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Abstract
Nonalcoholic fatty liver disease (NAFLD) is a heterogeneous and complex
disease that is imprecisely diagnosed by liver biopsy. NAFLD covers a spectrum
that ranges from simple steatosis, nonalcoholic steatohepatitis (NASH) with
varying degrees of fibrosis, to cirrhosis, which is a major risk factor for
hepatocellular carcinoma. Lifestyle and eating habit changes during the last
century have made NAFLD the most common liver disease linked to obesity,
type 2 diabetes mellitus and dyslipidemia, with a global prevalence of 25%.
NAFLD arises when the uptake of fatty acids (FA) and triglycerides (TG) from
circulation and de novo lipogenesis saturate the rate of FA β-oxidation and very-
low density lipoprotein (VLDL)-TG export. Deranged lipid metabolism is also
associated with NAFLD progression from steatosis to NASH, and therefore,
alterations in liver and serum lipidomic signatures are good indicators of the
disease’s development and progression. This review focuses on the importance of
the classification of NAFLD patients into different subtypes, corresponding to the
main alteration(s) in the major pathways that regulate FA homeostasis leading, in
each case, to the initiation and progression of NASH. This concept also supports
the targeted intervention as a key approach to maximize therapeutic efficacy and
opens the door to the development of precise NASH treatments.
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Core tip: Nonalcoholic fatty liver disease (NAFLD) is a heterogeneous and complex
disease that is imprecisely diagnosed by liver biopsy. The advent of metabolomics has
shown that NAFLD progression from simple steatosis to nonalcoholic steatohepatitis
(NASH) associates with profound alterations in liver and serum lipidomic signatures that
are good indicators of the disease’s development and progression. Lipidomics has also
permitted the classification of NAFLD patients into different subtypes corresponding to
the main alteration(s) leading, in each case, to the initiation and progression of NASH
based on the identification of specific lipid signatures, opening the door to the
development of precise NASH treatments.
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INTRODUCTION
Fat storing is common to many different species. The desert locust stores lipids in the
“fat  body”,  a  dynamic  tissue  that  plays  an  essential  role  in  energy  storage  and
utilization  in  insects[1],  to  migrate  from  south-western  Morocco  to  the  Iberian
Peninsula covering a distance of 600 miles without settling down. Some fish also store
fat for their survival. Without eating and powered only by stored fat, salmons swim
2000 miles up the fresh waters of the Yukon River from the Bering Sea to reach their
spawning grounds. Long distance migrating birds, such as the bar-tailed godwit, the
ruby-throated hummingbirds and the bar-headed geese, accumulate large amounts of
fat  prior  to  departing.  Likewise,  the  gray  whale  increases  its  fat  stores  prior  to
swimming more than 10000 miles between feeding grounds in the Artic to the nursery
lagoons of Mexico´s Baja Peninsula; and hibernating mammals such as the grizzly
bears, after a period of incomparable hyperphagia, do not eat for 5 to 7 mo subsisting
solely on stored fat.

The  energy  source  for  these  prodigious  feats  are  fatty  acids  (FA)  stored  as
triglycerides (TG) into lipid droplets (LD) primarily in the adipose tissue and liver.
The mobilization of FA from adipose tissue TG stores requires the activity of TG
lipases that generate FA, which are then released into the blood and taken up by
hepatocytes, where are reincorporated into TG (Figure 1). Some of these re-esterified
TG combine with apolipoprotein-B (APOB) to form very low-density lipoproteins
(VLDL), and are exported into circulation. This process is regulated by microsomal
TG transfer protein (MTTP) and accompanied by encapsulating the neutral lipid core
with a phospholipid (PL) monolayer enriched in phosphatidylcholine (PC) molecules
containing polyunsaturated FA (PUFA), such as arachidonic acid (AA; 20:4n-6) and
docosahexaenoic acid (DHA; 22:6n-3)[2,3]. APOB, cholesterol and other apolipoproteins
(like APOC) are also found decorating the surface of the VLDL-TG particle[2,3]. The
largest amount of TG used for the synthesis of VLDL (VLDL-TG) is synthesized from
FA entering the  liver  from the  adipose  tissue,  even under  conditions  where  the
synthesis of FA from glucose and fructose by de novo lipogenesis (DNL) is high (see
below). Humans preferentially oxidize carbohydrate over fat, a process that helps to
maintain blood glucose homeostasis. Most of the TG in circulation during the post-
absorptive phase are associated with VLDL-TG[2]. This mechanism uncouples hepatic
TG synthesis (energy storing) from TG secretion and maintains a low blood content of
FA, which are cytotoxic.

NONALCOHOLIC FATTY LIVER DISEASE
TG are energy dense and chemical stable compounds. By weight, FA provide more
than twice as much energy (9 kcal/g) as carbohydrates and proteins (4 kcal/g), and
match the caloric density of diesel (8 kcal/g). From this perspective, fatty liver may be
considered a physiological adaptation and an evolutionary advantage to anticipate
periods of prolonged food (energy) shortage. However, lifestyle and eating habit
changes during the last century have made fatty liver the most common liver disease
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Figure 1

Figure 1  Lipid metabolism. The mobilization of fatty acids (FA) from their triglyceride (TG) storage in the adipose
tissue is promoted by TG lipases. The resultant FA are then released into the blood and taken up by hepatocytes.
Other sources of hepatic FA are the dietary lipids in chylomicrons and de novo lipogenesis induced by carbohydrates.
These FA are metabolized by mitochondrial or peroxisomal β-oxidation, accumulated in the cytoplasm inducing
lipotoxicity, or subsequently elongated, desaturated and re-esterified for synthesis of complex lipids such us
phospholipids (PL), diglycerides or TG. Some of the re-esterified TG are packed into very low-density lipoproteins
combined with apolipoprotein-B and exported into circulation. This process is regulated by microsomal triglyceride
transfer protein and accompanied by encapsulating the neutral lipid core with a PL monolayer enriched in
phosphatidylcholine molecules containing polyunsaturated FA. Enzyme reactions regulated by S-adenosylmethionine
(SAMe) and pathways in which SAMe deficiency may lead to the accumulation of TG and progression to nonalcoholic
steatohepatitis are indicated in blue. APOB: Apolipoprotein-B; DG: Diglycerides; ER: Endoplasmic reticulum; FA:
Fatty acids; MTTP: Microsomal triglycerides transfer protein; PC-PUFA: Phosphatidylcholines containing
polyunsaturated fatty acids; PL: Phospholipids; SAMe: S-adenosylmethionine; TG: Triglycerides; VLDL: Very low-
density lipoproteins.

linked to obesity, type 2 diabetes mellitus (T2D) and dyslipidemia, with a prevalence
of 25%[4-7]. Nonalcoholic fatty liver disease (NAFLD) covers a spectrum that ranges
from simple steatosis (NAFL), nonalcoholic steatohepatitis (NASH) with varying
degrees  of  fibrosis,  to  cirrhosis,  which  is  a  major  risk  factor  for  hepatocellular
carcinoma  (HCC).  NASH  is  distinguished  from  steatosis  by  the  presence  of
inflammation and hepatocyte injury. Approximately 25% of individuals with NAFL
progress to NASH. Of those that develop NASH, 25% progress to cirrhosis, of whom
at least 1%-2% per year develop HCC[4-6].  NASH is now the leading cause of liver
transplantation in women[8] and projected to be the leading indication in the United
States  by  2020[4-6].  Degree  of  liver  fibrosis  is  the  major  factor  linked to  all-cause
mortality[9]. However, NAFLD does not always follow an orderly progression. For
instance, it is possible for NAFLD patients to develop fibrosis without going through
the NASH stage, or to develop liver cancer despite absence of fibrosis or histologic
NASH[4-6,10]. Studies have reported 10-70% of HCC cases in NAFLD occurred without
cirrhosis[11]. The annual direct medical cost is > $100 billion in the United States alone
for NAFLD[4-6]. Despite the huge investment by the pharmaceutical industry there are
still  no  approved  therapies  targeting  NASH[12].  Lifestyle  changes  are  the  only
therapeutic strategy that can halt the progression of NAFLD[4-6]. Clearly, both a better
understanding  of  the  factors  that  promote  progression  from simple  steatosis  to
NASH, fibrosis and liver cancer is sorely needed to improve our therapeutic strategy.
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LIVER LIPID METABOLISM IN NAFLD
Consisting with its energy storage function, the relationship between the intrahepatic
TG (IHTG) content and VLDL-TG secretion rate is curvilinear. In subjects with normal
IHTG (up to 5% of  liver  weight),  VLDL-TG export  increases linearly with IHTG
content;  but  in  individuals  with steatosis,  VLDL-TG secretion reaches  a  plateau
independently of the amount of IHTG[13,14]. Genetic defects (APOB, APOC3, MTTP,
TM6SF2) that impair hepatic VLDL-TG secretion cause hepatic steatosis that may
progress to NASH with fibrosis,  even without obesity or T2D[15-19];  and impaired
APOB  synthesis  has  been  observed  in  NASH  patients  as  compared  to  obese
controls[20]. These results indicate that a reduction in the capacity to export VLDL-TG
increases the risk to develop NASH. Consistently, patients treated with antisense
APOB or MTTP inhibitors, which lower VLDL assembly and secretion, are associated
with hepatic steatosis, inflammation and fibrosis, which limit their utility[21,22]. The
discovery that the effect of defective VLDL-TG secretion extends well beyond the
management  of  liver  energy storage to  promote the  development  of  NASH and
fibrogenesis emphasizes the importance of identifying therapeutic targets for NASH
reversal  in  the  setting  of  impaired  VLDL-TG  secretion.  It  is  important  to  note,
however, that the increase in susceptibility to develop NASH in obese subjects that
are  carriers  of  the  TM6SF2  E167K  variant,  which  impairs  VLDL-TG  export,  is
accompanied by protection from cardiovascular disease due to the reduced serum
levels of atherogenic lipoproteins[23]. This is important when designing treatments that
aim to increase VLDL-TG export in NASH.

Hepatic steatosis arises when the uptake of FA and TG from circulation and DNL
saturate the rate of FA β-oxidation (in the mitochondria and peroxisomes) and VLDL-
TG export (Figure 1). NAFLD subjects often show an increase in DNL[13,24], and it has
been  proposed  by  many  that  DNL  is  a  major  pathway  in  the  pathogenesis  of
NAFLD[25]. On this premise the pharmacological inhibition of DNL that include (1)
Downregulating  SREBP-1c,  the  major  transcriptional  regulator  of  the  enzymes
involved  in  DNL,  (2)  Decreasing  the  activity  of  the  DNL  rate-limiting  enzyme,
specifically  acetyl-CoA  carboxylase  (ACC),  and  (3)  Inhibiting  stearoyl-CoA
dehydrogenase 1 (SCD1), the first irreversible step committing FA to TG synthesis, are
being  studied  in  phase  2  and 3  clinical  trials  of  NASH[26].  However,  a  potential
limitation of this approach is that a decrease in DNL may induce an increase in FA
uptake to the liver from circulation, the major source of hepatic lipids, or a decrease in
FA oxidation as compensatory mechanisms[27,28]. From an evolutionary stand point, it
seems  unlikely  that  an  increase  in  DNL  would  be  a  major  pathway  in  the
development of NAFLD. FA from the adipose tissue and from the diet contribute
about 59% of TG in the livers of patients with NAFLD, while DNL contributes 26% of
intrahepatic  FA, and dietary TG transported by chylomicrons 15% of liver fat[29].
Accordingly, the inhibition of liver FA uptake has been shown to improve NASH in
experimental models[30]; albeit at the risk of increasing FA in circulation, peripheral FA
stores, and weight gain, which may limit its potential therapeutic application. The
importance  of  increased  DNL  in  NASH  development  should,  however,  not  be
minimized since increased DNL may just as well overwhelm a deficient VLDL-TG
exporting  system which,  presumably,  is  already  saturated  caused  by  increased
hepatocellular lipid uptake. The increase in DNL in NAFLD may be an adaptive
mechanism for the generation of metabolic signals that direct lipids toward beneficial
pathways to improve energy balance even in the setting of excess FA accumulation, a
concept known as lipoexpediency (the antonym to lipotoxicity[31,32]). For instance, it
has been shown that FA synthase, the DNL enzyme that catalyzes the conversion of
acetyl-CoA to the 16-carbon FA palmitate, is involved in the activation of PPARα (an
activator of FA oxidation that is expressed at high concentrations in the liver) via the
synthesis  of  its  ligand,  palmitoyl-stearoyl-phosphatidylcholine (PC-16:0/18:1)[33].
NAFLD subjects also show an increase in the rate of hepatic FA oxidation[34,35] because
of mitochondrial uncoupling between FA oxidation and ATP synthesis[36]. Increased
FA  oxidation  in  NAFLD  may  be,  however,  detrimental  to  the  liver  due  to  the
excessive generation of reactive oxygen species. Together, these results suggest that
different individuals (NAFLD subtypes) could have different alterations in the major
pathway(s) that regulate FA homeostasis leading to NAFLD[37]. Evidence from clinical
trials indicating that only a small percent (20%-50%) of NASH patients benefit from
the  different  treatments  supports  this  concept[26].  Thus,  the  identification  of
noninvasive metabolic biomarkers that would allow the classification of patients into
different subtypes that correspond to the main alteration(s) leading to the initiation
and progression of NASH would be of great help for the development of precise
treatments.
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S-ADENOSLYMETHIONINE AS A LINK BETWEEN LIPID
METABOLISM AND HEPATOCELLULAR ONE CARBON
METABOLISM
Assessing the hepatic lipid metabolism, it is important to note that LD are not only
critically important for energy metabolism in terms of TG storage, but are also a major
supply of (1) PL precursors,  such as diacylglycerols (DG) and other lipids of the
monoalk(en)yl diacylglycerol family, that give rise to diacyl-PL and plasmalogens,
respectively; (2) Cholesterol, which is stored as cholesteryl-esters (CE); and (3) FA, not
only saturated FA, such as palmitate (16:0) and stearate (18.0), which are cytotoxic,
but also PUFA, such as AA, that gives rise to the eicosanoid family of inflammatory
mediators (prostaglandins, thromboxanes, and leukotrienes), and DHA, which is anti-
inflammatory[38]. The main lipid classes found in the core of liver LD are TG, DG, and
CE, which are enveloped by a PL monolayer (mainly made of PC) decorated with
proteins that are important in lipid remodeling, signaling and energy storing[39,40]. PC
found in  LD are  synthesized both  by  the  Kennedy route,  whose  last  step  is  the
reaction of CDP-choline with DG to form PC and cytidine monophosphate; and the
PE N-methyltransferase (PEMT) pathway, which converts PE rich in PUFA (mainly
AA and DHA) into PC through three successive N-methylations of the PE amino
group, with S-adenosylmethionine (SAMe) as the methyl donor[41] (Figure 1). SAMe is
a versatile molecule which is the source of essentially all methyl transfer reactions in
cells[42]. Liver plays a central role in SAMe metabolism, as this is where up to half of
the daily  intake of  methionine is  catabolized via  its  conversion to  SAMe[43].  This
reaction is catalyzed by methionine adenosyltransferase (MAT). Two genes encode for
MAT, MAT1A is expressed in normal differentiated liver and MAT2A is expressed in
all  extrahepatic  tissues  as  well  as  in  fetal  liver[43].  In  liver,  SAMe homeostasis  is
controlled by MAT-mediated synthesis  and utilization,  largely accomplished by
glycine N-methyltransferase (GNMT)[43] (Figure 2). Accordingly, GNMT deletion in
mice induces a massive increase in intrahepatic SAMe content[44] that accelerates the
flux  of  methyl  groups  through  multiple  pathways,  including  PEMT  and  DNA-
methylation, leading to aberrant liver lipid signatures, development of NASH, fibrosis
and HCC[45].

SAMe metabolism is coupled to the folate cycle and together they form the so
called one carbon metabolism (1CM) (Figure 3). 1CM circulates 1-carbon units from
different  nutritional  and  amino  acids  inputs  (choline,  betaine,  folate,  glucose,
methionine, serine, glycine and threonine), via SAMe and 5-methyltetrahydrofolate
(MTHF), into a large variety of outputs, such as PL-, protein- and DNA-methylation,
and glutathione (GSH),  polyamines,  reduced nicotinamide adenine dinucleotide
phosphate (NADPH), and nucleotide synthesis, that regulate key biological processes
ranging from VLDL-TG export,  gene expression and redox homeostasis,  to DNA
synthesis and cell growth. Mat1a knockout (KO) mice have chronically low hepatic
SAMe level  (75% lower)[46],  show reduced content  of  PC-PUFA (mainly  AA and
DHA)[37] and, as expected, impaired synthesis and release of VLDL-TG, which leads to
the accumulation of TG, DG and FA, accumulation of oxidized FA, oxidative stress,
and abnormal hepatic lipid signatures, which trigger the spontaneous development of
steatosis and its progression to NASH, fibrosis and HCC[37,43,46]. In Mat1a KO mice, low
SAMe also associates with increased serum levels of amino acids methionine, serine
and glycine; increased hepatic MTHF, decreased GSH content, and altered protein
and DNA methylation[37]. MAT1A is often downregulated in NAFLD patients with
more advanced fibrosis[47]. Consistently, several studies showed human NASH have
reduced  transmethylation[48],  hepatic  PC/PE  ratio[49],  and  abnormal  VLDL-TG
assembly and export[50]. These results suggest that SAMe deficiency may be a critical
driver of NASH in a subgroup of NAFLD patients. Importantly, SAMe treatment of
the  Mat1a  KO mice  after  onset  of  NASH for  two months  corrected many of  the
abnormalities, nearly normalized the liver histology, and reduced blood ALT, AST
and TG levels without altering cholesterol content[37]. SAMe treatment of rats fed a
methionine and choline deficient (MCD) diet, which reduces hepatic SAMe content
and induces steatohepatitis, also improved liver histology[51]. Taken together, these
results  support  the  concept  that  1)  a  reduction  in  SAMe is  a  common driver  of
NAFLD initiation and progression to NASH in humans, and 2) that NAFLD patients
with M-subtype serum metabolomic profile (see below) will likely benefit from SAMe
treatment, but this has not yet been examined.

CIRCULATING BIOMARKERS OF NAFLD
The advent of lipidomics has taught us that each lipid class (e.g., TG, PC) is made of a
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Figure 2

Figure 2  Regulation of hepatic S-adenosylmethionine homeostasis. Hepatic S-adenosylmethionine (SAMe)
content is regulated by the concerted activity of methionine adenosyltransferase (MAT) and glycine N-
methyltransferase (GNMT). Methionine is mainly metabolized by the liver where is converted to SAMe by the enzyme
MAT using ATP as co-substrate. SAMe, the main cellular methyl donor, is converted to S-adenosylhomocysteine
(SAH) by a legion of methyltransferases (MTs) that catalyze the methylation of multiple substrates (DNA, proteins,
phospholipids, small molecules, toxic and waist products). Excess SAMe is catabolized by GNMT, the most abundant
hepatic MT, to prevent undesirable methylations. The GNMT-sarcosine dehydrogenase (SDH) pathway recycles the
excess of methyl groups via generation of methylene-tetrahydrofolate (CH2-THF) and the methylation of
homocysteine to regenerate methionine (not shown) to maintain SAMe homeostasis. SAH is converted to
homocysteine, a metabolic crossroad that can be used for the regeneration of methionine (not shown) or the
synthesis of glutathione depending on whether the concentration of SAMe is low or high, respectively. SAMe is an
allosteric activator of GNMT and an inhibitor of the re-synthesis of methionine via the CH2-THF pathway (broken
lines). CH2-THF: 5,10-methylene-tetrahydrofolate; Gly: Glycine; GNMT: Glycine N-methyltransferase; MAT:
Methionine adenosyltransferase; Me-Gly: Methylglycine (sarcosine); Me-R: Methylated product; MTs:
Methyltransferases; MTHF: 5-methyltetrahydrofolate; R: Methylation substrate; SAH: S-adenosylhomocysteine;
SAMe: S-adenosylmethionine; SDH: Sarcosine dehydrogenase; THF: Tetrahydrofolate.

multitude of different lipid molecular species varying in the length and number of
double  bonds  of  their  FA  chains[52,53];  and  that  the  lipid  homeostatic  status  is
implemented by a large family of FA desaturases and elongases in conjunction with
lipases,  acyl-transferases,  PL  and  sphingolipid  synthesizing  enzymes,  and
phospholipases [54 ,55 ].  Changes  in  lipid  signatures  (lipid  molecular  species
compositions) can have profound effects on cell function, regulating processes such as
oxidative  phosphorylation[56].  A  sequence  variant  in  PNPLA3  that  is  strongly
associated with NAFLD has been related to TG remodeling and VLDL-TG secretion in
hepatocytes[57,58],  suggesting  that  abnormal  lipid  remodeling  may  be  key  to  the
development and progression of NAFLD. Accordingly, mice modify the liver lipid
profile in response to a variety of conditions that induce steatosis and its progression
to NASH, such as ablation of methionine adenosyltransferase 1A (Mat1a)[46], fasting or
feeding a high fat diet[41], or feeding an MCD diet[59]. It has also been observed that the
serum lipidomic profile reflects the liver lipidome[37], a finding which supports the
search of noninvasive NAFLD biomarkers in blood. At present, liver biopsy is the
“gold standard” to diagnose NASH, an invasive, imprecise and expensive procedure
with possible complications.  As a result,  numerous studies have been published
aiming to the identification of panels of  circulating biomarkers (using genomics,
transcriptomics,  proteomics and metabolomics)  for  steatosis,  NASH and fibrosis
diagnosis,  as  well  as  for  risk  prediction of  NAFLD progression and response to
therapy[60,61].  Some studies  have  shown that  lipidomic  patterns  can  differentiate
between normal liver and NAFLD[62,63]. Interestingly, recent studies also focus on the
discrimination between simple steatosis and NASH[64]  or the detection of advance
fibrosis[65]. However, a burning challenge in NAFLD research is the identification of
which patients with NAFLD will develop NASH and, for those with NASH, how fast
the disease will progress. At present, it is premature to conclude which of these blood
biomarkers, alone or in combination, would be best to precisely and rapidly diagnose
the severity of NASH and monitor the liver’s response to treatment[60,61].
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Figure 3

Figure 3  Schematic representation of one carbon metabolism. One carbon metabolism involves multiple
physiological processes in which one carbon units circulate from different nutritional and amino acids inputs (choline,
betaine, folic acid, glucose, methionine, serine, glycine and threonine), mediated by S-adenosylmethionine and 5-
methyltetrahydrofolate, and are converted into a wide variety of outputs, such as the methylation of phospholipids,
protein and DNA, and the synthesis of glutathione, polyamines, nucleotides, and reduced nicotinamide adenine
dinucleotide phosphate. CH2-THF: Methylene tetrahydrofolate; Gly: Glycine; GSH: Glutathione; Hcy: Homocysteine;
Met: Methionine; MTHF: 5-Methyltetrahydrofolate; NAPDH: Reduced nicotinamide adenine dinucleotide phosphate;
SAH: S-denosylhomocysteine; SAMe: S-adenosylmethionine; Ser: Serine; THF: Tetrahydrofolate; Thr: Threonine.

IDENTIFICATION OF NAFLD SUBTYPES
Despite the current essential role of biopsy for NAFLD diagnosis, its use as a tool for
determining  the  different  metabolic  pathways  that  lead  to  the  initiation  and
progression of NAFLD is certainly limited. Recently, lipidomics has permitted the
classification of NAFLD patients into different subtypes corresponding to the main
alteration(s) leading, in each case, to the initiation and progression of NASH based on
the  identification  of  specific  lipid  signatures.  We  identified  a  unique  serum
metabolomic profile that distinguished between Mat1a KO and wild type (WT) mice
and observed,  using a large cohort  of  535 serum samples from biopsied NAFLD
patients,  that  nearly  half  of  them  showed  this  Mat1a  KO-type  (M-subtype)
metabolomic signature[37] (Table 1). Although classification based on this approach is
not  indicative  of  disease  progression  (M-subtype  is  equally  distributed  among
patients with steatosis and NASH), a small group of serum metabolites that could
differentiate simple steatosis from NASH in the Mat1a KO and in NAFLD patients
was also identified. This work defined, for the first time, the metabolic landscape
affected  by  a  chronically  reduced  hepatic  SAMe  level  and  demonstrated  key
abnormalities that were corrected by SAMe treatment, which led to resolution of
NASH.

The MCD diet model is a widely-used murine model of NASH but animals lose
weight rapidly, have low serum TG levels, and do not become insulin resistant[66]. The
addition of  0.1% methionine  (normal  diet  contains  0.3% methionine)  minimizes
weight loss and yet mice fed the 0.1MCD diet  have low liver SAMe content and
developed  steatosis,  inflammation  and  fibrosis[59].  The  mechanism  for  steatosis
included impaired VLDL-TG secretion and reduced GSH, due to the decrease in
SAMe content, the concomitant reduction in the synthesis of PC-PUFA through the
PEMT pathway,  and increased uptake  of  FA via  CD36.  Despite  the  existence  of
important  differences  between both  models  [(1)  The  protein  content  of  SCD1 is
increased  in  Mat1a  KO and decreased  in  0.1MCD;  and (2)  Mitochondrial  FA β-
oxidation is  decreased in Mat1a  KO and increased in 0.1MCD],  the reduction in
hepatic SAMe content is the common driver of NAFLD initiation and progression to
NASH in both of them and, accordingly, NAFLD patients classified as M-subtype
were found to have a metabolic profile similar to the 0.1MCD model[59]  (Table 1).
Treatment of the 0.1MCD mice for two weeks, after the onset of NAFLD, with the
SCD1 inhibitor  arachidyl  amido cholanoic  acid (Aramchol,  a  Phase 2b test  drug
candidate in a clinical trial for NASH)[67], improved the liver histology[59] (Table 1).
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Table 1  Nonalcoholic fatty liver disease subtype classification

NAFLD subtype Characteristics Mouse model-based classification Treatments tested

M-Subtype Increased fatty acid uptake. Mat1a KO[37] SAMe

Low liver glutathione and SAMe content. 0.1MCD[59] Aramchol

Reduced synthesis of PC-PUFA.

Abnormal VLDL-TG assembly and export.

Non-M-Subtype Increased DNL. Ldlr KO/HFD[68] Obeticholic acid

Normal hepatic SAMe levels.

Normal VLDL-TG secretion.

High serum levels of cholesterol and TG.

NAFLD: Nonalcoholic fatty liver disease; SAMe: S-adenosylmethionine; PC-PUFA: Phosphatidylcholines containing polyunsaturated fatty acids; VLDL-
TG: Very low-density lipoprotein-triglycerides; DNL: de novo lipogenesis; KO: Knockout; MCD: Methionine and choline deficient.

Aramchol has been shown to improve the three key pathologies associated to NASH:
(1) Steatosis, by reducing TG synthesis and increasing VLDL-TG export and FA β-
oxidation;  (2)  Inflammation,  by  decreasing  lipotoxicity;  and  (3)  Fibrosis,  by
downregulation of collagen production by stellate cells[59]. We speculate Mat1a KO
mice, and therefore NAFLD patients with M-subtype serum metabolomic profile, will
likely benefit from Aramchol treatment.

Interestingly, nearly all NAFLD patients classified as having a non-M-subtype,
according to both the Mat1a KO and 0.1MCD metabolomics models of NASH, were
found to have a lipidomic signature similar to that found in low-density lipoprotein
receptor (Ldlr) KO mice fed a high fat diet (HFD)[68] (Table 1). This mouse model (Ldlr
KO/HFD) shows high serum levels of cholesterol and TG, normal liver SAMe, and
develop NASH and fibrosis. Treatment of the Ldlr KO/HFD mice for ten weeks, after
the onset of NAFLD, with the Farnesoid X Receptor agonist Obeticholic acid (OCA, a
Phase 3 test drug candidate in a clinical trial for NASH)[69], nearly normalized the liver
histology, reduced blood ALT, AST and TG levels and tended to lower cholesterol
content[68]. It would be interesting to determine if in the Aramchol and OCA clinical
trials for NASH, patients that responded to treatment were enriched in M- and non-
M-subtype, respectively.

However, this approach also results in a certain number of unclassified patients
(named as indeterminate)[37,59], which can be inherently linked to the unsupervised
classification methodology and validation procedure. Potential integration of other
omics data as well as clinical parameters may improve this novel subtyping approach
of  NAFLD patients,  allowing further  interpretation  of  the  complex  biochemical
processes and the heterogeneity of the disease.

CONCLUSION
To understand the pathogenesis of NASH, a useful conceptual framework is that the
liver’s  capacity to accumulate and export  TG supports two crucial  physiological
functions (1) Storing highly energetic, but also highly cytotoxic, FA stably as TG, and
(2) Placing into circulation the right amount of VLDL-TG to meet the energy needs of
extrahepatic tissues. Both functions collide when the IHTG content exceeds 5% and
hepatocytes must safely handle and accumulate excess FA into TG without increasing
the rate of VLDL-TG export[13,14]. The maximum capacity to safely handle FA by the
liver in the presence of increasing levels of IHTG may vary between individuals
depending on the variable contributions from different molecular pathway(s) that
result in TG accumulation; and NASH may develop when this maximum capacity is
exceeded. The observation that it is possible for NAFLD patients to develop NASH at
various grades of steatosis, supports this notion. However, clinical trials currently
designed for the treatment of NASH are based on the mechanism of action of a drug
that is administered to patients without confirming if that specific molecular pathway
is altered; which is against the view that NASH pathogenesis has diverse drivers.
Understandably, no more than 40% of patients in these trials have shown a positive
response to treatment[26]. Alternatively, a comprehensive landscape of the main NASH
drivers may be obtained, for example, by integrating multiomics data of well-defined
mouse  models  of  NASH,  for  which  the  efficacy  of  different  drugs  have  been
validated, with the multiomics data of a large cohort of well-characterized NASH
patients following a similar procedure to that previously described[37]. Such a strategy
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would associate patients’ multiomics signatures to specific therapies that could be
validated reanalyzing the data of clinical trials where the efficacy of these drugs has
been tested. In addition, this approach may allow advances in our understanding of
the complex biochemical processes and pathophysiological responses in NAFLD[70,71].
Moreover, it will be also important to integrate gene products, mRNA, proteins and
metabolites, with environmental factors, such as diet and life style[72,73]. Finally, this
strategy may be extended to the identification of  optimal therapeutic drug com-
binations.
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