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Abstract

Background: With the aim of preparing a more effective, safe and economical vaccine for tuberculosis, inhalable
live mycobacterium formulations were evaluated.

Methods: Alginate particles in the size range of 2-4 um were prepared by encapsulating live Bacille Calmette—
Guérin (BCG) and “Mycobacterium indicus pranii” (MIP). These particles were characterized for their size, stability
and release profile. Mice were immunized with liquid aerosol or dry powder aerosol (DPA) alginate encapsulated
mycobacterium particles and their in-vitro recall response and infection with mycobacterium H37Rv were
investigated.

Results: It was found that the DPA of alginate encapsulated mycobacterium particles invoked superior immune
response and provided higher protection in mice than the liquid aerosol. The BCG encapsulated in alginate particles
(BEAP) and MIP encapsulated in alginate particles (MEAP) were engulfed by bone marrow dendritic cells (BMDCs) and
co-localized with lysosome. The MEAP/BEAP activated BMDCs exhibited higher chemotaxis movement and had
enhanced ability of antigen presentation to T cells.

The in-vitro recall response of BEAP/MEAP immunized mice when compared in terms of proliferation index and
Interferon gamma (IFN-gamma) released by splenocytes and mediastinal lymph node cells was found to be higher
than mice immunized by liquid aerosol of BCG/MIP. Finally, different groups of immunized mice were infected with M.
tb H37Rv and after 16 weeks the Colony forming units (CFUs) in lung and spleen estimated. The bacilli burden in the
BEAP/MEAP immunized mice was significantly less than the respective liquid aerosol immunized mice and the
histopathology of BEAP/MEAP immunized mice lungs showed very little damage.

Conclusions: These inhale-able vaccines formulation of alginate coated live mycobacterium are more immunogenic as
compared to the aerosol of bacilli and they provide better protection in mice when infected with H37Rv.
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Background

There is unmet need for better vaccine technologies for
the treatment and prevention of infectious diseases. Tu-
berculosis (TB) is one of the major infectious diseases
which accounts for very high morbidity and mortality
around the world. Bacille Calmette—Guérin (BCG), the
only vaccine available against tuberculosis has variable ef-
ficacy [1]. There are a few candidate TB vaccines in the
pipeline [2—8] and there have been many attempts to im-
prove the efficacy of existing TB vaccines by investigating
alternate mode of delivery [9, 10] and formulations [11].

The pulmonary route of immunization has been shown
to generate more protective immune response in lung dis-
eases because “immune responses are often strongest in
compartments proximal to the site of vaccine application”
[12]. The pulmonary delivery can be achieved by liquid
aerosol or by dry powder aerosol (DPA). DPA has been
preferred in many formulations of therapeutic drugs [13—
17] and vaccines [18, 19] as it is easy to generate and has
higher stability at room temperature. Moreover, the pul-
monary delivery being a needle free immunization method
has many obvious advantages like safety, ease of delivery
etc. [20, 21].

Since TB is mainly a lung disease, a vaccine against TB
delivered directly to lung is expected to provide higher
protection as compared to any other route. There have
been many reports which support this hypothesis [22, 23].
In order to achieve longer shelf life and ease of delivery,
Lucila Garcia-Contreras et al. [24, 25] prepared DPA of
BCG by spray drying.

In a few vaccine formulations, the encapsulation of anti-
gen in the polymeric particles is known to provide adjuvant
like effect which enhances their protective efficacy [26—30].
We encapsulated BCG and Mycobacterium indicus pranii
(MIP) in bio-polymeric alginate micro-particles, formulated
the encapsulated mycobacterium as DPA and investigated
the improvement obtained in terms of their immunogen-
icity and protective efficacy.

Methods

Animals

All animal experiments were carried out on inbred, 4—6
weeks old C57BL/6 or Balb/c mice obtained from Jack-
son’s laboratory, USA and bred and maintained in the
small animal facility of the National Institute of Immun-
ology, New Delhi. The animals received ad libitum access
to acidified autoclaved water and food. The temperature
and humidity of the housing room was maintained at 21—
23°C and 40-60% respectively. Animals were kept at a 14
h light - 10 h dark cycle. Typically, four animals were ran-
domly assigned in each group and the entire experiment
was repeated twice. All animal experiments and reporting
adhere to the ARRIVE guidelines [31].
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Reagents

D(+) Trehalose dihydrate, Calcium chloride, Polyvinyl alco-
hol (M.W. 30,000 - 70,000) was purchased from Sigma Al-
drich (USA). Sodium salt of Alginic acid (brown algae) was
procured from Fluka Biochemika (USA). For all experi-
ments MilliQ water was used. Cells for in vitro experi-
ments were maintained in RPMI media (HiMedia, India)
supplemented with 10% v/v fetal bovine serum (FBS)
(HiMedia, India) and 1% antibiotic solution procured from
Sigma Aldrich (USA). All other tissue culture reagents and
chemicals required for buffer were purchased from Sigma—
Aldrich (USA). Mycobacterium cultures were grown in
either Difco Middlebrook 7H9 liquid or 7H11 solid Media
(BD biosciences, USA) supplemented with 10% ADC or
OADC solution (BD Biosciences, USA). For long term
storage, cultures were maintained on L] media (BD Bio-
science, USA). Hygromycin antibiotic required for GFP
mycobacterium was procured from Himedia, India. Danish
1331 strain Bacillus Calmette-Guérin (BCG) and an “in-
house” maintained strain of “Mycobacterium indicus
pranii” (MIP) were used. GMCSF and CCL21 (Murine
Exodus-2) protein was obtained from Peprotech. Commer-
cially available LDH and IgE estimation kit were purchased
from “EIAab & USCNLIFE” and “Immunology Consultants
Laboratory” respectively. All other Enzyme linked im-
munosorbent assay (ELISA) kits and antibodies were pur-
chased from BD biosciences or e-bioscience USA.

Preparation of viable mycobacterium encapsulated
alginate particles

Mycobacterium (MIP/BCG) cultures were grown in 7H9
media supplemented with 10% ADC in a shaking incubator
at 150 rpm at 37 °C. At optical density 0.9, culture was har-
vested by centrifugation at 1000 g for 10 min. Bacterial pel-
let obtained was washed twice with phosphate buffer saline
(PBS) pH7.2. Pellet equivalent to 10" bacilli was re-
suspended in 50ml solution containing 1.23% sodium
alginate and 8.25% of trehalose. 5 ml of this suspension was
filled in a laboratory made nebulization assembly and nebu-
lized with a piston based air pump to generate aerosol of
sodium alginate and MIP/BCG. A schematic diagram of
nebulization assembly is shown in Additional file 1: Figure
S1. The generated aerosol was entrapped in 5% solution of
calcium chloride containing 0.1% polyvinyl alcohol with
constant stirring. After 12 h of the nebulization, gelled par-
ticles were collected by spinning at 350 g for 10 min. Parti-
cles were then washed three times with MilliQ water to
completely remove residual calcium chloride. Finally, the
pellet was re-suspended in 5ml MilliQ water, followed by
snap freezing in liquid nitrogen and dried in a lyophilizer.

Stability
In order to perform the accelerated stability testing the for-
mulation was stored at 40°C+2°C for 6 months and at
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different time points the viability of the BCG was checked
by dissolving it in 1 ml 1x PBS and plating on Middlebrook
7H11 agar plates. Similarly, for cold storage stability testing
which is a typical storage condition, the formulation was
stored at 4 °C and at predetermined time points the formu-
lation was dissolved in 1 ml 1x PBS and plated on Middleb-
rook 7H11 agar plates.

Freeze thaw stability testing helps to determine the stabil-
ity of the formulation under various conditions. Formula-
tion was put under series of temperature changes. This
temperature fluctuation (TF) may mimic the change in
temperature during the normal handling and transportation
procedure. In this procedure the formulation was exposed
to freezing temperature of -10 °C for 24 h and then allowed
to thaw at room temperature for 24 h. Next, the formula-
tion was placed at a higher temperature of 45 °C for 24 h,
followed by keeping at room temperature for 24 h. This
series of procedure was repeated 3 times and then the
formulation was dissolved in 1 ml 1x PBS and plated on
Middlebrook 7H11 agar plates and incubated at 37 °C for
2-3 weeks.

Dry powder delivery directly to lungs of mice
Formulation was delivered directly to the lungs of 6-8
weeks old C57BL/6 mice by endotracheal intubations. De-
tailed procedure is summarized in Additional file section.

Immunization

Mice were immunized twice at an interval of 15 days ei-
ther with liquid aerosol or by dry powder aerosol. For li-
quid aerosol immunization, around 2000-3000 bacilli of
MIP/BCG were established per mice by using a labora-
tory made aerosol chamber [32]. For dry powder aerosol
immunization, 1 mg DPA formulation of BEAP/MEAP
containing 2000-3000 bacilli was delivered directly to the
lungs (Additional file 1: Figure S2) At predetermined time
points mice lung was excised and fixed in 10% formalin.
Lung was embedded in paraffin and 5 pm section was cut
and stained for histology with hematoxylin and eosin (H
and E). Granulomatous lesions were identified by ran-
domly selecting 10 fields from 2 sections in each group.

Dendritic cell culture

Bone marrow dendritic cells (BMDCs) were generated by
in vitro culture of bone marrow cells from C57BL/6 mice
in RPMI supplemented with 10 ng/ml Granulocyte mono-
cyte colony stimulating factor (GM-CSF) [33]. A pub-
lished procedure [34] was modified to isolate lung DCs.
Standardized protocols were followed for the staining for
flow cytometry, allogenic mixed lymphocyte reaction
(Allo-MLR), proliferation assay and ELISA. Details are
given in Additional file 1.
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Transwell migration assay

1 million Bone marrow dendritic cells (BMDCs) per well
were plated in a 6 wells plate. They were treated with ei-
ther 10° MIP or 10° BCG or 50 ug MEAP or 50 ug BEAP
or 50 pg Blank alginate particles (BAP) suspended in
100 pl of PBS and incubated at 37 °C in 5% CO, for 24 h.
After 24 h, activated BMDCs were harvested by spinning
at 300 g for 5min. The cell pellet was re-suspended in
666 pl of RPMI media having 10% FBS and 1% antibiotics.
100 pl of this cell suspension was carefully poured in trip-
licates, on the 5 um pore sized transwell chamber. In the
lower chamber of transwell plate, either 600 ul of PBS or
600 pl of CCL21 (25 pg) was placed. BMDCs loaded trans-
well was again incubated at 37 °C in 5% CO, for 1 h. After
1h, BMDCs migrated to the lower chamber were har-
vested and fixed with 4% paraformaldehyde solution.
BMDCs were then stained with propidium iodide after
permeabalizing them with 0.1% saponin solution. The cell
counts of each of the wells were estimated by flowcytome-
try (Cyflow, Partec).

Fluorescent microscopy imaging

To microscopically visualize the uptake of particles by
BMDCs, green fluorescent protein (gfp) expressing MIP
or BCG or their corresponding MEAP/BEAP were used.
Green fluorescent protein (gfp) expressing MIP and BCG
were used to microscopically visualize the uptake of parti-
cles by BMDCs. Similar to other experiments; BMDCs
were incubated with gfp expressing either of MEAP, BEAP,
MIP or BCG baclli for 48 h. BMDCs were then washed
and stained for CD11c with Alexa fluor 498 and mounted
with vector mount DAPL

Infection

Three weeks after second dose of immunization, low
dose of H37Rv aerosol infection was given to two groups
of all the immunized and age matched control animals.
Mice were exposed to the aerosol generated by Glass-
Col inhalation exposure system to establish 200—400 ba-
cilli of H37Rv per mouse [35].

Estimation of colony forming units (CFU) load in lung and
spleen

Mice were euthanized at 4 and 16 weeks post infection by
intraperitoneal injection (0.1 ml/10 g body weight) of a mix-
ture consisting high dose of anesthetic drugs, Ketamine
(100 mg/ml) and Xylazine (10 mg/ml). Lungs and spleen
were removed, washed and homogenized in 1ml 7H9
media. Homogenates were evaluated for bacilli load by plat-
ing different dilution in triplicate on L] plates having MGI
PANTA antibiotic mixture (BD, USA). After 3-4 weeks of
incubation at 37°C plates were examined for CFUs.
Weights of another group of mice infected with AM.th.
H37Rv were monitored at regular intervals of time.
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In every H37Rv aerosol infection procedure, typically 3
animals from un-immunized (control) group were eutha-
nized on day 1 and number of delivered bacilli to lungs
were estimated by plating lungs homogenate.

Statistical analysis

Statistical analysis on data was done by using the GraphPad
Prism, version 7, program. All the data were plotted and
calculated as the mean + standard deviation (SD). The com-
parison was made among the groups by analysis of variance
(ANOVA) and Tukey’s correction. ‘p’ value less than 0.05
was considered significant.

Results

Characterization of particles

Size analysis and morphology of the particles
Mycobacterium sp. (BCG/MIP) encapsulated particles
were prepared by gelation of alginate in calcium chloride
solution. For the preparation of these particles, Mycobacter-
ium sp. were suspended in the alginate and trehalose solu-
tion and aerosolized droplets of this mixture were collected
in calcium chloride solution for gelling in a specially de-
signed assembly (Additional file 1: Figure S1). The particles
so formed were dried in a lyophilizer and analyzed for their
size. It was found that the mass median diameter of ethanol
dispersed formulation was 43 um prior to jet milling
(Fig. 1a) and size was decreased to approximately 3.5 um
when sonication was applied for 30 min. This suggested
that particles might have form aggregates in the process of
drying. It was confirmed by scanning electron microscopy
(SEM) images (Fig. 1c and d) where aggregates of 10-20
particles were seen. After jet milling, most of the aggregates
got segregated to individual particles as confirmed by SEM
images (Fig. le and f).

Release kinetics of bacteria from alginate particles

It was important to find out in how much time Bacteria
were released from the formulations. After drying, formula-
tions were subjected to dissolution in PBS to study the re-
lease profile of the bacilli. Number of bacteria released
were maximum at 8h (Fig. 1g) suggesting that particles
were completely disintegrated with in this time and entire
load of bacteria released. Some decrease in CFU after 8 h
may be due to the death of starving bacteria.

Encapsulation efficiency and viable load in the particles
The encapsulation efficiency was estimated by disintegrat-
ing particles in PBS prior to lyophilization. The viable bac-
terial load in pooled lyophilized particles was in between
4.1 x10*CFU/mg to 2.3 x10*CFU/mg of dry powder
which reduced to 2.1 x 10> CFU/mg to 1.7 x 10> CFU/mg
after jet milling.
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Stability of the particles

One of the key advantages of alginate encapsulation was
longer shelf life at room temperature. In order to check
the stability of the particle we performed accelerated sta-
bility test, freeze thaw stability test and cold storage stabil-
ity test. We found that formulations were quite stable up
to 6 months at 40 °C (accelerated stability test) in which
the viability decreased from 1.9 x 10> + 200 CFU/mg to
0.77 x 10> + 50 CFU/mg. In the case of freeze thaw stabil-
ity testing after 6 months the viability reduced from 1.8 x
10® + 375 CFU/mg to 0.72 x 10® + 80 CFU/mg, similarly in
the case of cold storage stability testing the viability re-
duced from 2.0 x 10> +250 CFU/mg to 1.1 x 10> +200
CFU/mg after 6 months of storage.

Delivery of the particles to lung

Specially designed equipment and techniques were used
to deliver particles to lungs. In a typical experiment,
0.9+ 0.1mg of the particles corresponding to 2039 +
226 CFU were delivered to the lungs of mice.

In vitro analysis of the formulations

Activation of DCs and proliferation of T cells

To investigate the effect of the encapsulation of myco-
bacterium we performed a number of in vitro experi-
ments on the bone marrow derived dendritic cells
(BMDCs). As shown in the Fig. 2a, we observed higher
secretion of IL-12 from BMDCs when treated with
MEAP (6851 + 11 pg) and BEAP (3721 + 20 pg) as com-
pared to MIP (1898 + 68 pg), BCG (1528 +40 pg) and
BAP (2625 +48 pg). Similar observation was there for
the TNF-alpha release (Fig. 2b). These levels suggest that
maximum activation of DCs occur when they were incu-
bated with MEAP, followed by BEAP, MIP and BCG.
Noticeable activation of DCs was also caused with blank
alginate particles.

In an allogenic MLR (Fig. 2c) BMDCs treated with
MEAP show very high proliferation (29,212 + 987 cpm)
of allogenic T-cells. This response is around 7.5 times
higher than the control. The Interferon gamma (IFN-
gamma) secretion in the supernatant of allogenic MLR
also followed similar trend as shown in Fig. 2d. Similar
experiments were performed with lung DCs (Fig. 2e and
f) where lung DCs activated with MEAP and BEAP
showed significantly higher proliferation of allogenic T
cells when compared with MIP or BCG.

Flow cytometric analysis

We compared different activation markers like CD8O0,
CD86, MHCII and homing receptor CCR7 on BMDCs
after incubating them with BAP, BEAP/MEAP, BCG/
MIP. Results are summarized in Table 1. Although some
degree of activation was observed when BMDCs were
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Fig. 1 Size and SEM images of mycobacterium encapsulated alginate particles. a and b are the size profile after drying and sonication respectively. ¢
and d show the SEM images of particle aggregates obtained after drying and images of segregated particles are shown in (e and f). The accumulated
release of bacteria from a typical formulation is shown in (g). The entire load of bacteria was released within a few hours. h depicts the stability of
formulation with time at three different temperature conditions; 4 °C, 40 °C and temperature fluctuation (TF). Very little viability was lost in 6 months

incubated with BAP, the activation manifested by MIP
and BCG was higher and MEAP and BEAP showed a re-
markable increase of all the activation markers. These
data were obtained in a representative experiment.
Since different sets of BMDCs culture initiated from
different animals, displayed very different expression
levels in the control or basal condition itself, averaging

the results obtained with different sets BMDCs culture
was difficult.’

Uptake, internalization and co-localization of particle by DCs
Fluorescent microscopy images revealed that most of the
micro particles were efficiently taken up by the BMDCs
and maximum uptake was observed at around 24 h. In
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Fig. 2 In vitro activation of DCs by different formulations. a and b show the amount of IL-12 and TNF-alpha secreted by BMDCs after 48 h of
incubation with PBS, MIP, BCG, BAP, MEAP and BEAP. IFN-gamma secretion and proliferation of T cells in allogenic MLR when co-cultured with
BMDCs pre-stimulated with different formulations are shown in (c and d). Similar allogenic MLR was performed with lung DCs and results are
shown in (e and f). All the panels indicate that alginate coated mycobacterium leads to higher activation of DCs compared to the suspension
of bacteria

many cells more than one particle were seen inside the
BMDCs. The optical sectioning of the cells confirmed that
micro particles were indeed inside the cells.

The co-localization of MEAP particle within the endo-
lysosomal compartments was visible as yellow (Fig. 3a)
due to the overlapping of green ‘gfp MEAP’ and red
stained vesicles. Further, such co-localization was less
evident with MIP (Fig. 3b). Similar images were seen
with BEAP and BCG (Fig. 3c and d).

Migration capabilities of BMDCs

One of the most obvious manifestations of the activation
of DCs is their ability to migrate to the nearest lymph
node after taking up the antigen. We compared the mi-
gration abilities of BMDCs in response to CCL21 after
they were activated by BAP, BCG, BEAP, MIP and
MEAP. The BMDCs were incubated either with BAP,
BCG, MIP, BEAP or MEAP and after 48 h the chemo-
taxis of activated BMDCs to CCL21 was measured by
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Table 1 Summary of a typical flow cytometry data

Groups Percent Expression

CD80 CD86 MHCII - High CCR7
Control 288 511 27.8 4.2
BAP 514 522 36.6 8
MIP 60.7 61.1 42.1 74
BCG 604 556 394 73
MEAP 683 66.3 55.3 156
BEAP 624 65.7 46.0 154

the transwell assay. The MEAP/BEAP activated BMDCs
showed highest migration of cells. There was not much
change in the migration capacity of BMDCs when they
were incubated with mycobacterium only. These results
are summarized in Fig. 3e.

Injury to the lungs and allergic response

Mice undergo a lot of stress during the procedure of aero-
sol delivery and there were concerns if our specialized
procedure causes any injury to the lungs. LDH levels in
bronchoalveolar lavage were used to compare the injury
caused by our specialized procedure and normal liquid
aerosol delivery. Figure 3f shows that the LDH levels re-
main unchanged till 48 h when mice were immunized by
liquid aerosol or dry powder indicating that ‘no’ injury
was caused to the animal by the immunization proce-
dures. Similarly, minimal allergic response (IgE) was ob-
served (Fig. 3g) in both the groups mentioned above.

In vivo evaluation of immune response generated by
different formulations

Immune response in mediastinal lymph node and spleen

In immunized animals, the proliferation of splenocytes or
T cell after antigen stimulation is an indication of antigen
specific immune response. Thus, the splenocytes and me-
diastinal lymph node cells were isolated from the mice im-
munized with different formulations and were stimulated
with Mycobacterium tuberculosis (M. tb) and MIP anti-
gens. Figure 4 summarizes the results of proliferation and
IFN-gamma secretion when cells from mediastinal lymph
node (Fig. 4a and b) and splenocytes (Fig. 4c and d) were
stimulated with AM.th and MIP antigens. In both the or-
gans, significantly high proliferation and IFN-gamma se-
cretion was observed in the MIP and BCG groups when
compared with control. It was interesting to note that the
response of MEAP and BEAP was significantly higher
than the MIP and BCG. Both the antigen stimulants (MIP
and M. tb) produced identical response.

Protection against M. tb H37Rv
The success of any vaccine ultimately depends on its abil-
ity to confer protection against actual biological infection.
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Thus to determine the value of alginate coated mycobac-
terium’s aerosol as a vaccine, we wanted to evaluate its
protective efficacy. After having established the equiva-
lence of BCG and MIP by a number of in vitro and in vivo
experiments, the infection experiments were performed
on MIP, BCG, BEAP and MEAP immunized animals.

In the infection experiments, a low dose aerosol infec-
tion of M. tb (H37Rv), typically 362 + 18 bacilli, were de-
livered to the mice immunized with Mycobacterium sp.
(BCG or MIP) or their respective alginate particles
(BEAP or MEAP) and their body weight and survival
was observed. As shown in Fig. 5a, the body weights of
animals in both the groups increased with time.

The average body weight gain at 130 days post infec-
tion was highest in the MEAP group followed by BEAP
and these were higher than MIP and BCG respectively.
Moreover, there was no mortality in any of the MEAP/
BEAP immunized groups (Fig. 5b). The autopsy of dead
animals in the control group confirmed a number of le-
sions in the lungs.

Further, the bacterial load at the end of 16 weeks post
infection was highest in lung (Fig. 5¢) and spleen (Fig.
5d) of control group. The lungs of MEAP immunized
group had log (CFU) load of 3.68 which was 1.2 log
(CFU) less than the MIP immunized group. Similarly,
the log (CFU) load in BEAP immunized group was less
than BCG immunized animals. Identical trend of CFU
was observed in the spleen of all the groups. For all ex-
periments, animals in each group were similar and no
adverse event was observed. These findings reinforce
that the alginate coated mycobacterium aerosol vaccines
have enhanced protective potential.

Histo-pathological examination of mouse lungs infected
with M.tb. H37Rv

Sixteen weeks post infection, lung sections were exam-
ined after ‘blinding’ the source from the BCG, BEAP,
MIP and MEAP immunized and control groups. There
was less number of granulomatous lesions in the lung
sections of BEAP/MEAP immunized mice. These lesions
were well-defined and comprise majority of epithelioid
and foamy cells as shown in Fig. 6. Some dense lympho-
cytic infiltrate was also present around small vessels.
Lungs sections of mice immunized with BCG/MIP aero-
sol showed relatively diffuse infiltrate of granuloma with
prominent perivascular lymphocytic infiltrates and a
large number of lymphocytes throughout the paren-
chyma. In the control group severe necrotic pathology
with no organized granulomatous lesions were seen. The
perivascular spaces showed severe pneumonia with no
focal points. These histological findings establish that
the BEAP/MEAP immunized animals have reduced lung
pathology as compared to the BCG/MIP immunized
mice respectively.
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Fig. 3 Fluorescent images showing the interaction between BMDCs and GFP-MIP, GFP-MIP encapsulated alginate micro-particles. a-d shows the co-
localization of micro particles with the red stained lysosome. A representative cell after staining with different dyes was selected at random and pictures
were taken in the four filter mode. The DCs after having phagocytosed MEAP(gfp) localized with lysosomes (red) appeared yellow (a). The CD11c was
stained cyan and nucleus with DAPI (blue). b, ¢ and d show MIP(gfp, BEAP(gfp) and BCG(gfp) respectively. @ summarizes migration abilities of MEAP, BEAP,
MIP, BCG and BAP activated BMDCs under the chemo-tactic influence of CCL21. 1 million BMDCs per well were plated in a 6 wells plate. They were
treated with either 10° MIP/BCG or 50 pg MEAP/BEAP or 50 g BAP suspended in PBS and incubated at 37 °C in 5% CO, for 24 h. After 24 h, activated
BMDCs were re-suspended in RPMI media and placed on the 5 um pore sized transwell chamber. In the lower chamber of transwell plate, either PBS or
CCL21 was placed. After 1 h, BMDCs migrated to the lower chamber were estimated by flowcytometry. f and g show comparison of LDH and IgE levels
after delivering liquid aerosol and dry powder aerosol at different time points in the serum of mice

Discussion size which could be formulated as dry powder aerosol
The primary objective of this work was to encapsulate  (DPA) and to evaluate their immunogenic and protective
MIP and BCG into inhalable alginate particles of 2—-4um efficacy in animal model of tuberculosis. We have



Nagpal et al. BMC Infectious Diseases (2019) 19:568 Page 9 of 14
p
a b
8 E MIP
7 M.tb.
g |=mwe 4000 L0000 "<°'°°°1|
M.tb 1
E o] WM — 3000- o | gl | &1
5 E 2000 8 | z41, &
S | =) 3 s g (i
&4 £ 10007 %
S
2 i
= z
o —
o
0.
> L L RS> LO Q
L L L o Nl
e OF AL e
1week 2week
c d
104
5 = mip
g g- HH M.tb.
S 6 E
= =)
g, g
(] >
S 1
= Z
P 21 T
o
0-
SR OLKR P RO KK
L& C &0 N4
0°& v é‘y‘baoo& e \{‘J.QQ'
2week 4week 2week 4week
Fig. 4 In vivo evaluations of different formulations. a and b show proliferation index and IFN-gamma secretion when mediastinal lymph node cells of
animals immunized with different formulations were re-stimulated with M.tb and MIP antigens. Similar experiments were performed with splenocytes and
results are shown in (c and d). All the panels reinforce the observation that alginate coated mycobacterium generated more pronounced immune
response compared to the aerosol of bacteria

demonstrated that interaction of DCs with alginate encap-
sulated MIP/BCG leads to significantly higher activation
of DCs compared to the activation by aerosol of plain
MIP/BCG. Similarly, the immune response and protective
efficacy of BEAP and MEAP immunized animals were sig-
nificantly higher than their respective liquid aerosols.

There have been a few reports on the preparation and
delivery of mycobacterium DPA formulations. In these re-
ports the DPA of BCG and Mycobacterium smegmatis was
prepared by spray drying with iso-leucine [24, 25] and the
DPA of bacteria was delivered directly to the lungs. Imme-
diately after the delivery of these DPA formulations to the
lungs, the plain mycobacterium was exposed to the
micro-environment of alveoli and the cascade of immune
reaction initiated.

In our approach, the micro-particles were prepared by
encapsulating mycobacterium in the alginate. The algin-
ate coating over the mycobacterium leads to many
immunological advantages such as superior activation
and maturation of DCs, which was also demonstrated by
Yoshida et al. [26-29]. Additionally, there are few

reports where activated DCs have been used with myco-
bacterial vaccines for better protective immunity against
tuberculosis [30, 36—40].

The particle size distribution in an aerosol is very cru-
cial for its efficient delivery to the lungs. Particles bigger
than the 4 um are not inhaled deep inside the lungs and
most of the particles smaller than 2 um are not retained
in the lungs and are exhaled [41]. To achieve the crucial
size range of 2—4 um, the aggregates of particles in the
lyophilized powder were segregated in an air jet mill [42,
43]. The jet milled preparations had necessary flow
properties required by our delivery apparatus. The shelf
life of jet milled formulation was more than 6 months
(Fig. 1h) which is comparable to the shelf life of formu-
lations reported by Wong et al. [25].

It is a well-known survival strategy of mycobacterium
that after the phagocytosis, phagosome harboring mycobac-
terium inside is unable to fuse with lysosome. The confocal
microscopy (Fig. 3a and c) pictures provide direct evidence
for the uptake of MEAP/BEAP by DCs and their co-
localization with lysosome indicating better processing of
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MEAP/BEAP and hence efficient antigen presentation to T
cells in lymph node. These images also suggest that MEAP/
BEAP were taken up more efficiently than MIP/BCG with-
out any encapsulation. Similar findings have been reported
by other investigators [27].

We investigated interaction of alginate coated mycobac-
terium formulations with DCs. After engulfing the antigen
from the lung, DCs migrate to lymph node to presents the
antigen to the T cells in lymph node. The up-regulation of
CCR7 marker on the activated DCs is an indicator of their
capacity of migration. It has also been reported that up-
regulation of homing marker CCR7 on DCs make them
more effective to present the antigen to T-cell [44]. In this

study, we have shown that MEAP/BEAP activated BMDCs
show higher up regulation of CCR7 receptor on their sur-
face as compared to MIP/BCG activated BMDCs.

It has been demonstrated earlier [45] that the cellular im-
mune response is not initiated in the lungs, though the
lungs are the site of infection with M. tuberculosis. The ini-
tiation of the adaptive immune response requires transport
of bacteria from the lungs to the mediastinal lymph node.
After M. tuberculosis infection, the frequency of infected
DCs increased in the lungs but their trafficking to the me-
diastinal lymph node is reduced; which ultimately result in
a compromised initiation of naive CD4 T cell activation.
This delay in T cell activation is believed to be responsible
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A

for the expansion of bacterial population in the lungs many  of BMDCs (Fig. 3e) in response to the chemotaxis in-
folds [45] before the appearance of the adaptive immune duced by CCL21, which is an agonist for the chemokine
response in the lungs. receptor CCR7. As a result of this enhanced migration
In our experiments, the higher up regulation of CCR7  the adaptive immune response is mounted rather quickly
by MEAP/BEAP was translated into enhanced migration and it confronts a smaller bacterial burden in the lungs.
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In a similar experiment, Blomgran and Ernst [46] have
demonstrated that DCs, those were directly infected by
bacteria migrated poorly than DCs those had acquired
the bacteria through uptake of infected neutrophils. In
our experiments, the BCG/MIP encapsulated alginate
particles have an analogy with infected neutrophils and
they act like a delivery module of BCG/MIP to the DCs
and this mode of delivery of bacteria to the DCs does
not impair their mobility.

In addition to this the alginate encapsulation of live
bacilli induce higher maturation of the BMDCs and lung
DCs compared to the suspension of bacilli. This was in-
dicated by the marked up-regulation of co-stimulatory
molecules CD80, CD86 and MHC II (Table 1).

It is interesting to note that some activation has been
observed with blank alginate particles (BAP) contrary to
previously published reports where micro particles with-
out strong antigens did not induce maturation of DCs
[47]. The immuno-stimulatory capacity of DCs is not
limited to the up-regulation of membrane bound co-
stimulatory molecules but also depends on secreted sol-
uble cytokines. We observed enhanced secretion of two
important cytokines, IL-12 and TNF-alpha, from DCs
on stimulation with MEAP/BEAP compared to MIP/
BCG (Fig. 2a and b). Both the cytokines are considered
to be modulator of T cell response towards Thl type
and a stronger Thl response can limit the growth of
mycobacterium [48].

Further, DCs stimulated by bacteria containing micro
particles (MEAP/BEAP) show enhanced antigen presen-
tation capacity as observed by high IFN-gamma release
and high proliferation index when co-cultured with allo-
genic splenocytes. It has been proposed that DCs may
exist in three developmental stages: immature, semi-
mature and fully mature cells [49]. While immature and
semi-mature DCs are implicated in the initiation of tol-
erance, only fully mature DCs can induce immunity.
The higher amount of IFN-gamma in the allogenic MLR
supernatant (Fig. 2) was a signature of superior matur-
ation of DCs when incubated with MEAP/BEAP, which
translated into better immunity against bacteria.

All these data imply that encapsulation of MIP/BCG
into the alginate leads to the superior immune response
against mycobacterium. When MEAP/BEAP were deliv-
ered to mice by our unique method the LDH assay con-
firms that it leads to no tissue damage or untoward
reaction (Fig. 3f) in the animal. Additionally, minimal
and comparable allergic response (Fig. 3g) was invoked
by the liquid aerosol and DPA.

The in vivo immunological evaluation of different for-
mulations showed similar trend as observed in vitro.
Visibly enhanced memory response was observed in the
mediastinal lymph node and spleen of mice immunized
with MEAP/BEAP. The higher activation of DCs by
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MEAP/BEAP, the up-regulation of CCR7 and MHCII
leads to better antigen presentation and T cells stimula-
tion which is finally translated in to a robust memory re-
sponse in these groups of animals. Further, the enhanced
memory response in the BEAP/MEAP immunized group
was able to protect these mice better than the BCG/MIP
immunized group, when infected with Mycobacterium
tuberculosis (H37Rv). Both CFU data (Fig. 5) and histo-
pathological evaluation (Fig. 6) of lung support the su-
periority of immunization by the DPA of BEAP/MEAP
over the immunization by the aerosol of BCG/MIP.

Conclusions

In this study we have demonstrated a methodology to en-
capsulate live mycobacterium (MIP and BCG) as a dry
powder inhale-able formulation which remains viable for
over 6 months at 37 °C. A non-invasive procedure was de-
veloped to deliver this formulation to small animals. We
have demonstrated that these inhale-able vaccines of live
mycobacterium are more immunogenic as compared to
the aerosol of bacilli and they provide better protection in
mice when infected with H37Rv. The alginate coated DPA
of BCG/MIP are very promising vaccine candidates for tu-
berculosis; they do not require the cold chain for transpor-
tation and storage, provide better protection than
conventional intradermal or liquid aerosol and their deliv-
ery does not require the needle and a syringe.
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