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Abstract
Hepatic encephalopathy (HE) is a common and serious neuropsychiatric
complication of cirrhosis, acute liver failure, and porto-systemic shunting. HE
largely contributes to the morbidity of patients with liver disease, severely
affecting the quality of life of both patients and their relatives and being
associated with poor prognosis. Its presentation is largely variable, manifesting
with a broad spectrum of cognitive abnormalities ranging from subtle cognitive
impairment to coma. The pathogenesis of HE is complex and has historically
been linked with hyperammonemia. However, in the last years, it has become
evident that the interplay of multiple actors, such as intestinal dysbiosis, gut
hyperpermeability, and neuroinflammation, is of crucial importance in its
genesis. Therefore, HE can be considered a result of a dysregulated gut-liver-
brain axis function, where cognitive impairment can be reversed or prevented by
the beneficial effects induced by “gut-centric” therapies, such as non-absorbable
disaccharides, non-absorbable antibiotics, probiotics, prebiotics, and fecal
microbiota transplantation. In this context dietary modifications, by modulating
the intestinal milieu, can also provide significant benefit to cirrhotic patients with
HE. This review will provide a comprehensive insight into the mechanisms
responsible for gut-liver-brain axis dysregulation leading to HE in cirrhosis.
Furthermore, it will explore the currently available therapies and the most
promising future treatments for the management of patients with HE, with a
special focus on the dietary approach.
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Core tip: Hepatic encephalopathy (HE) is a serious complication of cirrhosis resulting
from a multifactorial impairment of gut-liver-brain axis functioning. Multiple
interrelated factors (e.g., intestinal hyperpermeability, dysbiosis, hyperammonemia,
inflammation) cooperate in its development. “Gut-centric” therapies, including non-
absorbable disaccharides, antibiotics, prebiotics, probiotics, and fecal microbiota
transplantation have been successfully employed to manage HE: pertinent current
knowledge will be reviewed. Furthermore, the utility of dietary modifications in this
context is increasingly recognized, thus opening a new promising research path. This
review sheds light on dietary therapeutic strategies for HE, exploring how they can target
the mechanisms underlying gut-liver-brain axis dysregulation.

Citation: Campion D, Giovo I, Ponzo P, Saracco GM, Balzola F, Alessandria C. Dietary
approach and gut microbiota modulation for chronic hepatic encephalopathy in cirrhosis.
World J Hepatol 2019; 11(6): 489-512
URL: https://www.wjgnet.com/1948-5182/full/v11/i6/489.htm
DOI: https://dx.doi.org/10.4254/wjh.v11.i6.489

INTRODUCTION
Hepatic encephalopathy (HE) is one of the most debilitating complications of liver
cirrhosis and represents a relevant cause of hospitalization[1]; it is associated with both
direct and indirect costs to health services. HE is a predictor of poor prognosis and
severely affects patients’ quality of life, often entailing a heavy burden for relatives
and caregivers[2]. HE consists of a brain dysfunction caused by liver insufficiency and
porto-systemic shunting,  and it  manifests  as a wide spectrum of neurological  or
psychiatric abnormalities, ranging from subclinical alterations to coma[3].

Based  on  the  variable  severity  of  its  manifestations,  HE  has  been  arbitrarily
classified in five stages, from minimal HE (MHE) to grade IV according to the West-
Haven criteria[3]. These stages can be further divided into two categories: overt HE
(OHE),  including grades  II-IV,  in  which diagnosis  can be  established through a
physical  examination  detecting  evident  neurologic  and  neuropsychiatric
abnormalities, and covert HE (CHE), including MHE (no clinical evidence of mental
dysfunction  but  presence  of  abnormalities  in  psychometric  tests)  and  grade  I
according  to  West-Haven  criteria  (i.e.,  a  trivial  lack  of  awareness,  a  discreet
psychomotor retardation, or a subtle lack of attention)[4,5]. As per International Society
for HE and Nitrogen Metabolism consensus, the presence of disorientation in time or
asterixis identifies the onset of OHE[4,6].

Although the variety of clinical presentations and the difficulty in detecting MHE
make it hard to quantify the exact prevalence of HE, it is estimated that approximately
30%-40% of patients with cirrhosis will develop OHE during their disease course[7,8],
whereas  MHE or  CHE occur  in  20%-80% of  patients[9].  Subjects  with  a  previous
episode of OHE have a 40% cumulative risk of recurrence at 1 year, and subjects with
recurrent OHE have a 40% cumulative risk of another episode within 6 months[1,10].

Although the pathogenesis of  this condition has not been fully elucidated yet,
progress in research has led to the identification of several potential determinants of
HE, among which intestinal dysbiosis, gut permeability alterations, inflammation,
and oxidative stress seem to play a key role[11]. In particular, HE can be regarded as a
model for impaired gut-liver-brain axis functioning: specific microbiota changes in the
gut  of  cirrhotic  patients,  along  with  altered  intestinal  permeability,  have  been
associated  with  endotoxemia  and  bacterial  translocation,  leading  to  increased
inflammatory response both at a systemic level and in the central nervous system
(CNS),  which  finally  induces  impaired  cognition  and  favors  the  onset  of  HE.
Although the mechanisms underlying this gut-brain interplay are far from being fully
clarified,  the  importance  of  the  gut  in  HE  pathogenesis  is  corroborated  by  the
beneficial  effects  that  gut-centric  therapies  such  as  lactulose  and  lactitol,  non-
absorbable antibiotics such as rifaximin and neomycin, probiotics, and prebiotics exert
on patients’ cognitive function[12].

In this context, available data suggest that dietary modifications too might exert
relevant conditioning on several factors involved in the gut-liver-brain axis, including
gut microbiota, intestinal permeability, and inflammation.

This review will give insight into the mechanisms responsible for gut-liver-brain
axis  dysregulation  that  leads  to  HE  development  in  the  context  of  cirrhosis.
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Furthermore, we will explore how the different therapeutic approaches investigated
so far are supposed to act in this complex network. A special focus will be given to
dietary interventions.

PATHOGENESIS
The pathogenesis of HE is a complex entity in which multiple factors cooperate in
determining the functional impairment of neuronal cells[13], as illustrated in Figure 1.

In patients with liver cirrhosis, it is believed that high levels of gut-derived toxins
and endogenous neurotoxic  substances  escape from liver  catabolism,  due to  the
impaired detoxifying function of the cirrhotic liver and to the presence of porto-
systemic shunts, and that these toxins reach the brain through the blood-brain barrier
(BBB). In this context, a number of different factors, including gut dysbiosis and small
intestine bacterial  overgrowth, leaky intestinal barrier,  cirrhosis-related systemic
inflammation and neuroinflammation, oxidative stress, nitrogen metabolism, changes
in neurotransmission, gamma-amino butyric acid (GABA)ergic or benzodiazepine
pathway abnormalities,  as  well  as  BBB disturbances,  appear to contribute to the
development of HE[14-16].

Ammonia and other neurotoxic compounds
Increased blood ammonia is a cornerstone in HE development[17-19]. Ammonia, a by-
product of nitrogen metabolism, is derived from gut and kidneys[20]. In the gut, both
the small intestine and colon are sources of great amounts of ammonia as a product of
the enzyme glutaminase and a large number of urease-producing bacteria.

Ammonia-rich blood normally reaches the liver through the portal vein, where it is
detoxified through the urea cycle[21,22]. In patients with portosystemic shunts or liver
failure, gut-derived blood bypasses the liver, and the liver itself has impaired capacity
for detoxification. As a consequence, nitrogenous waste products accumulate in the
systemic circulation. Excess ammonia crosses the BBB and is subsequently absorbed
and used by astrocytes to synthesize glutamine; intracellular accumulation of excess
glutamine causes  osmotic  and oxidative  stress,  mitochondrial  dysfunction,  and,
finally,  astrocyte  swelling.  This  can  lead  to  cerebral  edema  (with  the  extreme
consequences of increased intracranial pressure and brain herniation often seen in
acute liver failure) as well as to increased GABAergic activity[21,23].

Apart  from the  gut,  also  kidneys,  urinary  tract,  and  muscles  are  involved  in
nitrogen metabolism and contribute in determining ammonia circulating levels. In
this  setting,  muscle  tissue  is  of  particular  interest  because:  1-  sarcopenia  is  a
recognized  risk  factor  for  HE,  due  to  the  reduced  utilization  of  ammonia  for
glutamine  synthesis  in  the  context  of  muscular  tissue  deficiency[24-27];  2-  protein
catabolism,  which  is  enhanced  in  fasting  conditions,  can  contribute  to  hyper-
ammonemia through the release of nitrogen compounds.

Nowadays, the relevance of ammonia per se in the pathogenesis of HE has been
partially questioned, in light of evidence that ammonia levels in chronic liver failure
do not reliably correlate with HE severity[28-30] and the identification of the synergistic
role  of  inflammatory  mediators  and  a  number  of  other  potentially  neurotoxic
compounds, including mercaptans, benzodiazepine-like substances, and indole, a
tryptophan  derivative  that  is  produced  by  gut  microbes  and  transformed  into
oxindole in the brain, where it displays sedative properties[31-34].

Inflammation
Inflammation has been suggested to play a synergistic role in HE pathophysiology,
increasing the effect of ammonia and thus partially explaining the weak correlation
between ammonia circulating levels and HE severity. Inflammation is both systemic
and  localized  to  the  CNS[35-37].  At  a  local  level,  proinflammatory  cytokines  are
produced  by  the  brain  in  the  presence  of  ammonia,  giving  rise  to  neuroinfla-
mmation[21,38].

Decompensated cirrhosis is characterized by a chronic systemic inflammatory state
that concurs to the maintenance of characteristic clinical features such as generalized
vasodilation and hyperdynamic circulation[21,39]. The genesis of systemic inflammation
in cirrhosis is multifactorial: an impaired intestinal permeability caused by portal
hypertension allows pathological bacterial translocation from the intestinal lumen to
the splanchnic and systemic circulation. Translocated bacteria and bacterial products
(pathogen-associated molecular patterns) stimulate the immune response, leading to
the release of inflammatory cytokines, causing in turn oxidative stress[40,41].

Systemic  inflammatory  response  syndrome and  sepsis  are  recognized  as  key
players in precipitating and exacerbating HE, possibly by rendering the brain more
susceptible  to  concurrent  hyperammonemia[23].  HE patients  show high levels  of

WJH https://www.wjgnet.com June 27, 2019 Volume 11 Issue 6

Campion D et al. Dietary modulation for chronic hepatic encephalopathy

491



Figure 1

Figure 1  Multifactorial pathogenesis of hepatic encephalopathy. The figure summarizes the pathogenetic mechanisms at all levels of the gut-liver-brain axis
underlying the development of hepatic encephalopathy. In this context, the interplay between systemic inflammation and hyperammonemia plays a central role (see
text for details). CNS: Central nervous system; GABA: Gamma-aminobutyric acid; GI: Gastrointestinal; IL: Interleukin; NH4: Ammonia; NO: Nitric oxide; PAMPs:
Pathogen associated molecular patterns; ROS: Reactive oxygen species; SIBO: Small intestine bacterial overgrowth; SIRS: Systemic inflammatory response
syndrome; TNF-α: Tumor necrosis factor-alpha.

inflammatory cytokines, such as interleukin (IL)-6, IL-18, and tumor necrosis factor
alpha (TNF-α).

Tranah et al[38] reported that the presence and severity of HE are not associated with
ammonia concentration alone but with serum levels of inflammatory cytokines such
as TNF-α and IL-6. In another study, induced hyperammonemia in cirrhotic patients
resulted in worse neuropsychiatric test scores only when inflammation was present[42].

It  is  now  widely  accepted  that  sepsis  can  trigger  HE  in  cirrhotic  patients  by
releasing  proinflammatory  mediators  in  the  context  of  altered  nitrogen  meta-
bolism[43,44], thus indicating that systemic inflammation is a critical determinant of the
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presence and severity of HE in chronic liver failure[23,45].
Moreover, patients with acute and chronic liver failure are functionally immuno-

suppressed and prone to infections, which are well-known precipitants of HE. The
innate  immune  response,  comprising  phagocytic  cells  such  as  monocytes  and
neutrophils,  was  impaired  both  in  acute  liver  failure  and  cirrhosis  in  different
preclinical studies and animal models[43,46,47]. Hyperammonemia itself appears to have
a role in worsening immune function. Ammonia-fed rats and cirrhotic patients given
amino  acid  drinks  to  induce  hyperammonemia  develop  impaired  neutrophil
phagocytic  activity  with  neutrophils  spontaneously  producing  reactive  oxygen
species[48].

Hence,  on  the  one  hand the  aberrant  activation  of  neutrophils  contributes  to
systemic inflammation and bystander damage to host organs, whereas on the other
hand their impaired microbicidal capacity predisposes to infections with further
worsening of the inflammatory milieu and induction of clinical decompensation of
cirrhosis[23,47].

Systemic  inflammation  can  also  affect  neuroinflammation:  proinflammatory
cytokines are transported across the BBB from the systemic circulation. However,
there is good evidence that inflammatory mediators can also be produced by the brain
itself[21].

Microglial cells, which are essentially CNS resident macrophages, can be activated
by systemic inflammation and in turn release proinflammatory cytokines. Chronic
hyperammonemia is sufficient to induce microglial activation[49], and this activation
results in brain-derived proinflammatory cytokines[50], in particular TNF-α, IL-6, and
IL-1β[51]. This inflammatory state leads to neuronal death in vitro and in vivo[52]. In this
context, the extent of microglial activation was found to be predictive of the level of
HE as well as of the presence of cerebral edema in acute liver failure[53].

Furthermore,  BBB  contains  endothelial  cells  that  can  induce  the  release  of
proinflammatory mediators when stimulated by systemic inflammation: endothelial
cells are provided with TNF-α and IL-1β receptors that convey signals able to induce
the  synthesis  of  secondary  messengers  in  the  brain,  such  as  nitric  oxide  and
prostanoids[54,55].

Leaky gut and bacterial translocation
The intestinal barrier is a functional unit composed of the intestinal epithelial cells, the
immune effectors (immune cells and immunoglobulins), the mucus layer, and the
intercellular  junctions (tight  junctions and gap junctions),  which allow selective
passage of substances through the paracellular pathway[56]. The paracellular transport
regulated by the tight junctions is a dynamic system that can be modulated by several
factors, such as neurotransmitters, cytokines, food components, and other signaling
molecules such as zonulin, a protein synthesized in the intestinal and liver cells that
reversibly increases intestinal permeability[57-59].

Patients  with  liver  cirrhosis  exhibit  structural  and  functional  changes  in  the
intestinal barrier, the so-called “leaky gut”[60-62], which can lead to increased intestinal
permeability to bacteria and their products[63,64].  The impaired expression of tight
junction proteins, a common finding in patients with cirrhosis[65,66], is one of the main
mechanisms underlying the disruption of the intestinal barrier[67].

Tight junctions are composed by different families of transmembrane proteins,
among which occludins, claudins, and junctional adhesion molecules are the most
important.  The intracellular domains of  these proteins interact  with cytoplasmic
proteins called “zonula occludens”, which allow the anchorage of the protein complex
to the cytoskeleton[68].

The increased levels of proinflammatory cytokines, particularly TNF-α, as well as
other  inflammatory  mediators  were  found  to  be  responsible  for  the  decreased
expression  of  occludin  and  claudin-1  in  the  intestinal  epithelium  of  cirrhotic
patients[69-71].  This  downregulation  was  more  significant  in  the  phase  of  decom-
pensated cirrhosis (Child-Pugh classes B and C)[72-75].

Furthermore,  several  other  factors  cooperate  in  affecting  the  integrity  of  the
intestinal barrier, such as portal hypertension (by slowing down mucosal blood flow
with consequent vascular congestion), gut dysbiosis, short-chain fatty acids (SCFAs),
oxidative stress, endotoxemia, and alcohol consumption[76,77], as illustrated in Figure 2.

A recent interesting study conducted by Muñoz et al[78] in rat models of cirrhosis
demonstrated that the presence of ascites (identifying a phase of decompensated
disease)  correlates  with  significant  damage of  the  tight  and adherens  junctions,
increased intestinal permeability, and enhanced bacterial translocation, which can be
normalized  by  antibiotics  administration.  This  reinforced  the  hypothesis  that
coexistent dysbiosis and immune dysregulation play a pivotal role in disrupting the
intestinal  barrier.  Hence,  the  homeostasis  of  the  intestinal  barrier  is  likely  to  be
modulated by a dynamic symbiotic relationship between the gut microbiome and the
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Figure 2

Figure 2  Leaky gut in liver cirrhosis. Multiple factors are involved in the increase of intestinal permeability found in
cirrhotic patients. SCFA: Short-chain fatty acids.

immune system[78]. Due to increased gut permeability, bacteria can pass the intestinal
barrier and migrate to mesenteric lymph nodes and other organs, a process known as
bacterial  translocation[79].  This phenomenon is responsible for increased levels of
circulating bacterial  products  and endotoxins,  which directly  correlate  with  the
severity  of  liver  disease  and  lead  to  the  development  of  several  complications,
especially infections and HE[80,81] .

GUT MICROBIOTA
The human gut contains 1014 bacteria, more than ten times the number of somatic cells
in the human body[82]. Microorganisms start colonizing the gut after birth, and their
density and types vary among different parts of the intestines, among individuals,
and  in  the  same  individual  during  periods  of  illness  and  following  dietary
changes [83-85].  In  the  healthy  individual,  the  host/microbiota  relationship  is
characterized  by  a  homeostatic  symbiosis:  the  host  provides  nutrients,  and  the
microbiota  influences  the  correct  epithelial  function  and  nutrient  absorption.
Normally, anaerobes are more represented than aerobes, and the majority of species
belong to the genera Bacteroidetes and Firmicutes[86].

The liver receives blood supply from the intestine through the portal circulation
and is  therefore  exposed to  gut-derived toxins,  including bacteria  and bacterial
products, which are normally eliminated by the inflammatory response orchestrated
by a large number of resident macrophages, dendritic cells, lymphocytes, and natural
killer cells[87,88].

In cirrhotic patients with impaired immune response and altered intestinal barrier,
it  is  clear  how  gut  microflora  can  play  a  major  role  in  triggering  systemic
inflammation, even in the absence of overt infection[15,89]. Furthermore, the increase of
translocated  bacterial  products  is  believed  to  be  responsible  for  the  cognitive
impairment found in HE[90].

A  growing  number  of  studies  is  trying  to  identify  the  existence  of  specific
“microbiome  signatures”  related  to  cirrhosis  and  its  complications,  but  the
heterogeneity in study designs, investigated populations, bacterial taxonomic levels
considered, origin of the microbiome samples (fecal microbiota or mucosa samples),
the different methodologies used, along with the lack of standardization, make it
difficult to obtain clear-cut results. Yet, some common findings in the gut microbiota
of patients with cirrhosis can be highlighted, consisting in a higher proportion of
Enterobacteriaceae, Alcaligenaceae, Streptococcaceae, Veillonellaceae, and Fusobacteriaceae,
along  with  a  reduction  of  Bacteroidetes,  Ruminococcaceae,  and  Lachnospiraceae  in
comparison with healthy controls[91-93].

Of note, Ruminococcaceae  and Lachnospiraceae  are butyrate-producing bacteria[77].
Butyrate is a SCFA used as a source of energy by enterocytes and able to influence the
intestinal  barrier  function through the stimulation of  tight  junctions and mucus
production. SCFAs play a role in increasing anti-bacterial peptides and reducing
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colonic inflammation; therefore, their reduction may have a detrimental role in the
whole setting of systemic inflammation[94,95].

As  a  result  of  these  findings,  further  studies  were  designed  to  search  for
associations  between  gut  flora  alterations  and  development  of  HE  or  other
complications of cirrhosis and to evaluate how gut-centric therapies may help treat
them.  Hence,  specific  changes  in  the  gut  microbiome have been correlated with
cognitive function and systemic inflammation.

In patients with HE, a higher proportion of Veillonellaceae was linked to increased
circulating inflammatory cytokines (IL-6, TNF-α, IL-2, and IL-13) and poor cognition
when compared to cirrhotic patients without HE[95].

Alcaligenaceae abundance was associated with poor cognitive performance[12]. These
organisms are Proteobacteria responsible for opportunistic infections that degrade
urea to produce ammonia, thus explaining their association with loss of cognitive
functions.

In another study by Bajaj et al[96], microbiome testing was performed on stool and
sigmoid mucosa tissue of cirrhotic patients with concurrent HE, cirrhotic patients
with  normal  cognitive  function,  and  healthy  controls.  Blautia,  Fecalibacterium,
Roseburia,  and  Dorea  were  associated  with  good  cognition  and  decreased  in-
flammation  in  both  HE/non-HE,  whereas  genera  overrepresented  in  HE
(Enterococcus,  Megasphaera,  and Burkholderia)  were  linked to  poor  cognition  and
inflammation.

Zhang et al[97] found an overrepresentation of Streptococcaceae and Veillonellaceae in
stools of cirrhotic patients with and without HE compared with normal individuals.
In addition,  the abundance of  Streptococcus  salivarius  was significantly higher in
cirrhotic patients with HE than in those without, and increased levels of this bacteria
were correlated with ammonia accumulation in patients with HE.

A recent study by Ahluwalia et al[98] aimed to evaluate the contribution of specific
gut bacteria to neuronal changes in cirrhotic patients with HE. Cirrhotic patients
without  HE,  cirrhotic  patients  with  HE,  and  healthy  controls  underwent  stool
microbiota analysis,  systemic inflammatory assessment,  and magnetic resonance
imaging  analysis.  Cirrhotic  patients  with  HE  had  a  higher  abundance  of
Staphylococcaceae, Enterococcaceae, Porphyromonadaceae, and Lactobacillaceae compared to
controls  and cirrhotics  without  HE.  These  microbial  populations  were linked to
increased  endotoxin  and  ammonia  production  as  well  as  with  worse  cognitive
performance.  Specific  microbial  families  such  as  Enterobacteriaceae  positively
correlated with hyperammonemia-associated astrocytic changes diagnosed through
magnetic resonance imaging spectroscopy. Porphyromonadaceae only correlated with
neuronal changes without linkages with ammonia levels.

Other regions of the gastrointestinal tract have been associated with dysbiosis in
cirrhotic patients with HE[73]. Bajaj et al[99] studied oral and distal gut microbiota in
both patients with and without HE. Salivary microbiota in cirrhotic subjects with HE
showed  an  increased  proportion  of  Enterobacteriaceae  and  lower  amounts  of
autochthonous bacteria  and Erysipelothricaceae  compared to non-HE and healthy
controls. The alterations of oral microbiota in cirrhotic subjects were correlated with
an increased potential for endotoxins synthesis and with the existence of both a local
salivary proinflammatory milieu (expressed by higher  levels  of  IL-1β,  IL-6,  and
immunoglobulin A secretion), and a systemic inflammatory status, thus suggesting a
contribution of oral microbiota in the overall inflammation found in cirrhosis. Hence,
dysbiosis, represented by a reduction in autochthonous bacterial abundance in favor
of  other  microorganisms,  is  present  in saliva as  well  as  in the stools  of  cirrhotic
patients, and this change could reflect a globally impaired mucosal-immune function.
As a result, it has been postulated that the identification of specific stool and salivary
microbial signatures associated with better cognitive function could potentially be
used to predict the absence of MHE thus avoiding cognitive testing[100].

These findings suggest that microbiome composition is strictly correlated with
cognition and inflammation in cirrhotic patients, especially in those who develop HE.

Small intestinal bacterial overgrowth
Small  intestinal  bacterial  overgrowth  (SIBO),  a  manifestation  of  gut  microbial
dysbiosis, represents a common finding in cirrhosis, affecting up to 59% of patients
and correlating  with  the  severity  of  liver  disease[101-103].  Quantitative  cultures  of
proximal jejunal aspirate with bacterial counts ≥ 105 colony forming units per milliliter
are considered the diagnostic gold standard[104]. However, non-invasive tests such as
glucose breath test and lactulose breath test have been developed to investigate SIBO
with no need for endoscopic examination and at lower costs[105].

Gram-negative bacteria, and particularly Escherichia coli and Klebsiella pneumoniae,
are found to be overrepresented in SIBO[106,107],  and this condition favors bacterial
translocation and endotoxemia, thus representing a risk factor for the development of
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clinical decompensation events, such as spontaneous bacterial peritonitis or HE[77].
The results of a recent meta-analysis[108] showed an overall prevalence of 41% for

SIBO in cirrhosis, significantly higher than the prevalence among control subjects
(11%). The prevalence did not differ according to etiology of liver disease, but did
vary according to the diagnostic test used (lactulose vs glucose breath test vs aspirate
culture) and according to Child-Pugh class, with higher prevalence in patients with
worse  liver  function.  Cirrhotics  with  SIBO more  often  had ascites,  spontaneous
bacterial peritonitis, and MHE compared to those without SIBO [75.6% vs 33.5% for
MHE; OR 6.28 (95% confidence interval: 2.10–18.80; P = 0.001)]. Furthermore, two of
the studies included in the meta-analysis evaluated orocecal transit time, demon-
strating  a  significant  prolongation  in  cirrhotics  with  SIBO  compared  to  those
without[109,110].

Therefore, HE appears to be significantly more frequent in cirrhosis when SIBO
coexists; in this case, increased amounts of intestinal bacteria in the context of an
altered intestinal permeability and disrupted immune function can lead to increased
endotoxemia, inflammation, and hyperammonemia, finally eliciting the development
of decompensation[111,112].

Future studies are needed to clarify the causes of SIBO in cirrhosis. A cooperation
of several factors can be hypothesized, including impaired intestinal motility leading
to stasis of luminal content, local and systemic immune dysregulation leading to
reduced  secretion  of  luminal  immunoglobulins  A,  the  presence  of  gastric
hypochlorhydria (particularly in case of therapy with proton pump inhibitors), and
alterations in bile acids metabolism[113].

At present, no clear evidence is available showing that the elimination of SIBO in
cirrhosis could lead to clinical improvement of the disease course. Large, randomized
controlled trials (RCTs) exploring this issue are required.

THERAPY
As previously described, the accumulation of gut-derived toxic substances in patients
with impaired liver function induces a systemic inflammatory response as well as
detrimental effects on the CNS, ultimately leading to the development of HE.

Several conditions can precipitate acute episodes of HE, among them: constipation,
concomitant infections, gastrointestinal bleeding, administration of sedative drugs,
dehydration  following  liquid  losses  or  excess  of  diuretics,  hyponatremia,  and
alkalosis. These so-called “precipitating factors” can act at various levels of the gut-
liver-brain axis, amplifying the intestinal production of ammonia and absorption of
toxins,  boosting the inflammatory response or  enhancing the negative effects  of
hyperammonemia on the CNS. Consequently, the initial management of an acute
episode of HE should always include an exhaustive search for any precipitating factor
and its elimination or correction[3,114]. Secondly, general treatment for HE should be
initiated.

Currently, available therapies for HE primarily target the reduction of ammonia
and the modulation of gut microbiota. The efficacy of these gut-centric therapeutic
approaches further supports  the pathogenetic  relevance of  the alterations of  gut
microflora  and  intestinal  barrier.  See  Table  1  for  an  overview  on  the  available
therapeutic approaches for HE, their mechanisms of action, and the corresponding
levels of evidence.

NON-DIETARY APPROACH

Non-absorbable disaccharides
At present, non-absorbable disaccharides, such as lactulose and lactitol, represent the
first-line standard of care treatment recommended by international guidelines for use
in OHE as well as in secondary prophylaxis[3]. The main mechanisms explaining their
efficacy in the management of HE can be summarized as a cathartic effect, reducing
intestinal transit time and content of toxic compounds, together with the ability to
modulate  the  intestinal  flora,  and  finally  resulting  in  a  reduction  of  ammonia
levels[115-117].

In detail, these synthetic disaccharides pass through the intestine without being
absorbed and are partially metabolized by gut bacteria, with the production of lactic
and acetic acid. The consequent acidification of the gut content inhibits bacterial
production of  ammonia and converts  ammonia into non-absorbable ammonium,
trapping it in the intestinal lumen and preventing its passage in the blood[114-116]. Non-
absorbable disaccharides can also inhibit  glutaminase activity,  thus reducing the
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Table 1  Therapeutic strategies in hepatic encephalopathy

Therapeutic
approach Mechanism of action Gut microbiota

modulation

Level of evidence
according to
EASL/AASLD
guidelines

Non absorbable
disaccharides
(lactulose and
lactilol)

Decrease serum ammonia levels by: - Accelerating intestinal transit Yes - Treatment: GRADE
II-1, B, 1 [3]

- Reducing ammonia synthesis in the gut - Secondary
prophylaxis:
GRADE II-1, A, 1 [3]

Rifaximin Decreases serum ammonia levels and
proinflammatory cytokines release by:

- Modifying intestinal bacterial metabolism
and abundance

Yes Secondary
prophylaxis:

GRADE I, A, 1 [3]- Inhibiting bacterial translocation

Adequate protein
intake (1.2-1.5 g/kg
per day)

Decrease serum ammonia levels by: - Balancing nitrogen metabolism - Treatment:

- GRADE I, A, 1 [3]

- GRADE II-2, B, 1
[136]

- Preventing sarcopenia

Dairy proteins Decrease serum ammonia levels (process unclear) Yes Treatment:

- GRADE II-3, B, 1
[136]

Vegetable proteins Decrease serum ammonia levels by: - Increasing ammonia detoxification (urea
cycle)

Yes Treatment:

- Accelerating intestinal transit (high fiber
content)

- GRADE II-3, B, 1
[136]

Reduce circulating mercaptans and indoles

Oral branched-
chain amino acids
(BCAA)

Unclear. Postulated: - Increasing ammonia detoxification
(glutamine synthesis)

- Treatment:

- GRADE I, B, 2 [3]Decrease serum ammonia levels by:

- GRADE I-1, A, 1
[136]

Rebalance of CNS system neurotransmitters synthesis

L-ornithine-L-
aspartate (LOLA)

Decreases serum ammonia levels by: - Increasing ammonia detoxification (urea
cycle and glutamine synthesis)

- Treatment:

- GRADE I, B, 2 [3]

Zinc Decrease serum ammonia levels by: - Increasing ammonia detoxification (urea
cycle and glutamine synthesis)

- No
recommendations

Prebiotics Decrease proinflammatory cytokines
release and serum ammonia levels by:

- Reducing intestinal permeability Yes No
recommendations- Reducing luminal pH

- Reducing ammonia absorption

- Accelerating intestinal transit

Probiotics Decrease proinflammatory cytokines
release and serum ammonia levels by:

- Reducing intestinal permeability Yes No
recommendations- Reducing luminal pH

- Reducing ammonia absorption

Gluten-casein free
diet

Unclear. Postulated: - reducing absorption of gluten- and casein-derived peptides Yes No
recommendationsRebalance of CNS

dysfunction by:
- decreasing proinflammatory cytokines production

Fecal microbiota
transplantation

Rebalance of gut microbiota Yes No
recommendations

Criteria used to classify recommendations (EASL/AASLD guidelines)[3,136]: Level of evidence: I: Randomized, controlled trials, II-1 controlled trials
without randomization, II-2) cohort or case-control analytical studies, II-3 multiple time series, dramatic uncontrolled experiments, III opinions of
respected authorities, descriptive epidemiology. Quality of evidence: A: High: further research is very unlikely to change our confidence in the estimated
effect; B: Moderate: further research is likely to have an important impact on our confidence in the estimated effect and may change the estimate; C: Low:
further research is likely to have an important impact on our confidence in the estimated effect and is likely to change the estimate. Any change of estimate
is uncertain. Grade of recommendation: 1: Strong: factors influencing the strength of recommendation included the quality of evidence, presumed patient-
important outcomes, and costs, 2: Weak: variability in preferences and values or more uncertainty. Recommendation is made with less certainty, higher
costs, or resource consumption. CNS: Central nervous system.

intestinal production of ammonia[118]. Besides, lactulose and lactitol act as prebiotics,
favoring the growth of beneficial saccharolytic bacteria, such as Bifidobacteria  and
Lactobacilli,  and  counteracting  the  growth  of  harmful,  ammonia-producing
bacteria[15,91,114,115,119].

Moreover, the promotion of microbial growth by non-absorbable disaccharides
prompts bacterial uptake of ammonia as a nitrogen source for protein synthesis[120].

Furthermore,  it  has  been  demonstrated  that  lactulose  reduces  bacterial  DNA
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translocation,  with  a  consequent  decrease  in  serum  ammonia  and  levels  of  in-
flammatory mediators[121].

Rifaximin
In  patients  experiencing  recurrent  bouts  of  HE  despite  administration  of  non-
absorbable disaccharides, it is recommended to implement secondary prophylaxis by
adding rifaximin[3].

Rifaximin is  a non-absorbable antibiotic that has been shown to reduce serum
ammonia  and improve  cognitive  function  in  patients  with  HE,  thus  preventing
recurrences  and  decreasing  hospitalization  rates[122,123].  Several  studies  proved
rifaximin efficacy in both prevention of recurrences and treatment of acute bouts of
HE, and its beneficial effects on neuropsychiatric and neuromotor abnormalities have
been observed[124,125]. Rifaximin is thought to act through a number of mechanisms,
including the modulation of gut microbiota, reduction of ammonia circulating levels
and bacterial translocation, and reduced release of endotoxins and proinflammatory
cytokines with consequent anti-inflammatory effects[126-128].  It  also directly affects
intestinal barrier and gut bacteria function[129-131].

The effect of rifaximin on the gut-liver-brain axis was investigated by Bajaj et al[132],
who  observed  improved  cognition  and  reduced  endotoxemia  after  8  weeks  of
rifaximin  administration  in  20  cirrhotic  patients  with  MHE.  Despite  only  slight
modifications  of  microbiota  composition  were  observed (namely  a  reduction  in
Veillonellaceae  and  an  increase  in  Eubacteriaceae),  serum  metabolomics  analysis
suggested that rifaximin significantly altered bacterial functioning. In fact, there was
an increase in serum saturated and unsaturated fatty acids, as well as other bacterial
end-products, with a potentially beneficial impact on cognitive functions. The authors
postulated that rifaximin might positively affect cognitive function mainly through a
beneficial modulation of bacterial metabolism rather than by reducing absolute or
relative bacterial abundances.

Rifaximin  efficacy  appears  to  be  further  increased  when  used  in  addition  to
lactulose: a double-blind prospective study by Sharma et al[10] revealed a significant
decrease in OHE and length of hospital stay with combination therapy compared to
lactulose alone. These data reveal how synergistic strategies may enhance treatment
efficacy.

Other non-dietary therapies
Several other non-dietary treatments have been proposed for the management of HE
in cirrhosis, many of which are still under investigation. They basically aim to lower
serum ammonia levels (ornithine phenylacetate, glycerol phenylbutyrate, AST-120,
polyethylene glycol)  and to scavenge inflammatory and reactive oxygen species
(albumin administration and dialysis)[133,134]. At present, the evidence of their efficacy
in patients with HE is scarce or limited, and they cannot be recommended in this
setting. As modulation of intestinal microbiota or dietary interventions is not the
target of these therapies, their literature analysis is beyond the scope of this review.

DIETARY APPROACH
Therapeutic  strategies  used  in  the  management  of  HE  aimed  to  treat  its  main
pathogenetic factors: increased ammonia levels, inflammation, and alterations of gut
microbiota.  Along  with  pharmaceutical  products,  diet  plays  a  role  of  primary
importance in addressing this condition. As illustrated in Figure 3, changes in food
habits  may  modulate  nitrogen  metabolism  and  exert  beneficial  effects  on  gut
microbiota,  thus interrupting the chain of events that leads to inflammation and
development of cognitive impairment[135]. Different nutritional strategies have been
proposed in order to correctly manage HE, including modulation of protein intake
(regarding both avoidance of protein restriction and selection of specific  protein
sources), increased fiber intake, and use of foods with prebiotic and probiotic effects.

Current evidence strongly suggests that specific dietary approaches can largely
contribute to the treatment and prevention of HE, and several recommendations
regarding dietary changes have already been included in the main clinical guidelines.

The European Association for  the  Study of  the  Liver  (EASL)  Clinical  Practice
Guidelines on nutrition in chronic liver disease[136], the American Association for the
Study of Liver Diseases (AASLD) and EASL Practice Guidelines for HE[3], and the
ESPEN Guidelines on nutrition in liver disease[137] recommend daily energy intakes of
35-40 kcal/kg and that high-calorie diets should be implemented in cirrhotic patients
in conditions of increased energy expenditure (e.g., in cases of acute decompensation).
Carbohydrates should make up for 40%-60% of total caloric intake, and complex
carbohydrates should be preferred. Lipids, which should account for 25%-50% of
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Figure 3

Figure 3  Potential benefits of dietary modulation in hepatic encephalopathy. AAA: Aromatic amino acids; BCAA: Branched-chain amino acids; CNS: Central
nervous system; LOLA: L-ornithine–L-aspartate; SCFA: Short-chain fatty acids.

dietary calories, are particularly useful in HE patients as they have been demonstrated
to exert beneficial effects on gut flora and on bowel transit time[138].

Proteins
Adequate nutrition is  of  utmost importance in all  cirrhotic patients,  who exhibit
protein-energy malnutrition and muscle wasting in up to 60% of cases. As muscle
tissue contributes to the removal of circulating ammonia by increasing glutamine
synthesis, sarcopenia is not only associated with worsening of clinical conditions and
increased mortality in cirrhotic patients[139] but also represents an independent risk
factor for HE[25,140,141].  Adequate protein intake is therefore extremely important in
cirrhotic  patients  with  HE[142],  both  in  terms  of  timing  and  quality  of  nutrient
ingestion.

Firstly, it is mandatory to define a pattern of dietary intake in order to grant a
correct substrate utilization; this is a very relevant issue, as catabolism of amino acids
for glucose production depletes tissues of proteins and increases ammonia levels[143].
Cirrhotic patients should have frequent meals during the day, avoiding fasting for
longer than 3-6 h. It has been demonstrated that a late-evening snack, containing
approximately 50 g of carbohydrates, has a beneficial effect on substrate utilization
and  nitrogen  production [ 1 4 4 ] ,  therefore  preventing  HE  and  reducing  HE
severity[2,145,146,147]. It is recommended that breakfast and late-evening snack also include
some proteins in order to fulfill energy and protein requirements[136].

As dysregulated nitrogen metabolism plays a key role in the development of HE,
protein intake requirement in patients with HE has been widely investigated. Early
evidence suggested that episodes of HE could be controlled by reducing protein
intake[148,149], but these observations have been largely debunked by several subsequent
studies.

In 1995, a study by Morgan et al[150] questioned for the first time the real usefulness
of protein restriction in HE, demonstrating that patients with alcoholic  hepatitis
whose diet provided a higher protein intake experienced an improvement in mental
status, suggesting that the lack of an adequate protein intake could favor HE. A study
found that restriction of protein intake has no beneficial effect on the evolution of
episodic  HE  and  that  it  can  worsen  the  nutritional  status  of  these  patients  by
exacerbating protein breakdown from muscles[151]. Furthermore, they showed that
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patients with HE could safely follow a normal protein diet.
Additional  studies confirmed that  normal protein intake is  well  tolerated and

useful  in  HE to  ensure  sufficient  substrate  for  energy synthesis  and hepatocyte
function[152,153].  Hence, avoidance of protein restriction in patients with HE is now
strongly  recommended.  The  International  Society  for  HE  and  Nitrogen  Meta-
bolism[145],  the  EASL  Clinical  Practice  Guidelines  on  nutrition  in  chronic  liver
disease[136],  the  AASLD and EASL Practice  Guidelines  for  HE[3],  and  the  ESPEN
Guidelines on nutrition in liver disease[137] recommend for patients with HE a daily
protein intake of 1.2-1.5 g/kg per day.

The amount of protein is not the only important factor to take into consideration; in
cirrhosis,  tolerance to dietary proteins (in terms of  the development of  HE after
protein ingestion) seems to vary among different protein sources; dairy and vegetable
proteins have been suggested to be better tolerated than animal proteins.

The evidence regarding dairy proteins is limited. An old study by Fenton et al[154]

described a consistent reduction of plasma ammonia in three patients when meat was
replaced by dairy protein and hypothesized that this improvement might be due to
gut flora modifications. Bessman et al[155] administered intragastrically blood and milk-
protein preparations to patients with liver disease, observing significantly higher
elevations of circulating ammonia after administration of blood rather than after milk-
protein preparations. More recently, a 14 day high-protein casein-vegetable diet was
shown to improve cognitive performance and lower serum ammonia levels in 150
patients with OHE, thus confirming the irrationality of dietary protein restriction and
the usefulness of a casein-vegetable based diet[152].

The  beneficial  effects  of  vegetable  proteins  have  been  widely  studied  among
cirrhotic patients. Bianchi et al[156] tested the effect of a vegetable versus animal protein
diet  on  nitrogen  metabolism  and  cognitive  function  in  cirrhotic  patients  with
persistent HE, and the results showed that ammonia levels, as well as clinical severity
of  HE,  significantly  improved during  vegetable  protein  diet.  Uribe  et  al[157]  also
demonstrated improved mental state and encephalogram results in patients with HE
undergoing vegetable protein diet compared to those on animal protein diet. Finally,
Maharshi et al[158], in a recent RCT, showed that 6 months of 1-1.5 g/d of vegetable
protein was effective in treating MHE, preventing OHE episodes, and improving
patients’ quality of life.

Multiple reasons may explain the superiority of vegetable proteins: they contain
lower quantities of methionine and cysteine compared to animal proteins.  These
amino acids are precursors of mercaptans and indoles, which, as mentioned before,
have been implicated in HE development[159]. On the other hand, vegetable-derived
proteins contain high ornithine and arginine levels, which are implicated in ammonia
detoxification through the urea cycle[160]. Another advantage of vegetable proteins is
their high fiber content[145], which favors intestinal transit and consequently a more
efficient ammonia excretion. Moreover, fiber digestion operated by intestinal bacteria
produces the SCFAs acetic, propionic, and butyric acid, therefore reducing colonic
pH, which improves ammonia excretion[161,162]. This may result in favorable changes in
microbiota composition, with associated enhanced anti-inflammatory and antioxidant
properties[163,164]. Although additional benefits of vegetable protein diets on intestinal
microbiota in HE patients have been hypothesized, to our knowledge no studies
exploring the effects of this dietary approach on gut microorganisms in HE patients
have been published so far.

To summarize, although vegetable proteins may be better than animal proteins for
patients with HE and should therefore be encouraged, they can also cause bloating,
flatulence, and diarrhea, which may consequently reduce patients’ compliance to the
dietary regimen. In order to make the diet palatable and tolerable in the long run, a
strategy of protein intake from different sources (dairy, vegetable, and high-quality
animal proteins) seems the most reasonable one and should be recommended[136,165,166].

Branched-chain amino acids
Another way to prevent excessive protein catabolism and reduce ammonia levels in
HE patients is through the administration of branched-chain amino acids (BCAAs):
valine, leucine, and isoleucine.

These essential  amino acids are used by skeletal  muscles for  the amidation of
glutamine, a process that allows ammonia detoxification[167]. Due to the combination
of impaired hepatic function, portosystemic shunting, and skeletal muscle loss, with
hyperinsulinemia and hyperglucagonemia,  BCAA levels in cirrhotic patients are
usually reduced[145,168,169], whereas a concomitant rise in the levels of aromatic amino
acids (AAA: phenylalanine, tyrosine, and tryptophan) has been observed[170-172].

Decreased  breakdown  of  AAA  due  to  impaired  liver  function  and  increased
utilization of BCAAs in the muscle are thought to be the main causes for the observed
decrease in the BCAA/AAA ratio, also called the Fischer-ratio[145,167,173]. The consequent
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increase of AAA influx in the CNS has been postulated to be responsible for im-
balances in neurotransmitter synthesis, contributing to HE[168-170,174].

Oral  supplementation of BCAAs in HE patients could therefore improve their
clinical  condition  through  the  facilitation  of  ammonia  detoxification,  and  their
possible use in these patients has been widely studied[168].

There is accumulating evidence showing that long-term oral supplementation of
BCAAs may confer nutritional benefits and improve survival in HE patients, probably
due in part to the effect of leucine, which stimulates hepatic regeneration[175]  and
muscle protein synthesis[176]. Furthermore, BCAAs promote correction of plasmatic
amino acid imbalance and counteract the harmful brain influx of AAA across the
impaired BBB[145,177].

A  meta-analysis [178]  performed  on  nine  RCTs  demonstrated  a  significant
improvement in the grade of HE with the administration of oral BCAAs compared to
other nutritional supplements, but no difference was found in terms of resolution of
HE.  Another  recent  Cochrane  meta-analysis  on  16  RCTs  indicated  that  oral
administration of BCAAs had a beneficial impact on HE, without effect on mortality,
quality of  life,  and nutritional  status[179].  Considering prophylaxis  of  HE, several
studies showed that oral BCAAs do not prevent development or recurrence of HE in
cirrhotic patients[180-182].

Furthermore, it should be mentioned that many of these trials have methodology
issues that limit their value and that oral BCAAs supplements are not used in many
countries because of their cost (they are not reimbursed) and scarce palatability[137]. As
a consequence, even if the use of oral BCAAs should be considered in this clinical
setting, there is still a need for additional high-quality RCTs to confirm their efficacy
in preventing and treating HE.

L-ornithine–L-aspartate
L-ornithine–L-aspartate (LOLA) is a mixture of two endogenous amino acids with the
capacity to fix ammonia in the form of urea or glutamine. They are substrates for the
urea  cycle  and  can  also  activate  glutamine  production  by  activating  glutamine
synthetase  in  hepatocytes  and  muscle  cells.  Therefore,  LOLA  can  be  used  as  a
supplement to reduce serum ammonia levels[136,137,183].

The efficacy of LOLA in patients with HE was addressed in three recent reviews
and  meta-analyses.  The  first  one,  a  Cochrane  review[184],  suggested  a  possible
beneficial effect of LOLA on mortality and HE, without increased serious adverse
events in comparison with placebo or no intervention and a possible favorable impact
on  HE  when  compared  with  probiotics.  The  authors,  however,  considered  the
beneficial profile of LOLA uncertain, due to the low quality of the available studies.
The second study[185] showed that LOLA was significantly more effective compared to
placebo/no intervention for improvement of mental state in all types of HE and for
lowering of blood ammonia[185]. The last and very recent meta-analysis highlighted the
benefit of LOLA in a wide range of clinical presentations of HE, including OHE as
well as MHE, where the oral formulation of LOLA was particularly effective[186]. The
concomitant  reduction  of  blood  ammonia  levels  was  reported  in  all  RCTs  that
investigated this issue.  Network meta-analysis showed that LOLA appears to be
comparable (or superior) in efficacy to other ammonia-lowering agents, including
non-absorbable  disaccharides  and  probiotics.  Furthermore,  LOLA  seems  to  be
effective also for the treatment of post-transjugular intrahepatic portosystemic shunt
HE and secondary HE prophylaxis. The authors concluded supporting the use of
LOLA in the treatment of HE.

Vitamins and micronutrients
Generally, patients suffering from liver disease present vitamin deficiencies due to
altered hepatic function, reduction of reserves, as well as inadequate dietary intake or
malabsorption[187]. Deficiencies of vitamins and electrolytes can potentially cause a
variety of neuropsychiatric symptoms, hence mimicking or worsening HE.

Among vitamins potentially affecting cognitive function, cirrhotic patients often
present vitamin B deficiency, probably due to intestinal malabsorption and decreased
liver storage. Although the consequences of vitamin B deficiency in patients with
advanced liver disease are not fully understood (except vitamin B1 deficiency), it is
known that  this  group of  vitamins  is  linked  to  cognitive  function[188,189],  and  its
reduction may cause additional CNS alterations in patients with HE[190].

Patients with cirrhosis may also have reduced levels of micronutrients; among
them, zinc has been implicated in the pathogenesis of HE, as glutamine synthetase
and ornithine transcarbamylase, which are involved in ammonia detoxification, are
both  zinc-dependent.  Zinc  administration  has  been  suggested  to  improve
psychometric tests in some studies[191,192], but overall results are conflicting[193-195].

Furthermore, clinicians should always pay attention to electrolyte imbalances, as
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they can both trigger the development of HE and worsen pre-existing abnormalities
of  mental  function.  In  particular,  hyponatremia,  hypomagnesemia,  and  hy-
percalcemia, if present, should be promptly corrected in cirrhotic patients with altered
mental status, bearing in mind the importance of a slow rebalancing in sodium levels,
because of the risk of developing central pontine myelinolysis[2,136,196].

Currently, supplementation of vitamins and micronutrients is recommended by the
EASL[136] and ESPEN guidelines[137] in patients with documented deficiencies or during
the first 2 weeks of nutritional support when the deficiency is clinically suspected.

DIETARY APPROACH, INTESTINAL MICROBIOTA
MODULATION, AND GUT-LIVER AXIS
Since  the  influence  of  diet  on  gut  microbiota  composition  in  both  healthy  and
unhealthy populations has been abundantly demonstrated[197-199], and the connection
between gut, liver, and brain plays a fundamental role in the development of HE in
cirrhotic patients[21,69,82],  it  has been hypothesized that specific dietary approaches
targeting the gut-liver-brain axis may be implemented in the therapeutic management
of HE.

Prebiotics and probiotics
Prebiotics  are  food substrates  that  are  selectively  used by  host  microorganisms
causing  alterations  in  the  composition  and  activity  of  gut  microbiota  and  thus
conferring a health benefit[200]. Probiotics are live microorganisms that, when ingested
in adequate amounts, alter the microflora conferring a favorable effect on the health of
the host[201]. Synbiotics are defined as a combination of both pre- and probiotics. They
produce beneficial alterations in gut microbiota and may be, at least in theory, helpful
in  the  management  of  HE  thanks  to  their  gut-centric  action[145,202].  In  fact,  the
modulation  of  gut  microbiota  operated  through  supplementation  of  pre-  and
probiotics decreases pathogenic bacteria and reduces luminal pH, thus lowering
ammonia absorption, improving nutritional status of gut epithelium, and decreasing
intestinal permeability; all these changes reduce systemic inflammation and oxidative
stress and lower circulating ammonia levels[203-205].

Prebiotics
At present, lactulose, lactitol, fructo-oligosaccharides, and galacto-oligosaccharides
are the most commonly used prebiotics. Malaguarnera et al[206,207] demonstrated that a
combination of probiotics and fructo-oligosaccharides was effective in treating MHE,
improving neuropsychiatric function when compared both to placebo and lactulose.
Liu et al[198] showed that the administration of a synbiotic preparation composed by
probiotics and four fermentable fibers induced reversal of MHE in 50% of patients.
This  study  also  revealed  that  fermentable  fibers  alone  could  be  beneficial  in  a
substantial proportion of patients. Soluble fibers have prebiotic properties, as they are
usually a substrate for fermentation. According to these data, Sitkin et al[208] suggested
that  dietary  fibers  supplementation  modified  gut  microbiota  and  improved
psychometric tests in patients with MHE. To summarize, although treatment with
prebiotics seems to be promising in cirrhotic patients with HE, their efficacy (except
lactulose) has still to be established; and therefore, they cannot be recommended as
part of the conventional therapy.

Probiotics
In a recent meta-analysis of 21 trials with 1420 participants, Dalal et al[209] compared
the effects of probiotics vs placebo or no intervention or lactulose in MHE or OHE.
The  meta-analysis  showed  that  probiotics,  when  compared  to  placebo  or  no
intervention, probably improved recovery and may confer an advantage in terms of
the development of OHE, quality of life, and plasma ammonia concentrations, with
little or no difference on mortality. When compared to lactulose, probiotics did not
show any statistically significant advantage in terms of recovery, development of
OHE,  quality  of  life,  plasma ammonia  concentration,  or  mortality.  The  authors
highlighted that whether probiotics are better than lactulose for HE is uncertain due
to the very low quality of the available evidence, and they claimed for new high-
quality RCTs to clarify further the efficacy of probiotics on HE. Therefore, at present,
the use of probiotics cannot be routinely recommended for treating patients with HE.

Lunia et al[210] evaluated the usefulness of probiotics as primary prophylaxis for HE
in cirrhotic patients, showing that a 3 month course of probiotics reduced levels of
arterial ammonia, improved psychometric tests, and reduced the risk of developing
HE compared to placebo. Regarding the setting of secondary prophylaxis for HE, a
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clinical trial by Agrawal et al[211] compared the efficacy of probiotics and lactulose in
this field. Probiotics were revealed to be as effective as lactulose in preventing new
episodes of HE. Dhiman et al[212] further strengthened these data, demonstrating that
probiotics, compared to placebo, reduced the risk of HE-related hospitalization in
patients who recovered from a previous episode of HE. The results of these studies
are promising, but further standardized trials performed with optimal methodological
quality are needed in order to define the role of probiotics in the context of both
primary and secondary prophylaxis for HE[213,214].

Probiotic yogurt supplementation
The modulation of gut flora through dietary interventions in cirrhotic patients has
been studied by Bajaj  et  al[215],  who investigated whether the supplementation of
probiotic yogurt in cirrhotic patients could be useful in treating MHE and preventing
OHE. Cirrhotic  patients  were randomized to receive 12 oz of  yogurt  daily vs  no
treatment for 60 days.  The study demonstrated a higher rate of MHE reversal in
patients  treated  with  yogurt  as  well  as  a  better  rate  of  prevention  of  OHE  de-
velopment. A subsequent study by Liu et al[216] displayed that probiotic yogurt could
modify intestinal microflora in patients with chronic liver disease, increasing the
number of beneficial bacteria and reducing levels of Escherichia coli. This research field
seems  therefore  promising,  but  further  evidence  is  needed  to  confirm  these
preliminary results.

Gluten-casein free diet
The gut-liver-brain axis has been widely studied as a possible therapeutic target for
other conditions in which gut microbiota alterations and intestinal barrier impairment
are thought to have a pathogenetic role, such as celiac disease and autism spectrum
disorders (ASD). In these settings, altered intestinal permeability may favor leakage of
gut-derived toxic  substances,  which  in  turn  may trigger  systemic  inflammation
through  cytokine  production  and  may  reach  CNS  to  induce  neurological
damage[46,217-219]. This model recalls the mechanisms involved in HE, where gut-derived
substances also induce an inflammatory response and can cross the BBB and cause
cognitive impairment. In ASD, casein and gluten-derived peptides passing through
the altered intestinal  barrier have been suggested to play a pathogenetic  role[220],
potentially eliciting inflammatory responses both at a systemic and CNS level, where
these  peptides  are  believed  to  act  as  neuropeptides  and  alter  neurological  fun-
ctions[221].

Hence, gluten-casein free diet has been postulated to confer beneficial effects on
patients with ASD by reducing both systemic inflammation and circulating opioid
peptides levels (β-gliadomorphine and β-caseomorphine). Even if the efficacy of this
therapeutic approach remains controversial[217], there is increasing evidence that the
elimination  or  reduction  of  gluten  and  casein  from  the  diet  may  confer  some
advantages in patients with ASD, in terms of both gastrointestinal and cognitive
benefits[222,223]. Furthermore, also in contexts other than celiac disease and ASD, gluten
has been shown to impair intestinal permeability through zonulin upregulation, and a
gluten-free diet has been shown to influence positively microbiota composition[224-226].

In light of these data, on the basis of the common ground of altered gut-liver-brain
axis  and  increased  intestinal  permeability,  a  similar  dietary  approach  could  be
implemented  in  the  management  of  cirrhotic  patients  with  HE.  This  intriguing
possibility has been investigated in a pilot study performed by Balzola et al[227]. Sixteen
patients awaiting liver transplantation for end-stage cirrhosis with chronic HE were
enrolled  and  clinical,  neurological,  and  gastroenterological  evaluations  were
performed.  A normoproteic  gluten-casein  free  diet  was  undertaken,  along with
maintenance of previously ongoing therapies targeting HE. Clinical and neurological
evaluation  was  performed after  1  and 3  months;  cognitive  function  (arithmetic,
memory, and orientation) and memory skills measured with Mini Mental Test and
Rey Auditory Verbal Learning Test showed a statistically significant improvement in
14/16 (88%) patients  both at  1  and 3  months.  Executive  functions  and attention
evaluated by Trial Making Test significantly increased at 3 months. Baseline and 3
month electroencephalograms did not correlate with the improvement of mental
status. Only one hospitalization for HE was necessary among the 16 patients during
the 3 month follow-up, whilst a mean hospitalization rate of 1 to 3 episodes per month
was observed in a control group made of 10 cirrhotic patients with the same clinical
background (chronic HE). Notably, a transient HE episode was reported in a patient
who accidentally  introduced gluten during the study,  and a  HE recurrence was
experienced by one patient who decided to reintroduce gluten after the 3 month
follow-up.

Although this experience was very limited, it introduced an element of novelty
that, if replicated, could add a simple therapeutic tool in the management of cirrhotic
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patients with HE, at least for those affected by the most severe forms. Investigators
should therefore address this dietary approach as a potential adjunctive therapy in
patients with severe liver disease and HE in order to verify its efficacy.

Fecal microbiota transplantation
Another  approach  targeting  gut  dysbiosis  in  HE  patients  is  fecal  microbiota
transplantation (FMT): this innovative treatment was investigated by Bajaj et al[228],
who performed an RCT comparing its efficacy, in terms of cognitive improvement,
adverse events, microbiota, and metabolomic changes, versus standard of care in
patients  with  recurrent  HE.  A suitable  stool  donor  was  selected  through cross-
sectional  microbiome  data,  and  patients  enrolled  in  the  FMT  arm  were  then
administered a 90 mL enema after a 5 day broad-spectrum antibiotic course. After 150
days of follow-up, there was a statistically significant cognitive improvement in the
FMT group, together with increased microbial overall diversity and expansion of
beneficial taxa. No severe adverse events were registered.

A  very  recent  study  by  the  same  authors  has  strengthened  this  approach,
suggesting long-term (12-15 months) safety and sustained improvement in clinical
and cognitive function parameters with prevention of HE recurrence among patients
who received FMT[229].

CONCLUSION
HE is a serious complication of cirrhosis that significantly impacts on the quality of
life of both patients and caregivers and heavily contributes to hospitalizations and
mortality in these patients. The association among HE, malnutrition, sarcopenia, and
poor prognosis is nowadays sound, and there is accumulating evidence that in this
context intestinal dysbiosis and gut hyperpermeability play a pivotal role, being part
of  an  altered interaction between the  gut,  the  liver,  and the  brain.  The findings
discussed in this  review show in their  entirety and complexity the fundamental
implication of  the  gut-liver-brain  axis  in  the  development  of  HE,  as  well  as  the
important role that dietary modifications and modulation of microbiota may play in
preventing and treating HE. If it is true that further research is surely necessary to
achieve stronger scientific evidence in the very complex field of HE, it is equally true
that current data suggest that the path taken is the right one.
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