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Abstract: Indoor pedestrian tracking has been identified as a key technology for indoor location-based
services such as emergency locating, advertising, and gaming. However, existing smartphone-based
approaches to pedestrian tracking in indoor environments have various limitations including a
high cost of infrastructure constructing, labor-intensive fingerprint collection, and a vulnerability
to moving obstacles. Moreover, our empirical study reveals that the accuracy of indoor locations
estimated by a smartphone Inertial Measurement Unit (IMU) decreases severely when the pedestrian
is arbitrarily wandering with an unstable speed. To improve the indoor tracking performance by
enhancing the location estimation accuracy, we exploit smartphone-based acoustic techniques and
propose an infrastructure-free indoor pedestrian tracking approach, called iIPT. The novelty of iIPT
lies in the pedestrian speed reliability metric, which characterizes the reliability of the pedestrian
speed provided by the smartphone IMU, and in a speed enhancing method, where we adjust a
relatively less reliable pedestrian speed to the more reliable speed of a passing by “enhancer” based
on the acoustic Doppler effect. iIPT thus changes the encountered pedestrians from an“obstacle”
into an “enhancer.” Extensive real-world experiments in indoor scenarios have been conducted to
verify the feasibility of realizing the acoustic Doppler effect between smartphones and to identify the
applicable acoustic frequency range and transmission distance while reducing battery consumption.
The experiment results demonstrate that iIPT can largely improve the tracking accuracy and decrease
the average error compared with a conventional IMU-based method.

Keywords: infrastructure-free indoor pedestrian tracking; acoustic signal; Doppler effect;
Inertial Measurement Unit; arbitrary wandering

1. Introduction

Considered as the last step of mobile service, indoor pedestrian tracking (IPT) has been widely
utilized by researchers for the study of indoor location-based applications and services. For example,
shopping mall navigation provides convenient shopping guidance and marketing services for
customers. Hospitals leverage IPT systems to locate their specific patients in case of sudden accidents.
Without IPT applications, people can get lost when they are trying to find their car in a large parking
lot. Due to the building materials, GPS is unavailable for IPT, leading to a constant emerging of various
smartphone-based tracking methods that have the capability of obtaining location information via
Wi-Fi [1], Bluetooth [2,3], LED [4,5], and other techniques.

Each smartphone-based IPT method has its pros and cons, and how to develop a low-cost, reliable,
and accurate IPT system is still an outstanding research problem. Many attempts have been made
in recent years. Yin et al. [6] utilized radio and visual features of a diagram of Wi-Fi fingerprints to
realize IPT, but this still requires intensive labor for fingerprint collection. By leveraging additional
beacons, Xiang et al. [7] combined Bluetooth and crowdsourcing to estimate pedestrian locations.
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In [8], a generic indoor localization framework is proposed based on existing lighting infrastructure,
which is sensitive to moving obstacles. Limited by the demand for extra infrastructures, these methods
suffer a relatively high cost. In order to realize infrastructure-free IPT, researchers leverage smartphone
in-built sensors, such as inertial measuring units (IMUs), to estimate a pedestrian’s location. IMUs in
commercial smartphones have been widely utilized for pedestrian dead-reckoning (PDR) [9], which
contain multiple sensors such as accelerometers, gyroscopes, and sometimes magnetometers, and
are capable of tracking the movement of pedestrians by detecting steps, estimating stride lengths,
and the directions of motion. However, the tracking accuracy of PDR decreases severely when
the pedestrian walks around arbitrarily, causing accumulative error. To improve PDR accuracy,
researchers [10,11] focus on the enhancement of a pedestrian’s steps detection and stride length
estimation, but they still cannot satisfy the actual accuracy requirement due to the complex indoor
environment and the pedestrian’s arbitrary walking. Recently, acoustic-based IPT [12] has shown its
unique advantages of accurate positioning and direction finding. To be more specific, ultrasonic-based
IPT systems [13,14] perform well at estimating location with a high degree of accuracy. Ultrasonic
frequency is normally 20–44 kHz (inaudible for human) and easily removes noise. Due to the low
velocity of ultrasonic wave traveling in air, high accuracy time of flight (ToF) measurement is allowed.
Moreover, the Doppler effect has been widely utilized to track mobile objects [15,16]. However,
there are two main limitations that affect the performance of ultrasonic-based IPT. Firstly, similar to
other smartphone-based IPT methods, extra infrastructures and self-designed devices are required to
guarantee the tracking accuracy by emitting and receiving ultrasonic signals, which is time-consuming
and has a high cost. Secondly, ultrasonic signals can be easily blocked by mobile obstacles due to its
physical features, causing reflection and multi-path problems, ultimately decreasing tracking accuracy.
According to [17], smartphones can emit and receive ultrasonic signals between each other. What
if we utilized smartphones only to accomplish IPT by combining the advantages of ultrasonic and
IMU methods?

In this paper, we propose iIPT, an infrastructure-free pedestrian tracking approach, by combining
smartphone-based acoustic and IMU techniques. A metric called pedestrian speed reliability is
presented to characterize the reliability of the pedestrian speed provided by the smartphone IMU.
We adjust a relatively less reliable pedestrian speed to a more reliable speed of a passing by
”enhancer“ based on the acoustic Doppler effect, thus changing the encountered pedestrians from
an “obstacle“ into an ”enhancer“. Extensive real-world experiments in indoor scenarios have been
conducted to verify the feasibility of realizing the acoustic Doppler effect between smartphones and
to identify the applicable acoustic frequency range and transmission distance while reducing battery
consumption. The experiment results demonstrate that iIPT can largely improve the tracking accuracy
and decrease the average error compared with a conventional IMU-based method. We have made
several contributions as follows:

• We present an infrastructure-free indoor pedestrian tracking approach by combining both
smartphone-based acoustic and IMU techniques.

• We present a pedestrian speed reliability metric that characterizes the reliability of the real-time
pedestrian speed provided by smartphone IMU and reflects the arbitrariness of the pedestrian
walking pattern.

• We determine the capability and precision of measuring speed using sonic Doppler from a
smartphone by designing a robot car whose speed could be controlled to compare the real speed.

• We leverage the acoustic Doppler effect to adjust the relatively less reliable pedestrian speed to a
more reliable speed of a passing by “enhancer” measured by IMU.

• We implement comprehensive experiments to identify the applicable acoustic frequency range,
transmission distance, and battery consumption and demonstrate that iIPT can largely improve
the tracking accuracy and decrease the average error, compared with PDR.

The remainder of this paper is organized as follows: Section 2 illustrates our motivation and
challenges for proposing iIPT. In Section 3, an overview of iIPT is presented and Section 4 elaborates
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our indoor pedestrian tracking approach. Section 5 evaluates the performance of iIPT in real situations.
In Section 6, we discuss about the limitations and unsolved problems for iIPT. Finally, Section 7
provides a brief conclusion.

2. Motivation and Challenges

In a common indoor environment, a pedestrian’s attention can be easily drawn by many places of
interest, leading to different walking patterns. For indoor pedestrian tracking with smartphone IMUs,
a sudden stop or speed up will increase the complexity of walking detection and lower the tracking
accuracy. In this scenario, we present two important observations.

Observation 1. A pedestrian usually walks arbitrarily with an unstable speed in an indoor
environment. According to research [18,19] on human mobility models in indoor environments,
pedestrian mobility can be influenced by “social forces,” including certain motion requirements,
other, disturbing pedestrians, and various attractive effects. For example, customers are commonly
attracted by clothing shops or restaurants when shopping in a mall. Visitors occasionally concentrate
on gorgeous art work at exhibitions when they have great interest in it. These kinds of cases happen
quite often in indoor environments and cause problems for IMU-based indoor pedestrian tracking,
such as PDR, a common IPT method that is capable of tracking pedestrians by estimating their stride
frequency, stride length, and walking direction.

Observation 2. The indoor pedestrian tracking accuracy of the IMU-based method decreases
severely when a pedestrian walks arbitrarily. As shown in Figure 1, when a pedestrian walks normally
with uniform speed, the value of acceleration sensed by accelerometers follows a regular pattern so that
a pedestrian’s stride frequency can be easily obtained and we can directly utilize their average stride
length to estimate the walking distance. The result (see Figure 2(a)) depicts that PDR performs well
in tracking a pedestrian with arbitrary walking. The ground truth represents the pedestrian’s actual
walking distance, which is obtained by a manual method. After making fixed marks on the ground,
we utilize a stopwatch to record the time that a pedestrian steps on the marks. However, Figure 2(b)
shows that the accumulative distance bias of PDR keeps increasing if we utilize a conventional PDR
method to analyze the acceleration data caused by arbitrary walking. The estimated stride frequency
will be larger than the actual value, and the average stride length will not make any sense. Some
researchers [10,11] have used a machine learning algorithm to optimize PDR, but these methods
require plenty of pedestrian history trajectory as training data and the PDR accuracy relies too much
on the quality of the training result.
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Figure 1. A value change of acceleration sensed by smartphone inertial measuring units (IMUs) under
different pedestrian walking patterns.

Based on our observations mentioned above, we have done relevant research, as follows.
Indoor Pedestrian Dead-Reckoning. IMU is widely utilized in scenarios of indoor PDR.

Jimenez et al. [20] proposed a self-designed IMU attached to the foot of a person for pedestrian
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tracking, leveraging accelerometers, gyroscopes, and magnetometers to detect step detection, stride
length, and heading. Other researchers leverage smartphone-based IMUs to accomplish PDR. In [10,11],
researchers use a machine learning algorithm to optimize PDR, but these methods require plenty of
pedestrian history trajectory as training data, and the PDR accuracy relies too much on the quality of
the training result. Other attempts [21–23] have also been made to improve PDR accuracy. However,
how to improve its accuracy is still an open issue that needs to be addressed.
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Figure 2. Accumulative distance bias caused by pedestrian dead-reckoning (PDR) with different
pedestrian walking patterns.

Ultrasonic Applications on Smartphones. Basic research [24] has been made to evaluate the
innate ability of mobile phone speakers to produce ultrasonic signals under different volume levels,
but the ultrasonic emit/receive ability, the transmission distance, and the battery consumption of
smartphones are not mentioned. A few researchers have taken advantage of ultrasonic physical
features to accomplish high precision measurements. Peng et al. [25] designed a high-accuracy
acoustic-based ranging system, which can be easily applied to smartphones and relies on the TOA
and TDOA methods to calculate distance. Other researchers [26–29] are working on indoor pedestrian
or robot localization and tracking at long distance (more than 20 m) by leveraging ultrasonic signals
with smartphones. However, most of them require a self-designed ultrasonic emitter or receiver array
based on their own demand, which is time-consuming and has a high cost. Moreover, the tracking
accuracy can be easily influenced by obstacles between the emitter and the receiver. In a word, all these
methods cannot be directly utilized in our scenario.

Ultrasonic Doppler Effect. The Doppler effect has been widely utilized in many scenarios of
mobile object tracking with smartphones. Wang et al. [15] proposed a device-free method to track
gestures of a hand/finger. Based on the Doppler effect, they analyzed the acoustic phase to obtain
movement direction and distance measurements. In order to provide an enjoyable user experience,
Mao et al. [30] developed a high-precision acoustic tracker to replace a traditional mouse and allow
a user to play VR games by moving a smartphone in the air. However, both of these are operated at
short distances (from 1 cm to 2 m). Similar to our scenario, DopEnc [17] is an acoustic-based encounter
profiling system on smartphones, using the Doppler effect method to calculate relative speed and
build an encounter profile. Swadloon [12] performs an accurate acoustic direction finding scheme,
according to the arbitrary pattern of phone shaking in a rough horizontal plane.

We are motivated to deal with pedestrian arbitrary walking with unstable speeds and to leverage
the smartphone acoustic Doppler effect to enhance the tracking accuracy of the IMU-based method.
In this paper, we consider that the acoustic signals with frequencies from 17 to 20 kHz is extremely
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similar to ultrasonic signals and thus call it sub-ultrasonic, which represents the particular acoustic
signals we apply throughout the paper. The elaboration of sub-ultrasonic signals is shown as follows.

Ultrasonic has been widely utilized in high accuracy detection and measurement. However,
according to our experiment result (see Table 1), commercial smartphones can only emit and receive
acoustic less than 20 kHz, and more than 17 kHz is inaudible for young babies and other, sensitive
people. More detail is illustrated in Section 4.2.

In the next section, we present an overview of iIPT.

Table 1. Frequency range of acoustic from commercial smartphones.

Smartphone OS Frequency Reference

HTC G1 Android
HTC Hero Android 17–22 kHz Ref [9]

HiPhone 3GS ios
Nokia 6210 Navigator Android

Samsung Galaxy S5 Android 17–23 kHz Ref [7]
HiPhone 6S ios

Samsung Galaxy S7 Android Our research
iPhone 7 ios 17–20 kHz (phone-to-phone)
iPhone x ios

3. Overview

In this section, we first present the basic idea for iIPT and then give a brief introduction for
IMU-based PDR and the acoustic-based Doppler effect. Moreover, we identify three key issues for
iIPT, which will be addressed in Section 3.4.

3.1. Basic Idea

Unlike existing ultrasonic IPT systems, iIPT requires no extra infrastructure and only utilizes
smartphones to improve tracking accuracy. In our indoor scenario (see Figure 3), the pedestrians are
separated into two groups: users and encounters. In most cases, the encounter will be treated as an
“obstacle” who has the possibility of decreasing the tracking accuracy. For example, encounters nearby
may change the received signal strength indication (RSSI) so that Wi-Fi signal fingerprints becomes
unreliable. In quite the opposite, we take the most advantage of encounters and consider them as an
“enhancer” for iIPT instead.

((((

Figure 3. Indoor pedestrian encounter model for infrastructure-free indoor pedestrian tracking (iIPT).
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When the user walks arbitrarily with unstable speed, IMU data becomes unreliable, leading to
accumulative distance bias by PDR. The user discontinuously emits a sub-ultrasonic signal, and once
an encounter with more reliable IMU data receives the signal, iIPT begins to calculate their relative
speed based on the sub-ultrasonic Doppler effect. The user’s absolute speed will be obtained by taking
both the relative speed and the encounter’s speed from IMU into account. Finally, the user’s walking
distance can be estimated by integrating their walking speed during a certain period. Due to the
sub-ultrasonic physical feature (straight line traveling and low penetration), we only focus on the
face-to-face pedestrian encounter scenario in a hallway-like indoor space.

3.2. Shortcomings of PDR

IMU-based PDR plays a vital role in indoor pedestrian tracking. Embedded in smartphones,
accelerometers and gyroscopes can detect pedestrian stride frequency and heading direction so
that walking trajectory (or position) can be estimated. However, IMU-based PDR relies too much
on a pedestrian’s walking pattern having a uniform speed and is sensitive to the change in a
pedestrian’s walking gestures in practical situations. There are two main reasons causing unacceptable
accumulating errors that grow with the path length: (1) gravity influence; (2) the drift problem.
To minimize this error, plenty of attempts have been made, but mostly by leveraging additional
infrastructures.

3.3. Basics of Doppler Effect

As an observer moves relative to a wave source, the frequency of the wave changes, which
is called the Doppler effect [17]. In our case, due to the relative motion between two pedestrians,
the sub-ultrasonic emitted by one smartphone takes slightly less or more time to reach the other
smartphone, which mainly depends on whether the two pedestrians are moving closely or far away.
The frequency offset is determined by the relative velocity between two pedestrians (as shown in
Equation (1)).

∆ f =
∆v
c
× fe (1)

where ∆v represents the relative velocity between two pedestrians. c is the speed of acoustic traveling
in air, which is 340 m/s. fe denotes the emitted frequency of acoustic, and frequency offset ∆ f can also
be calculated through ∆ f = fr − fe once we obtain the received frequency fr.

3.4. Key Issues

In order to realize an infrastructure-free indoor pedestrian tracking approach with a smartphone
sub-ultrasonic-based Doppler effect, we have to deal with three key issues listed as follows:

Key Issue 1. In our scenario, iIPT adjusts a relatively less reliable pedestrian speed to a more
reliable speed of a passing by “enhancer” based on the sub-ultrasonic Doppler effect. In terms of the
acceleration data sensed by accelerometers, how to define a proper metric to characterize the reliability
of the pedestrian speed provided by smartphone IMU is investigated.

Key Issue 2. Little research has been done on the sub-ultrasonic Doppler effect between two
smartphones, so other relevant methods cannot be directly leveraged in our scenario. Due to the variety
of commercial smartphones (Android or iOS), their ability to emit and receive sub-ultrasonic may be
different from each other. It is a key issue to identify the applicable sub-ultrasonic frequency range
and transmission distance for the Doppler effect while taking battery consumption into consideration.

Key Issue 3. When two pedestrians are moving face-to-face, their walking speed is unknown
and the speed value calculated through the Doppler effect is relative rather than absolute. Without a
baseline, how to enhance the user’s walking speed to finally improve the pedestrian tracking accuracy
becomes a key issue.

This section presents a big picture for iIPT, including the elaboration of our basic idea, IMU-based
PDR, the Doppler effect, and three key issues. We detail our core method in Section 4.
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4. Proposed Approach

Starting with the problem statement, this section elaborates our proposed method by leveraging
both experimental and theoretical analysis.

4.1. Problem Statement

There are only two pedestrians in our encounter model: one is the “user” and the other is the
“encounter”. To better illustrate our proposed method, we firstly make several definitions as follows:

Definition 1. (DopE Direction). DopE direction is defined as the sub-ultrasonic propagating direction, which
is along the straight line from the sub-ultrasonic emitter to the receiver.

Definition 2. (DopE Speed). DopE speed ∆v is defined as the relative speed in the DopE direction between
user and encounter, calculated by the sub-ultrasonic Doppler effect:

∆v = c× fr − fe

fe
(2)

where c is the speed of sub-ultrasonic traveling in air, which is 340 m/s, fe denotes the emitted frequency of
sub-ultrasonic, and fr represents the received frequency.

Definition 3. (DopE Angle). The DopE angle θ is defined as the angle between the pedestrian’s walking
direction and the DopE direction:

sin θ =
L
D

(3)

where L represents the width of the hallway, and D represents the shortest distance between user and encounter
(shown in Figure 4).

We assume that the two pedestrians’ walking direction is parallel in most cases of indoor hallway
walking situations. Therefore, θ = β.

Definition 4. (Pedestrian Speed Reliability). Pedestrian speed reliability ρ is defined as the variance value
of acceleration sensed by smartphone IMU.

N

E

user

encounter x
y

𝜃

𝛽

D L

Figure 4. Pedestrian encounter model for the calculation of the DopE angle and the DopE speed.
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The reliability is lower when the pedestrian is walking arbitrarily. Therefore, we consider ∆ρ as a
threshold and utilize the encounter’s speed as a benchmark when ∆ρ is below a certain value.

∆ρ = ρencounter − ρuser. (4)

4.2. Sub-Ultrasonic Doppler Identification

Due to the variety of commercial smartphones (Android or iOS), their ability to emit and receive
sub-ultrasonic are different from each other. In order to obtain the sub-ultrasonic frequency range
(especially the upper limit) and a reliable communication distance, we carried out a few experiments
in a practical situation.

4.2.1. Sub-Ultrasonic Frequency

Scientifically, ultrasonic is defined as sound waves with frequencies higher than the upper audible
limit of human hearing (20 kHz). According to [15], commercial smartphones can emit and receive
17–22 kHz acoustic, but no further description is presented in these studies. Moreover, these studies
are implemented in a phone-to-infrastructure situation, which is different from a phone-to-phone
scenario. To find more information, we carried out an experiment on an acoustic frequency range
under a phone-to-phone situation. By leveraging both Android and iOS smartphones, we continuously
emitted and received acoustic from 17 to 22 kHz, and the result is depicted in Figure 5, showing that
both Android and iOS smartphones have the ability to emit and receive acoustic from 17 to 20 kHz
under a phone-to-phone situation.
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(a) Sub-ultrasonic spectrum diagram (Android) (b) Sub-ultrasonic time-frequency diagram (iOS)

Figure 5. Identification of smartphone-based sub-ultrasonic frequency after Fourier transformation.

4.2.2. Sub-Ultrasonic Transmission Distance

According to [29], the sub-ultrasonic transmission distance under a phone-to-infrastructure
situation is at least 20 m (even higher, depending on the infrastructure type), and usually the
smartphone works as a receiver and the infrastructure works as an emitter so that a longer transmission
distance is guaranteed. In this paper, both the emitter and receiver are smartphones, leading to
new requirements for the study on phone-to-phone sub-ultrasonic scenarios. The sub-ultrasonic
transmission distance is mainly determined by a smartphone’s volume level. The higher the volume
we utilize, the longer the distance it will transmit, but it will also generate a more noisy sound at the
same time.

We can see from Figure 6 that a smartphone sub-ultrasonic signal can be unreliably detected
by another phone from 8 m away. Moreover, as distance increases, the success rate of receiving
sub-ultrasonic with different volumes drops. To be more detailed, 25% of the volume of sub-ultrasonic
performs terribly, even in a short distance. Within 4 m, the success rate of volume level 12 and
level 16 are both 100%, and as the distance increases, a higher volume sub-ultrasonic transmits more
reliably. However, when the distance reaches 8 m, volume level 16 performs better than level 8
because of its higher power, but its performance is worse than level 12 due to the more noisy sound
generated. Taking the density of indoor pedestrians into account, this sub-ultrasonic transmission



Sensors 2019, 19, 2458 9 of 16

distance analysis provides a fundamental reference for the sub-ultrasonic Doppler effect in the indoor
pedestrian encounter scenario.
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Figure 6. The relationship between the success rate of receiving sub-ultrasonic by smartphones and
sub-ultrasonic transmission distance with different smartphone volumes.

4.2.3. Pedestrian Moving Detection

In most cases, the Doppler effect is utilized to fulfill high precision movement detection in a short
distance [15,30]. To demonstrate the feasibility of leveraging the Doppler effect to obtain an encounter
profile, we design a standstill-slow-faster mode experiment based on our experiment analysis above.
At first, the pedestrian begins to leverage the smartphone to emit 19.5 kHz sub-ultrasonic but has to
remain standstill for a while. Then they start to walk slowly towards the other phone and afterwards
walk fast. We store the received audio data in a PCM file, we cut the audio files into several parts,
which are 0.2 s long, and the frequency of each audio file is calculated by Fourier transform one by
one. In this experiment, the length of every audio file is a key parameter. We hope to minimize the
length of each separated files as much as possible so that every frequency calculated by Fourier can
be regarded as the instantaneous frequency. However, at a fixed sampling rate, while reducing the
cutting interval, the accuracy of the frequency will be decreased. Correspondingly, the accuracy of
velocity will be cut down. After our repeated experiments, we discover that 0.2 s is a decent choice for
balancing the accuracy and instantaneity, which achieves a 0.1 m/s velocity error. However, for the
accuracy deduced by a 0.1 s file, the error will be above 0.3 m/s. As shown in Figure 7, the frequency
of the received sub-ultrasonic becomes higher after the pedestrian speeds up. In a word, the Doppler
effect is able to detect pedestrian walking in an indoor pedestrian encountering scenario.

Figure 7. Pedestrian walking detection by utilizing the Doppler effect with 19.5 kHz sub-ultrasonic.
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4.2.4. Robot Car Moving Detection

Since we cannot measure the exact instantaneous speed of the volunteer at a certain instant,
we designed a robot car (shown in Figure 9c). We fixed the mobile phone on the robot car, which was
controlled by Arduino. It can be programmed to move forward at an accurate speeds of 0.3, 1, 2, and
3 m/s. We carried out experiments in two experimental environments, that is, in a hallway (shown in
Figure 9b) and outside Figure 9b. In the standstill, slight, slow, normal, and fast moving states of the
car, we compared the real speed and the measured speed of the robot car after the robot car’s speed
was stable. The result is shown in Figure 8. Compared with the indoor environment, the outdoor
environment measurement results are more unstable.
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Figure 8. Comparisons of the measured speed and the actual speed.

4.3. Walking Speed Enhancement

In this paper, we assume that the two pedestrians’ walking direction is parallel in most cases of the
indoor hallway walking situations. Therefore, the relative angle between the user’s (or the encounter’s)
walking direction and the DopE direction is calculated by the triangle we built. Afterwards, we
leveraged the encounter’s walking speed and the DopE speed to finally obtain the user’s speed. More
detail is shown in Algorithm 1. In the end, based on the DopE speed ∆v, the DopE angle θ, and the
encounter’s walking speed vencounter, we built a mathematical model for computing the user’s walking
speed, which is shown in Equation (5).

vuser =
∆v− vencounter ×

√
1− sin θ2

cos θ
. (5)

Algorithm 1: Walking speed enhancement.
Input: hallway width L

acoustic speed c
Output: User walking speed vuser

1 Emit fe kHz sub-ultrasonic;
2 Receive fr kHz sub-ultrasonic;

3 ∆v = c× fr− fe
fe

;
4 D ← sub-ultrasonic TDOA method;
5 sin θ = L

D ;
6 The velocity component of vencounter on DopE direction;

7 v′encounter = vencounter ×
√

1− sin θ2;
8 The velocity component of vuser on DopE direction;
9 v′user = ∆v− v′encounter;

10 return vuser;
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The proposed method is presented in this section. In next section, we implement a few more
experiments to demonstrate that iIPT can largely improve the tracking accuracy and decrease the
average error compared with a conventional IMU-based PDR method.

5. Performance Evaluation

In order to demonstrate the feasibility and accuracy of iIPT, we implemented several experiments
in a teaching building on campus. By using certain commercial smartphones, we verified the Doppler
effect’s accuracy of a pedestrian’s moving detection and compared the iIPT performance with that of a
conventional IMU-based PDR method. At last, we illustrate our research on battery consumption.

5.1. Indoor Environment Description

Smartphone. In terms of our experiment result in Section 4, commercial smartphones have a
similar ability to emit and receive sub-ultrasonic. Taking our own situation into account, we utilized
an iPhone 7 to implement our experiment and leveraged pulse code modulation (PCM) files to store
and analyze the sub-ultrasonic data. Besides, the format of the PCM is a mono-channel, little endian.
The sampling frequency is 96,000 Hz, and the quantization accuracy is 16 bit.

Hallway environment. The experiment site is a hallway in our college building that is 2 m wide,
which is shown in Figure 9(b). Because the temperature is up to 31 ◦C, we adopted 349 m/s as the
sub-ultrasonic velocity. We measured the pedestrian and the robot car in the same hallway environment.

(a) Smartphone (b) Hallway

(c) Robot car (d) Outside

Figure 9. Indoor experiment environment.
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Robot car. We fixed the mobile phone on this robot car, which is shown in Figure 9(c). The robot
car is controlled by Arduino and has high speed accuracy.

Outside environment. The outside environment is on the road, which is shown in Figure 9(d).

5.2. Tracking Accuracy

To verify iIPT’s capability of improving pedestrian tracking accuracy when the pedestrian walks
arbitrarily, we implemented a set of 6 m pedestrian encountering plots, utilized iIPT to estimate the
walking distance, and compared the tracking result with IMU-based PDR methods. Four different
kinds of PDR methods were selected as the contract: 1. the Stastic method; 2. the Kim method; 3. the
Weiberg method; 4. the Scarlet method [31]. In general, the IMU-based PDR experiment will take
a traveled distance of over 10 m. However, as shown in Figure 6, the ultrasonic Doppler effect’s
performance is reliable only within 6 m because of the characteristic of its fast energy attenuation.
Therefore, to extend the traveled distance of ilPT to make it comparable to the PDR method, the
number of experiments was increased, and we accumulated errors that can be regarded as one long
distance experiment. We compared the total average error of our tracking method with these four PDR
methods mentioned above. In order to eliminate the accidental error, every group of experiment for
different methods was constructed 20 times. The average experiment result before subtracting the
systematic error is shown in Figure 10(a). It is obvious that the accuracy of the static PDR method is
not good enough to satisfy the short distance tracking situation. Besides, the accumulative distance
bias of the Kim, Weiberg, and Scarlet PDR methods is 0.75 m at 10 m and increases up to over 1.25
and 1.9 m at 20 and 30 m, respectively, while iIPT maintains a stable bias around 0.5 m every 10 m.
In addition,it is inevitable that the experimental data always contain a systematic error due to various
factors. Therefore, we supplement an experiment that removed the systematic error. In the course
of our experiment, we found that the frequency of ultrasonic smartphones received always has a
0.5 Hz fixed deviation, possibly caused by the hardware. Similarly, the PDR methods have a different
systematic error with a certain traveled distance. The experiment result after subtracting the systematic
error is shown as Figure 10(b). The iIPT obviously provides a smaller error compared to the four PDR
methods. The average error can be controlled within 2%.
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Figure 10. Comparison of tracking accuracy between PDR and iIPT.

In addition, we classified the pedestrian speed reliability ρ into three levels: low (0 <= ρ < 0.005),
mid (0.005 <= ρ < 0.01), and high (0.01 <= ρ). Tracking distance bias changes with different levels,
and the comparison between iIPT and PDR is shown in Figure 11. We can see from the experiment
result that the average distance bias of PDR increases severely with a higher ρ. On the contrary, iIPT is
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less sensitive to ρ, although the bias still slightly increases. In a word, iIPT performs better than PDR
at tracking a pedestrian with arbitrary walking.
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Figure 11. Comparison of tracking distance bias between PDR and iIPT under different pedestrian
speed reliability levels.

5.3. Battery Consumption

For iIPT, the smartphone’s battery consumption is mainly determined by a sub-ultrasonic emitting
volume level, which has a vital influence on sub-ultrasonic transmission distance. As depicted in
Figure 12, it is obvious that the battery consumption increases with a higher volume level. From level
1 to level 4, battery consumption increases by 50%, and as the level increases, it increases smoothly up
to level 12. From level 12 to level 16 (max volume), the battery consumption increases severely again.
Moreover, taking transmission distance into account at the same time, we consider a volume around
level 12 to be suitable for the sub-ultrasonic Doppler effect in an indoor environment.
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Figure 12. Smartphone’s battery consumption when emitting 19.5 kHz sub-ultrasonic with different
volume levels.
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According to the experiment result, iIPT performs better than the IMU-based tracking method
under arbitrary walking circumstance. However, there are still several unsettled problems, and we
have a brief discussion of those problems in Section 6.

6. Discussion

One-on-N encounter model. In our scenario, we only consider a one-on-one pedestrian encounter
model so that there is only one user and one encounter. However, in actual situations, there will
be multiple encounters around the user, increasing the complexity of the Doppler effect analysis
and the amount of ultrasonic reflection. A one-on-N pedestrian encounter model is essential for the
multiple encounter scenario, but how to select proper encounters to build the local model becomes a
huge problem. Moreover, the one-on-N model causes serious multi-path problems and increases the
complexity of analyzing ultrasonic signals due to additional noise.

Relative angle calculation. In this paper, we set our indoor background as a hallway, and the
relative angle between the user (or the encounter) and the DopE direction was obtained by calculating
a triangle, which was based on the assumption that the width of the hallway can be known ahead
of time. In addition, the relative angle between the walking direction of the user and the encounter
becomes larger when the two pedestrians are walking more closely to each other. Due to the complex
indoor environment, how to extend iIPT to deal with more indoor situations is another key problem.

Encounter benchmark selection. We consider that the variance of acceleration sensed by
smartphones becomes higher when pedestrians walk arbitrarily, which represents the reliability
of the pedestrian walking speed from IMUs. Therefore, we chose an encounter with lower variance to
modify the user’s speed. However, it is still difficult to find metrics for measuring pedestrian speed
reliability, which should be defined more specifically so that iIPT will be able to deal with different
indoor pedestrian encounter situations.

7. Conclusions

In this paper, we propose an infrastructure-free pedestrian tracking approach by combining
smartphone-based sub-ultrasonic and IMU techniques. A metric called pedestrian speed reliability
is presented to characterize the reliability of the pedestrian speed provided by smartphone IMU.
We adjust a relatively less reliable pedestrian speed to a more reliable speed of a passing by ”enhancer“
based on the sub-ultrasonic Doppler effect, thus changing encountered pedestrians from an ”obstacle“
into an ”enhancer“. Extensive real-world experiments in indoor scenarios have been conducted to
verify the feasibility of realizing the acoustic Doppler effect between smartphones and to identify
the applicable sub-ultrasonic frequency range and transmission distance while reducing battery
consumption. The experiment results demonstrate that iIPT can largely improve the tracking accuracy
and decrease the average error compared with a conventional IMU-based method. For further research,
we plan to extend the encounter model to multiple situations and use crowd sensing technology to
solve the encounter selection problem.
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