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Abstract
BACKGROUND
The formation of liver fibrosis is mainly caused by the activation of hepatic
stellate cells (HSCs) and the imbalance of extracellular matrix (ECM) production
and degradation. The treatment of liver fibrosis mainly includes removing the
cause, inhibiting the activation of HSCs, and inhibiting inflammation. NOD-like
receptor (NLR) family, caspase activation and recruitment domain (CARD)
domain containing 5/NOD27/CLR16.1 (NLRC5) is a highly conserved member
of the NLR family and is involved in inflammation and immune responses by
regulating various signaling pathways such as nuclear factor-κB (NF-κB)
signaling. It has been found that NLRC5 plays an important role in liver fibrosis,
but its specific effect and possible mechanism remain to be fully elucidated.

AIM
To investigate the role of NLRC5 in the activation and reversion of HSCs induced
with transforming growth factor-β (TGF-β) and MDI, and to explore its
relationship with liver fibrosis.

METHODS
A total of 24 male C57BL/6 mice were randomly divided into three groups,
including normal, fibrosis, and recovery groups. Twenty-four hours after a liver
fibrosis and spontaneous reversion model was established, the mice were
sacrificed and pathological examination of liver tissue was performed to observe
the degree of liver fibrosis in each group. LX-2 cells were cultured in vitro and
treated with TGF-β1 and MDI. Real-time quantitative PCR (qPCR) and Western
blot were used to analyze the expression levels of NLRC5, α-smooth muscle actin
(α-SMA), and collagen type I alpha1 (Col1a1) in each group. The activity of NF-
κB in each group of cells transfected with NLRC5-siRNA was detected.

RESULTS
Compared with the normal mice, the expression level of NLRC5 increased
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significantly (P < 0.01) in the fibrosis group, but decreased significantly in the
recovery group (P < 0.01). In in vitro experiments, the content of NLRC5 was
enhanced after TGF-β1 stimulation and decreased to a lower level when treated
with MDI (P < 0.01). The expression of α-SMA and Col1a1 proteins and mRNAs
in TGF-β1-mediated cells was suppressed by transfection with NLRC5-siRNA (P
< 0.01). Western blot analysis showed that the expression of NF-κB p65 protein
and phosphorylated IκBα (p-IκBα) was increased in the liver of mice in the
fibrosis group but decreased in the recovery group (P < 0.01), and the protein
level of nuclear p65 and p-IκBα was significantly increased after treatment with
NLRC5-siRNA (P < 0.01).

CONCLUSION
NLRC5 may play a key role in the development and reversal of hepatic fibrosis
through the NF-κB signaling pathway, and it is expected to be one of the clinical
therapeutic targets.

Key words: NLRC5; Hepatic stellate cells; Liver fibrosis; Recovery
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Core tip: Liver fibrosis is a pathological tissue repair process characterized by excessive
deposition of extracellular matrix in the liver, accompanied by inflammation, and
eventually progresses to cirrhosis. Several recent reports have shown that effective
treatment can reverse liver fibrosis, which is associated with inactivation of hepatic
stellate cells (HSCs) and multiple signaling pathways. NOD-like receptor (NLR) family,
caspase activation and recruitment domain (CARD) domain containing
5/NOD27/CLR16.1 (NLRC5) is the largest member of the NLR family and is highly
expressed in immune tissues or organs such as the spleen, lung, thymus, and liver,
mediating inflammation inhibition and antiviral response. This study aimed to
investigate the role of NLRC5 in activating and devitalization of HSCs and its
mechanism. The results demonstrate that NLRC5 may be involved in the development
and reversal of liver fibrosis by negative regulation of nuclear factor-κB.
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INTRODUCTION
Liver fibrosis is a common consequence of long-term liver repair after injury caused
by different etiologies[1-3]. The condition of liver fibrosis assumes the chronic process
and continually progresses in the presence of injury factors. Ultimately, it will lead to
a  series  of  serious  complications  and increase  the  mortality  rate  related to  liver
cirrhosis[4,5]. With the gradual understanding of the fibrosis mechanism, a series of
treatment  measures  such as  removing the cause and inhibiting the activation of
hepatic stellate cell (HSC) have been applied to clinical therapy[6-9].  Several recent
reports have shown that frequent activation of HSCs for a long time will  lead to
extensive  deposition  of  collagen  fibers,  resulting  in  liver  fibrosis  and  liver
dysfunction[10]. Transforming growth factor-β1 (TGF-β1) plays an important role in the
activation of HSCs and is considered to be one of the most important fibrotic factors
because it can inhibit extracellular matrix (ECM) degradation while promoting ECM
synthesis[11-14]. It is well known that clearly knowing genes related to hepatic fibrosis,
blocking the persistent damage of the liver, and then reversing liver fibrosis can be
helpful in the treatment of this disease. The reversal of liver fibrosis is controversial
for a long time. Studies in recent years, however, have found that liver fibrosis is
reversible,  and even patients with advanced liver fibrosis  may return to normal,
which  has  a  correlation  with  the  degradation  of  ECM  and  various  signaling
pathways[15-21].  Moreover,  Abidali  et  al[22]  confirmed that  rat  liver  fibrosis  can be
automatically reversed after stopping the injection of carbon tetrachloride (CCl4), but
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the possible mechanism of progression and reversal of liver fibrosis was not analyzed.
Our previous study found that NLRC5 protein levels fluctuated abnormally during
progression and reversal of liver fibrosis. As the largest member of the NOD-like
receptor (NLR) family, NLRC5 is widely expressed in various tissues and cell lines of
humans and mice, but is mainly concentrated in immune cells and immune-related
tissues[23,24]. Current studies on NLRC5 are mostly focused on the regulation of major
histocompatibility complex (MHC) I gene expression and the participation in the
antiviral innate immune response[25,26]. In the study by Catalano et al[27], NLRC5 can
negatively regulate the nuclear factor-κB (NF-κB) signaling pathway by inhibiting the
phosphorylation of  κB-inhibiting protein  kinase  alpha antibody (IKKα)  and κB-
inhibiting protein kinase beta antibody (IKKβ), while the activation of this signaling
pathway is closely related to the activation of HSCs. These results suggest that NLRC5
is involved in the development of liver fibrosis, however, there are few reports on the
role of NLRC5 in liver fibrosis. Therefore, this study aimed to investigate the role and
mechanism of NLRC5 in HSC activation and reversal, and to explore its relationship
with liver fibrosis to evaluate its clinical application value.

MATERIALS AND METHODS

Animal model
A total of 24 male C57BL/6 mice weighing 16-18 g were provided as the CCl4 liver
injury model by the First Affiliated Hospital of Zhengzhou University. Animals were
randomly divided into the following groups: normal mice (normal group), mice with
liver fibrosis (fibrosis group), and mice with reversal of liver fibrosis (recovery group).
Before the experiments, they were placed in a clean animal room at 24 °C with free
access to water and food for one week. Fibrosis was induced in mice by subcutaneous
administration of CCl4 (10% CCl4 in olive oil, Shanghai Zhanyun Chemical Co., Ltd.)
at a dose of 2 mL/kg, 3 times a week for 6 wk, and in the recovery group, it was
discontinued for another 4 wk. The normal group was injected with the same dose of
olive oil for the same treatment time. The mice were sacrificed at 24 h after the last
injection of CCl4 and liver tissues were excised to confirm the successful establishment
of the fibrosis model.

Cell culture
Human hepatic stellate cell line LX-2 (Shanghai Yaji Biotechnology Co., Ltd.) was
cultured in DMEM medium (Gibco) containing 10% fetal bovine serum (FBS, Gibco),
100 IU/mL penicillin/streptomycin, and 1% glutamine. Then, the medium was placed
in an incubator with 5% CO2 and 70%-80% humidity at 37 °C. In accordance with the
routine  culture,  the  medium  was  changed  daily.  Digestion  and  passage  were
performed until 80% confluence of cells. Cells in the logarithmic growth phase were
used in experiments. Four groups of LX-2 cells were studied: (1) TGF-β1: treated with
recombinant human 5 ng/mL TGF-β1 (PeproTech, United States) and cultivated for
24 h;  (2)  Control:  normal  cells;  and (3)  TGF-β1 + MDI:  MDI (50 μL 3-isobutyl-1-
methylxanthine + 10 μL dexamethasone + 576.7 μL insulin, Sigma, United States) was
added into culture of LX-2 cells for 48 h following treatment with 2.5 ng/mL TGF-β1.

Histological examination
The fresh liver tissues of mice were removed and fixed in fixative solution prepared
(10% formalin, Bouin's fixative) to denature and coagulate tissue and cellular proteins.
Then, the tissue blocks were dehydrated using graded ethanol, cleared in xylene,
embedded in paraffin, and sectioned at 5 μm thickness. After xylene dewaxing and
gradient ethanol hydration, hematoxylin and eosin staining and Masson staining
(Shanghai  Ruchuang  Biotechnology  Co.,  Ltd.)  were  performed  to  observe  the
histopathological changes of the liver.

Immunohistochemistry
Routine xylene dewaxing, gradient ethanol hydration, and citric thermal remediation
for 15 min were done and paraffin-embedded liver tissue was handled with 3% H2O2

for 10 min to block endogenous peroxidase activity. Then, normal sheep serum was
used to seal up the nonspecific sites. After that, the sections were incubated with
primary antibody against α-SMA (dilution, 1:400; Shanghai Ru Chuang Biotechnology
Co., Ltd.) overnight at 4 °C, followed by incubation with a biotinylated secondary
antibody  (Shanghai  Ruchuang  Biotechnology  Co.,  Ltd.)  for  60  min  at  room
temperature. The sections were stained with DAB, counterstained with haematoxylin,
finally mounted, and observed under a microscope.

SiRNA transfection

WJG https://www.wjgnet.com June 28, 2019 Volume 25 Issue 24

Zhang YZ et al. NLRC5 function in activation and reversion of HSCs

3046



The design and synthesis of specific siRNA for NLRC5 were assisted by Shanghai
Hengfei  Biotechnology Co.,  Ltd.  The NLRC5-siRNA sense sequence was 5'-GGG
ACTGAGAGCTTTGTAT-3 ' ,  and  the  ant isense  sequence  was  5 ' -CGC
ACCCTAGACTGAAA-3'. The sense sequence of the NLRC5-siRNA negative control
was  5'-UUCUCCGAACGUGUCACGUTT-3',  and  the  antisense  was  5'-ACG
UGACACGUUCGGAGAATT-3'. LX-2 cells were cultured in DMEM medium with
10%  FBS  at  a  density  of  2  ×  105  cells/mL.  The  diluted  LipofectamineTM  2000
(Invitrogen,  United  States)  were  mixed  with  the  diluted  siRNA  oligomer  and
incubated for 20 min, then the mixture was added into the medium. The medium was
changed at 6 h post-transfection, and TGF-β1 was added at a concentration of 10
ng/mL to culture for an additional 48 h. Q-PCR and Western blot were used to detect
the expression of NLRC5, and normal LX-2 cells transfected with NLRC5-siRNA
negative control were used as controls.

Real-time fluorescent quantitative PCR
Total  RNA  was  extracted  from  liver  tissue  and  LX-2  cells  using  Trizol  reagent
(Invitrogen, United States) according to the manufacturer’s instructions. cDNA was
synthesized using a reverse transcription kit (Dalian Bao Bioengineering Co., Ltd.),
and the target gene was detected using an SYBR Green Fluorescence Quantitation Kit
(Dalian Bao Bioengineering Co., Ltd.). The 25-μL PCR reaction system consisted of 1
μL of upstream and downstream primers (1 μmol/L), 1 μL of cDNA product, 2.5 μL
of Taq 10 × Buffer, 1 μL of Taq DNA polymerase, and 3 μL of dNTP mixture, and the
remaining  volume  was  supplemented  with  deionized  water.  The  amplification
parameters were pre-denaturation at 94 °C for 5 min and 35 cycles of denaturation at
94 °C for 5 s, annealing at 59 °C for 30 s, and extension at 72 °C for 1 min. β-actin was
used as an internal reference gene, and the Ct value of each sample was analyzed. The
primer sequences were designed according to the Genbank database and using Prime
5  software,  and  the  sequences  used  are  as  follows:  NLRC5  forward,  5’-
CTATCAACTGCCCTTCCACAAT-3’ and reverse, 5’-TCTCTATCTGCCCACAGCC-
TAC-3’;  α-SMA  forward,  5’-CTATTCCTTCGTGACTACT-3’  and  reverse,  5’-
ATGCTGTTATAGGTGGTGGTT-3’;  Col1a1  forward,  5’-CCCGGGTTTCAGAG-
ACAACTTC-3’  and  reverse,  5’-TCCACATGCTTTATTCCAGCAATC-3’;  β-actin
forward,  5’-GAGGCACTCTTCCAGCCTTC-3’  and  reverse,  5’-GGATGTC
CACGTCACACTTC-3’.

Western blot
Nuclear and cytoplasmic proteins were obtained from mouse liver tissues and cells
using radioimmunoprecipitation assay (RIPA) lysis buffer and PMSF (100:1 Beijing
Saibaisheng Gene Technology Co., Ltd.). The protein contents of the samples were
determined by the bicinchoninic acid (BCA, Beijing Saibaisheng Gene Technology Co.,
Ltd.) method. Twenty micrograms of protein samples were separated by 10% SDS-
PAGE, and transferred to polyvinylidene fluoride membranes. Following blocking
with 5% skim milk for 1 h at room temperature, the membranes were incubated with
primary antibodies against NLRC5 (Shanghai Youningwei Biotechnology Co., Ltd.) at
1:3000 dilution, α-SMA (Shanghai Gefan Biotechnology Co., Ltd.) at 1:3000 dilution,
Col1a1 (Shanghai Gefan Biotechnology Co., Ltd.) at 1:3000 dilution, β-actin (Santa
Cruz) at 1:1000 dilution, IκBα (Cell Signal) at 1:2000 dilution, p-IκBα (Cell Signal) at
1:2000 dilution, and p65 (Cell  Signal) at 1:2000 dilution overnight at 41 °C. After
washing with TBST, diluted IgG antibody conjugated with horseradish peroxidase
(1:2000  Santa  Cruz)  was  added  to  incubate  for  2  h  at  room  temperature.  The
membranes  were  developed with an enhanced chemiluminescence detection kit
(Beijing Saibaisheng Gene Technology Co., Ltd.).

Statistical analysis
Statistical analyses were performed using SPSS 19.0 software, and the experimental
data are expressed as the mean ± standard deviation. One-way ANOVA was applied
to determine the significant difference, and the differences between groups were
tested using the LSD test. P < 0.05 was considered statistically significant.

RESULTS

Histopathological results of liver fibrosis
Fibrosis was determined by HE staining and Masson staining. After 6 wk of CCl4

induction, the mouse liver become coarse and dark gray in color. The liver tissue
showed  relative  swelling,  punctate  necrosis,  and  regeneration.  Infiltration  of
inflammatory cells, fibrous hyperplasia, steatosis, and ballooning changes were found
in the central vein and the portal area, and the structure of partial hepatic lobules was
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not  clear.  In  contrast,  the  liver  of  the  normal  mice  was  red  in  color  and  well
marginated, the structure of the hepatic lobule was normal and integral, the cords of
liver  cells  were  arranged  orderly,  and  there  was  no  degeneration,  necrosis,  or
inflammatory cells infiltration. In the recovery group, the contour of liver tissue was
fine  and  the  structure  became  normal  (Figure  1).  In  addition,  the  results  of
immunohistochemistry  showed  that  the  expression  of  α-SMA  was  high  in  the
experimental group, distributed in the cytoplasm of hepatocytes, and aggregated in
the portal area, but only a little was observed in the normal and recovery groups
(Figure  2).  The  relative  protein  and  mRNA  levels  of  α-SMA  and  Col1a1  were
increased in LX-2 cells under TGF-β1 stimulation (P < 0.01), while decreased after
MDI treatment (P < 0.05). As shown in Figure 3, the successful establishment and
reversal of fibrosis model were confirmed.

Expression of NLRC5 in liver tissue and LX-2 cells
To investigate the differential  expression of  NLRC5 during fibrosis  and reversal
model, Western blot and qPCR were used to analyze the relative protein and mRNA
expression levels of NLRC5. In contrast with the normal group, the expression level of
NLRC5 increased significantly  in  the  fibrosis  group (P  <  0.01),  but  significantly
decreased in the recovery group (P < 0.01) (Figure 4). For the in vitro experiments, the
expression level of NLRC5 was enhanced after TGF-β1 stimulation (P < 0.01), and
decreased to a lower level when treated with MDI (P < 0.01) (Figure 5).

Effect of NLRC5-siRNA transfection on the expression of NLRC5 in LX-2 cells
Western  blot  was  applied  to  confirm  whether  NLRC5-siRNA  was  successfully
transfected into LX-2 cells. The results showed that the NLRC5 protein level in LX-2
cells transfected with NLRC5-specific siRNA was obviously lower compared with
control cells and NLRC5-siRNA negative control (P < 0.01) (Figure 6).

Effect of NLRC5 on the expression of α-SMA and Col1a1 in LX-2 cells
α-SMA is one of the markers of activated HSCs. Q-PCR and Western blot were used
to  analyze  the  relationship between the  change of  NLRC5 in  LX-2  cells  and the
expression of α-SMA. As shown in Figure 7, it was observed that the down-regulation
of NLRC5 decreased the expression levels of α-SMA protein and mRNA in LX-2 cells
stimulated with TGF-β1 (P < 0.01), and Col1a1 expression was also suppressed by
transfection of NLRC5-siRNA (P < 0.01).

Effect of NLRC5 on NF-κB activity in hepatic fibrosis
Western blot analysis showed that the expression of p65 and p-IκBα increased in the
liver of mice in the fibrosis group (P < 0.01), but decreased in the recovery group (P <
0.05). There was no significant change in total protein of IκBα (Figure 8). To detect the
relationship between NLRC5 and the NF-κB signaling pathway during the activation
of  HSCs,  the  effect  of  NLRC5-siRNA  on  LX-2  cells  induced  with  TGF-β1  was
investigated. The results showed that the protein levels of nuclear p65 and p-IκBα
were significantly increased after treatment with NLRC5-siRNA (P < 0.01), while the
level of cytoplasmic p65 was decreased (P < 0.05), and the expression of IκBα protein
was almost unchanged (Figure 9).

DISCUSSION
Hepatic fibrosis is a common pathological change in chronic liver injury, involving
multiple types of molecules, cells,  and tissues[28].  If  treated not appropriately, the
condition would develop to histological cirrhosis or hepatocellular carcinoma, and
result in serious consequences. From the pathological mechanism, liver fibrosis is
mainly induced by the accumulation of ECM protein in the hepatic lobules and portal
area. Excessive deposition of ECM destroys the normal structure of the liver, leading
to hepatic function damage[29,30]. In this process, activation of HSCs is the key point in
hepatic fibrosis. Phenotypic modulation of activated HSCs is enhanced, then these
cells are transformed into myofibroblast-like cells, express α-SMA, produce ECM, and
accelerate liver fibrosis following hepatic damage[31-33]. Meanwhile, TGF-β1 inhibits
HSC apoptosis by means of autocrine and paracrine mechanisms, induces matrix
protein expression, and therefore becomes one of the most important cytokines in the
process of liver fibrosis[34]. Since the promoter of the TGF-β1 activating factor tissue
transglutaminase gene contains a binding site for NF-κB, the synthesis of TGF-β1 is
regulated by NF-κB[35,36]. Additionally, experimental studies have shown that NF-κB
can amplify the liver inflammatory reaction by enhancing the expression of some
factors related to HSC activation including inflammatory factors (IL-1, TNF-α, and IL-
6), cell adhesion factors, and transforming growth factors, aggravating the disease[37-40].
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Figure 1

Figure 1  Masson staining for assessment of liver tissue in each group (×200). A: Liver tissue from normal mice (normal group); B: Mice with liver fibrosis (fibrosis
group); C: Reversal of liver fibrosis in mice (recovery group).

Currently, NLRC5 is a new direction in the study of the NF-κB signaling pathway. It
has been confirmed that NLRC5 plays an important role in regulating the NF-κB
signaling pathway, type I interferon (INF-I) signaling pathway, and MHC-I gene
expression[41,42].  As a member of  the NLR family,  NLRC5 can respond to various
pathogens and intracellular danger signals and participates in the body's innate and
adaptive immune responses. It is worth mentioning that NLRC5 is related to immune
responses, besides that it may be a key regulator during development and reversal of
hepatic fibrosis[43],  but little is known about the role of NLRC5 in hepatic fibrosis.
Therefore, this article analyzed the relationship between NLRC5 and hepatic fibrosis
and its related mechanism, in order to evaluate its clinical application value.

In this study, the expression levels of NLRC5 in liver tissue and LX-2 cells were
analyzed to explore the role of NLRC5 in liver fibrosis, and the results showed that
the expression of NLRC5 in the fibrosis group was significantly higher than that in the
normal and recovery groups. Moreover, NLRC5 was increased in LX-2 cells treated
with TGF-β1 while decreased in cells following treatment with MDI as compared with
the control cells. Based on these results, it was suggested that NLRC5 may play an
important role during the occurrence and reversal of liver fibrosis. Transfection with
NLRC5-siRNA in  activated  LX-2  cells  can  reduce  the  expression  of  α-SMA and
Col1a1, suggesting a decrease in the number of activated HSCs.

Large animal experiments indicated that the major pathophysiological mechanism
of HSC activation is transcriptional activation mediated by NF-κB[44,45]. The expression
and secretion of various inflammatory factors and adhesion molecules can be induced
and involved in the formation of liver fibrosis during increased NF-κB activity. In the
resting state, p65 subunit binds to the IκB monomer and is located in the cytoplasm,
and NF-κB in the nucleus is deficient. When suffering the outsider incitement, p65
translocates into the nucleus and activates NF-κB through the classical  pathway
following the phosphorylation and degradation of IκBα[46]. The results of this study
showed that the expression levels of p65 and p-IκBα in the nucleus were significantly
increased after NLRC5-siRNA treatment, suggesting that NLRC5 may be involved in
liver fibrosis by negative regulation of NF-κB. In the study by Chang G et al[47], the
high expression of NLRC5 protein in mouse hepatic fibrosis after activation of the NF-
κB signaling pathway was presented. NLRC5 protein, because of its high expression
level and large relative molecular mass, can inhibit the binding of NEMO to IKKα and
IKKβ and down-regulate the expression of nuclear p65 and p-IκBα, and it is also
activated by IKKα and IKKβ, forming a negative regulation cycle[48,49]. The inactive
NF-κB stays within the cytoplasm, close to IκB family members in the inhibitory
protein  family.  The  interaction  of  NLRC5  with  IKKα  and  IKKβ  blocks  the
phosphorylation of the inhibitory protein IκB and eventually inhibits the activation of
NF-κB signaling pathway[50]. More importantly, it was found that specific knockout of
NLRC5 not only enhanced NF-kB and type I interferon signaling and target gene
expression, but also modulated antiviral immune responses of multicellular lines and
primary cells in a study of NLRC5 and NF-κB[51]. With conserved biological functions
in humans and mice, as well as in various cell types, NLRC5 may be critical in the
maintenance of immune homeostasis, particularly in regulation of innate immune
responses[52].  However, the relationship between NLRC5 and the NF-kB signaling
pathway and its roles in many types of diseases have yet to be determined. According
to the results of this study, we infer that NLRC5 itself is induced by NF-κB-dependent
mechanisms  in  LX-2  cells.  Activation  of  TGF-β1  increases  the  expression  of
phosphorylated IκBα,  stimulates  the  translocation of  p65 from the cytoplasm to
nucleus, and promotes the expression of NLRC5 in HSCs. The interaction of NLRC5
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Figure 2

Figure 2  Immunohistochemical staining for α-SMA in liver tissue in each group (×200). A: Liver tissue from normal mice (normal group); B: Mice with liver
fibrosis (fibrosis group); C: Reversal of liver fibrosis in mice (recovery group).

and  NF-κB  accelerates  the  development  of  liver  fibrosis.  There  are  still  some
limitations  that  need  to  be  improved  in  this  paper.  The  research  on  the  NF-κB
signaling  pathway  is  not  deep  enough  and  whether  there  are  other  signaling
pathways involved requires further research.

In conclusion, NLRC5 may participate in the process of HSC activation and ECM
synthesis through the NF-κB signaling pathway. It can intervene in the key processes
related to liver fibrosis, which provides a theoretical basis for clinical treatment of
liver fibrosis.
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Figure 3

Figure 3  Expression of α-SMA and Col1α1 in LX-2 cells. A: Relative mRNA expression; B: Quantification of Western blot. aP < 0.05 vs control; bP < 0.05 vs
transforming growth factor-β1. TGF-β1: Transforming growth factor-β1.

Figure 4

Figure 4  Expression level of NLRC5 in each group of mice. A: Relative mRNA expression; B: Quantification of Western blot. aP < 0.05 vs normal; bP < 0.05 vs
fibrosis.

Figure 5

Figure 5  Expression level of NLRC5 in LX-2 cells. A: Relative mRNA expression; B: Quantification of Western blot. aP < 0.05 vs control; bP < 0.05 vs transforming
growth factor-β1. TGF-β1: Transforming growth factor-β1.
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Figure 6

Figure 6  Effect of NLRC5 knockdown in LX-2 cells. A: Western blot; B: Quantification of Western blot. Lane 1: LX-2 cells transfected with NLRC5-siRNA; Lane 2:
LX-2 cells transfected with control-siRNA; aP < 0.05 vs control-siRNA.

Figure 7

Figure 7  Effect of NLRC5 knockdown on α-SMA and Col1a1 expression in LX-2 cells. A: Relative mRNA expression; B: Quantification of Western blot. aP < 0.05
vs control; bP < 0.05 vs NLRC5-siRNA.

Figure 8

Figure 8  Effect of NLRC5 on nuclear factor-κB activity in mice hepatocytes. A: Western blot; B: Quantification of Western blot. Lane 1: Normal mice (normal
group); Lane 2: Mice with liver fibrosis (fibrosis group); Lane 3: Reversal of liver fibrosis in mice (recovery group); aP < 0.05 vs normal; bP < 0.05 vs fibrosis.
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Figure 9

Figure 9  Effect of NLRC5 on nuclear factor-κB activity in LX-2 cells. A: Western blot; B: Quantification of Western blot. Lane 1: Control; Lane 2: LX-2 cells
transfected with NLRC5-siRNA; Lane 3: LX-2 cells transfected with control-siRNA; aP < 0.05 vs control; bP < 0.05 vs NLRC5-siRNA.

ARTICLE HIGHLIGHTS
Research background
Continuous progression of liver fibrosis is the key to the development of chronic liver disease to
cirrhosis. The nuclear factor-κB (NF-κB) signaling pathway is closely related to the formation
and reversion of hepatic fibrosis. It has been found that NLRC5 is involved in the development
of liver fibrosis  by regulating the NF-κB signaling pathway and some studies suggest  that
NLRC5 is a key regulator of liver fibrosis and its reversal, but the role of NLRC5 in liver fibrosis
remains unclear.

Research motivation
NLRC5 is highly expressed in immune tissues or organs and involved in the regulation of innate
and adaptive immunity by inducing inflammation and cell death. Researches have shown that it
may play an important role in the activation and inactivation of hepatocytes, but the research on
the mechanism of action fell far behind the immunological study. Our study aimed to investigate
the role and mechanism of NLRC5 in liver fibrosis to evaluate its clinical application value.

Research objectives
In this study, we analyzed the expression levels of NLRC5 in liver tissue and LX-2 cells and the
activity of NF-κB in hepatic fibrosis after treatment with NLRC5-siRNA. The purpose of this
study was to explore the relationship between NLRC5 and the NF-κB signaling pathways during
the development and reversal of hepatic fibrosis.

Research methods
Eight-week-old male  C57BL/6 mice  were  randomly divided into  groups to  establish liver
fibrosis and its reversal model. Meanwhile, human hepatic stellate cell (HSC) line LX-2 was
cultured in vitro and treated with transforming growth factor-β1 (TGF-β1) and MDI to activate
and inactivate the cells. The degree of liver fibrosis and the expression of NLRC5 in mouse
tissues and LX-2 cells were detected by qPCR and Western blot. After interfering with NLRC5 by
siRNA, the activity of NF-κB in liver fibrosis was detected.

Research results
The expression level of NLRC5 was higher in liver tissue of fibrosis mice and activated HSCs,
but decreased in mice with hepatic fibrosis with spontaneous reversion and inactivated HSC
cells (P < 0.01). After treatment with NLRC5-siRNA, the activity of the NF-κB signaling pathway
was increased in the liver of fibrosis mice and activated HSCs (P < 0.05).

Research conclusions
NLRC5 may play a key role in regulating the progression and reversal  of  liver  fibrosis  by
negatively regulating the NF-κB signaling pathway, and it is expected to be one of the clinical
therapeutic targets.

Research perspectives
NLRC5 plays a physiologically important role in maintaining immune homeostasis, particularly
in regulating innate immune responses. Exploring the role and mechanism of NLRC5 and NF-κB
in liver fibrosis can provide an important reference for the treatment of liver fibrosis.
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