimerman et al., 2012). M1 in intact brain or M1 in the injured 

brain are frequent targets of these interventional approaches.

Studies in healthy subjects as well as stroke patients have demonstrated that non-invasive 

brain stimulation (NIBS) can modulate clinically relevant patterns of FC and EC. The two 

most frequently used stimulation methods, repetitive transcranial magnetic stimulation 

(rTMS) and transcranial direct current stimulation (tDCS) can influence interhemispheric 

FC between homologous motor areas (Strens et al., 2002, Amadi et al., 2014), EC between 

motor nodes (Grefkes et al., 2010, Volz et al., 2016), and node degree of parietal and motor 

nodes (Rizk et al., 2013, Nicolo et al., 2018b). Importantly, network modulations induced by 

rTMS and tDCS were correlated with proportional clinical improvements in functions 

depending on the stimulated node. It remains currently insufficiently understood how the 

stimulation modality and parameters influence the network effects. Generally, inhibitory 

protocols tend to reduce the overall FC of the stimulated node (Grefkes et al., 2010, Rizk et 

al., 2013), while excitatory protocols tend to increase them (Volz et al., 2016), but see next 

paragraph. Network imaging can be used to explore mechanisms underlying the clinical 

effects of brain stimulation and to identify optimal setups for different patient populations.

One of the main difficulties with NIBS consists in an individually variable behavioural 

response, which limits the overall effect size. One main reason for this variability is that the 

expected inhibition or excitation does in fact not occur in all patients and can be even be 

paradoxically inverted (Hamada et al., 2013, Wiethoff et al., 2014, Hordacre et al., 2015, Li 

et al., 2015, Nicolo et al., 2015a, Vallence et al., 2015). This applies also to changes in FC, 

such that disruptions of FC can occur instead of the expected enhancements or vice versa 

(Rizk et al., 2013, Nicolo et al.,2016). Imaging of network interactions may help predict 

which subject and patient will show the expected canonical vs. a paradoxical response. 

Several studies in healthy subjects have demonstrated that the observed response pattern 

depends on the intrinsic network state of the subject at the time of stimulation. In the case of 

inhibitory rTMS, studies targeting the right parietal area or the right Broca homogue showed 

that high node degree at the stimulated area before stimulation was associated with the 

expected reduction of local activation and FC, and with a canonical behavioural effect on 

naming and visuospatial exploration. Conversely, patients with low pre-stimulation node 

degree showed no or even the opposite effect (Rizk et al., 2013, Nicolo et al., 2016). In the 

case of excitatory rTMS and anodal tDCS, the expected excitatory effect could be observed 

preferentially in patients with high pre-stimulation FC and EC of motor nodes (Cardenas-

Morales et al., 2014, Hordacre et al., 2017). In sum, only nodes with large prestimulation 

interactions show the expected response to NIBS, while no or even a paradoxical response 

can occur in nodes with low connectivity. It remains to be demonstrated whether these 

findings also apply to stroke patients.

A second promising treatment approach for modulating FC and EC is based on the 

technology of brain-computer interfaces (BCI) which enables the monitoring of brain 
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activity and the generation of a real-time output about specific changes in activity patterns. 

The recorded subject receives a feedback about the neural activity associated his/her efforts 

and can thus learn to voluntarily modulate brain function (Kamiya, 1969). This has been 

shown in particular for activity in the sensorimotor cortex in alpha and beta frequencies 

(~8-30 Hz), which is suppressed by real or imagined movements (Arroyo et al., 1993, 

Pfurtscheller et al., 2006). Neurofeedback training of a suppression of this rhythm is used 

with some success for motor rehabilitation (Buch et al., 2008, Ramos-Murguialday et al., 

2013). Neurofeedback training of sensorimotor rhythms improves motor cortex FC as a 

marker of recovery (Várkuti et al., 2013, Sugata et al., 2014, Vukelic et al., 2015, Biasiucci 

et al., 2018). More recently, it has been shown that healthy subjects and stroke patients can 

learn to voluntarily modulate specific patterns of FC (Sacchet et al., 2012, Koush et al., 

2013, Liew et al., 2016). In particular, neurofeedback training of the node degree at the 

ipsilesional primary motor cortex was associated with improved motor performance of 

stroke patients (Mottaz et al., 2015, 2018).

Sensory stimulations in the tactile (Freyer et al., 2012) or auditory domains (Solca et al., 

2016) have been reported to modulate FC in healthy volunteers. Recent evidence suggests 

that this might also be the case in stroke patients and be associated with improved recovery 

(Lai et al., 2016, Hakon et al., 2018, Pan et al., 2018, Sharififar et al., 2018)

4.3 Modulation of contralesional influences

As discussed in the previous sections, the extent to which cM1 contributes to motor recovery 

after stroke is not known but many currently employed rTMS and tDCS protocols are 

designed with the assumption that following stroke, ipsilesional M1 is hypoactive while cM1 

is hyperactive and should be inhibited (Hummel et al., 2008, Dancause et al., 2011). 

Accordingly, low frequency rTMS (Takeuchi et al., 2005, Fregni et al., 2006, Dafotakis et 

al., 2008, Nowak et al., 2008, Takeuchi et al., 2009) or cathodal stimulation (Hesse et al., 

2007, Nair et al., 2011, Fusco et al., 2014) of cM1 has been used to inhibit its hyperactivity 

while excitatory higher frequency rTMS (Kim et al., 2006, Takeuchi et al., 2009), task- 

locked rTMS (Buetefisch et al., 2010) or anodal stimulation (Hummel et al., 2005a, Hesse et 

al., 2007, Celnik et al., 2009, Geroin et al., 2011) have been used to increase ipsilesional 

hypoactive M1.

In healthy subjects 1 Hz rTMS applied to M1 of one hemisphere results in increased 

corticomotor excitability in the opposite M1 (Plewnia et al., 2003, Schambra et al., 2003), 

and improved performance in the corresponding hand (Kobayashi et al., 2004, Buetefisch et 

al., 2011b) depending on the level of motor demand (Buetefisch et al., 2011b).

Meta- analyses on the effectiveness of rTMS or tDCS in stroke rehabilitation therapy don’t 

agree on the available evidence to either support or reject it (Adeyemo et al., 2012, Hsu et 

al., 2012, Elsner et al., 2013, Hao et al., 2013, Kang et al., 2016). Specifically, Hsu et al 

included 18 trials of rTMS treatment in motor rehabilitation of stroke and reported a 

significant effect size of 0.55 for motor outcome (95% CI, 0.37– 0.72) (Hsu et al., 2012). 

Additional subgroup analysis revealed a tendency for superior effects in patients with 

subcortical stroke using low frequency rTMS of cM1. In contrast, the review by Hao et al of 

19 randomized sham or no treatment controlled rTMS treatment trials for motor 
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rehabilitation after stoke revealed no significant effect on clinical motor outcome measures 

(Hao et al., 2013). Elsner et al. reviewed the effects of tDCS on improvement of ADL 

(Barthel index) in stroke rehabilitation treatment (Elsner et al., 2013). A total of 6 (326 

patients) randomised controlled trials were included (including the results of the first phase 

of cross- over studies) for analysis of this main outcome measure. They report no significant 

effect immediately after therapy and a modest effect at follow up (median difference in the 

Barthel Index of 11.13 points (95% CI 2.89 -19.37). In the most recent meta- analysis of 17 

tDCS trials in motor rehabilitation after stroke a positive effect of tDCS on retention of 

motor training related improvements were reported (Kang et al., 2016). While the results 

seem encouraging, the lack of specificity for the timing of the tDCS treatment in relation to 

the motor training or the montage of the stimulating electrodes are disturbing.

NIBS has also been used to inhibit the contralesional hemisphere to improve spatial neglect. 

Inhibitory rTMS applied over the contralesional posterior parietal cortex reliably reduced 

neglect in different studies with significant and durable improvements also in activities of 

daily living (Cazzoli et al., 2012, Koch et al., 2012, Hopfner et al., 2015). Current evidence 

therefore suggests that neglect reduction is the most promising application of contralesional 

inhibition, but large scale studies are still lacking.

A meta-analysis studying the effects of inhibitory NIBS over right-hemispheric homologous 

language areas concluded on a moderate beneficial effect on naming performance, but the 

number of treated patients is still small (Otal et al., 2015).

Additional information is necessary to understand which patients benefit from the different 

available techniques. One approach towards addressing the gap in our knowledge on the role 

of the contralesional hemisphere could consist of undertaking high quality, large multi-

center clinical trials which is the conclusion that authors of these recent meta- analysis 

arrived at. This would allow the identification of subgroups that are particular responsive to 

the treatment. However, a more mechanistic approach where an effective motor training is 

combined with rTMS and tDCS protocols that are prescribed according to their known 

effects on the stimulated neuropil and the characteristics of the patients with respect to the 

location of the lesion, time since stroke, individual functional and structural connectivity, 

and clinical deficit may provide more information towards improved understanding to 

specific effects of the prescribed intervention.

5 Conclusions

Techniques for non-invasive assessment of brain networks in stroke patients have opened 

new opportunities and perspectives for the understanding of the consequences of stroke and 

its impact on recovery. In particular, they have enabled a systems neuroscience approach 

revealing the global repercussions of stroke and recovery on brain networks. Yet, they 

require specific care to avoid confounds. The consequences of the new network perspective 

start to become visible in interventional strategies and clinical care. New treatments have 

emerged, such as non-invasive brain stimulation or neurofeedback, which directly target 

network consequences of stroke. Pioneering studies with these new approaches have had 

moderate success. More recent developments of network imaging allow investigating the 
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neural origins of variability in response to treatment and to provide models for selecting 

optimal treatment strategies for individual patients based not only on their clinical 

evaluation, but also on their individual network state. For instance, in the case of non-

invasive brain stimulation, this leads to new clinical trials, in which the stimulation effect is 

tested in specific subgroups of patients. Stratification of patients can be based on network 

parameters such as structural lesion load to specific tracts, structural connectivity and 

dysconnectivty, or network states of functional neural interactions, e.g. intrahemispheric or 

interhemispheric.
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Highlights

• Assessment of network consequences of stroke opens new perspectives, but 

beware of pitfalls.

• Insights into network plasticity after stroke have suggested novel targets for 

therapy.

• Network-states may help identify individualized treatment approaches for 

patients.
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Figure 1. Schematic representation of different synchronization types.
Modified after (Guggisberg et al., 2015), with permission.
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Figure 2. Ipsilesional M1 excitability measured with TMS.
A) The stimulus response curve (SRC) evoked by transcranial magnetic stimulation of 

increasing intensities (35% to 80% of maximum stimulator output) were plotted for a single 

stroke patient. B, C, D). A three-parameter Boltzmann function was fitted to all SRCs that 

reached a plateau using the Levenberg-Marquard least-squares algorithm (insert) to extract 

three curve parameters: MEPmax (plateau of SRC), S50 (TMS intensity needed to elicit an 

MEP of an amplitude corresponding to the inflection point) and M (slope) parameter. The 

data are plotted for 15 stroke patients with cortical or subcortical location of a stroke 

affecting their M1 output system and 11 right handed age- matched healthy subjects. The 

number of subjects for each parameter is indicated in the figure. MEPmax was statistically 

significant lower in stroke subjects than in healthy subjects (p=0.02). There was no 

statistically significant difference in M-parameter and S50 between stroke and healthy 

subjects. This approach povides a more detailed analysis of M1 excitability. When measured 

at a constant level of motor activity (here, at rest), the three SRC curve parameters (S50, M-

parameter, and MEPmax) completely characterize the input-output relationship of the M1 

corticospinal output(Devanne et al., 1997). Therefore, a change in one or more parameters 

indicates a change in the input-output relationship in iM1 and its corticospinal output. The 

abnormally low MEPmax found here suggests that CST output from iM1 was reduced after 

stroke (Buetefisch et al., 2018).
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Figure 3. 
Effect of stroke location along the primary motor output (either cortical or subcortical) on 

primary motor cortex excitability. Paired pulse TMS was used to measure short interval 

cortical inhibition (SICI) in 23 chronic stroke patients. The data was compared to 20 healthy 

age matched controls. Upper panel: CONTROL (square) and contra-lesional M1 of patients 

with cortical (open triangle, A) and subcortical location of infarction (open inverted triangle, 

B). Lower panel: CONTROL (squares) and ipsilesional M1 of patients with cortical (black 

triangle, C) and subcortical location of infarction (black inverted triangle, D). Mean ± SE. * 

p< .05, ** p< .02, *** p< .01. Inserts illustrate the location of the lesion (black dot) and the 

site of TMS (inverted T). CS= intensity of conditioning stimulus, MT = motor threshold. 

(Butefisch et al., 2008).
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Figure 4. Disruptions of network interactions after stroke are associated with neurological 
deficits.
The affected hemisphere of stroke patients shows a global reduction of alpha-band 

coherence with all other brain regions (a). This disconnection concerns brain areas that are 

clinically dysfunctional. For instance, a patient with Broca aphasia shows reduced global 

alpha coherence in left front-temporal areas (b, blue color; stroke lesion is marked in dark 

gray), a patient with motor deficits in precentral areas (c). Local decreases in alpha-band 

coherence between a given brain area and the rest of the brain are linearly correlated with 

neurological deficits. In other words, the less a brain region remains coherent with the rest of 

the brain after a lesion, the worse patients perform in corresponding motor and cognitive 

functions (d-g). Modified after (Dubovik et al., 2012) with permission.
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Figure 5. Network plasticity after stroke.
Perilesional areas can show enhanced beta-band coherence with the rest of the brain during 

the first weeks after stroke. An example is shown in yellow-red in (a), the lesion is marked in 

dark grey. Enhancement of coherence between ipsilesional M1 and the rest of the brain was 

associated with better motor improvement in the subsequent months (b). Coherence between 

Broca’s area and the rest of the brain was associated with language improvement (c). 

Modified after (Nicolo et al., 2015b) with permission.
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