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Abstract

Motivated directly by recent trapped-ion quantum simulation experiments, we carry out a 

comprehensive study of the phase diagram of a spin-1 chain with XXZ-type interactions that 

decay as 1/rα, using a combination of finite and infinite-size DMRG calculations, spin-wave 

analysis, and field theory. In the absence of long-range interactions, varying the spin-coupling 

anisotropy leads to four distinct and well-studied phases: a ferromagnetic Ising phase, a disordered 

XY phase, a topological Haldane phase, and an antiferromagnetic Ising phase. If long-range 

interactions are antiferromagnetic and thus frustrated, we find primarily a quantitative change of 

the phase boundaries. On the other hand, ferromagnetic (nonfrustrated) long-range interactions 

qualitatively impact the entire phase diagram. Importantly, for α ≲ 3 long-range interactions 

destroy the Haldane phase, break the conformal symmetry of the XY phase, give rise to a new 

phase that spontaneously breaks a U(1) continuous symmetry, and introduce a possibly exotic 

tricritical point with no direct parallel in short-range interacting spin chains. Importantly, we show 

that the main signatures of all five phases found could be observed experimentally in the near 

future.

The study of quantum phase transitions in low-dimensional spin systems has been a major 

theme in condensed matter physics for many years [1]. A well-known implication of 

Mermin and Wagner’s famous results [2] on finite temperature quantum systems is that, for 

a large class of one-dimensional quantum spin systems, long-range order is forbidden even 

at zero temperature. This absence of classical order promotes quantum fluctuations to a 

central role, and they often determine the qualitative properties of the quantum ground state. 

An important example, first conjectured by Haldane [3,4], is that a spin-1 antiferromagnetic 

Heisenberg chain possesses a disordered phase with an energy gap to bulk excitations, later 

identified as a symmetry protected topological phase [5,6]. Its spin-1/2 counterpart, despite 
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possessing the same classical limit, has a disordered ground state with gapless excitations, 

and is described by a conformal field theory (CFT) [7].

Experimentally, such quantum phase transitions have been explored in quasi-1D materials, 

and more recently using artificial materials designed through the careful control of atomic, 

molecular, and optical (AMO) systems [8–11]. These AMO systems are usually well 

isolated from the environment, offer considerable tunability of system parameters, and make 

possible both measurement and control at the individual lattice-site level. A distinctive 

feature of AMO systems is that interactions between particles are often long ranged, 

decaying as a power law with distance (1/rα). The exponent α varies widely amongst 

different AMO systems, ranging from α = 6 for van de Waals interactions in Rydberg atoms, 

to α = 3 for polar molecules and magnetic atoms, to α = 0 for atoms coupled to cavities [11–

19]. The effect of long-range interactions can be tuned by either changing the dimensionality 

of the system, e.g., for neutral atoms or molecules in optical lattices, or by directly (and 

often continuously) altering the value of α, e.g., in trapped ions or cold atoms coupled to 

photonic crystals [14]. The availability of tunable long-range interactions creates an entirely 

new degree of freedom—absent in typical condensed-matter systems—for inducing 

quantum phase transitions, and can potentially lead to novel quantum phases [20–23].

While long-range interacting classical models have been studied in considerable detail for 

some time [24–28], there is a relative lack of in-depth studies of quantum phase transitions 

in long-range interacting systems, despite the emerging experimental prospects for studying 

both their equilibrium and nonequilibrium properties [15–18,29–35]. One reason is that 

many analytically solvable lattice models become intractable when interactions are no 

longer short ranged, a well-known example being the spin-1/2 XXZ model. Thus exact 

analytical studies are either restricted to noninteracting bosonic and fermionic systems with 

long-range hopping and pairing [33,35–37], or to certain contrived long-range interacting 

spin models which are difficult to realize in real systems [38–41]. In addition, to properly 

incorporate long-range interactions in low-energy effective theories, existing field theoretic 

treatments need to be modified and usually become more complicated [42,43]. While spin-

wave theories can be useful in treating long-range interactions [44,45], they are unable to 

distinguish major differences in quantum phases between integer and half-integer spin 

chains. Exact numerical studies for long-range interacting spin models are restricted to small 

system sizes and usually inconclusive [46–49], since the correlation length is generally 

divergent [32,50]. Approximate numerical techniques such as the density matrix 

renormalization group (DMRG) method have been adapted to treat long-range interactions 

[51], but determining complete diagrams with large-system-size calculations remains 

challenging, and those that exist are primarily for spin-1/2 chains [20,29,52,53].

In this paper, we carry out a comprehensive study of a spin-1 chain with tunable XXZ 

interactions that decay monotonically as 1/rα, for all α > 0. Our study is largely motivated 

by imminent trapped-ion-based experiments that can simulate this model with widely 

tunable index α [54–56]. In the absence of long-range interactions, the choice of spin-1 over 

spin-1/2 allows us to have four distinct quantum phases by varying the anisotropy of the 

interactions: a ferromagnetic (FM) phase and an antiferromagnetic (AFM) Ising phase that 

are both gapped and long-range ordered, a disordered gapless phase (the XY phase), and a 
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gapped and topologically ordered phase (the Haldane phase). By using a combination of 

DMRG calculations, spin wave analysis, and field theory, we obtain the phase diagram for 

arbitrary anisotropy and all α > 0, with both ferromagnetic and antiferromagnetic 

interactions. Our key observation is that when interactions in all spatial directions are 

antiferromagnetic, long-range interactions are frustrated, leading to primarily quantitative 

changes to the phase boundaries compared to the short-range interacting chain. Interestingly, 

we find that the topological Haldane phase is robust under long-range interactions with any 

α > 0 [48,49,57]. However, when the interactions in the x-y plane become ferromagnetic, we 

find a number of significant modifications to the phase diagram: (1) The Haldane phase is 

destroyed at a finite α due to a closing of the bulk excitation gap; (2) the gapless XY phase, 

described by a CFT with central charge c = 1, disappears when α ≲ 3 due to a breakdown of 

conformal symmetry [33,35]; (3) the disappearance of the XY phase heralds the emergence 

of a new phase at α ≲ 3 (continuous-symmetry breaking, or CSB) in which the spins order 

in the xy plane, spontaneously breaking a U(1) symmetry and possessing gapless excitations 

(Nambu-Goldstone modes); (4) Novel tricritical points, with no direct analog in short-range 

interacting 1D models, appear at the intersection of the Haldane, CSB, and XY/AFM phases.

The paper is organized as follows. In Sec. I, we introduce the model Hamiltonian and 

present complete phase diagrams for the ferromagnetic and antiferromagnetic cases. In Sec. 

II, we study the boundary of the FM phase, where a spin-wave approximation is found to be 

asymptotically exact in the large-system limit. In Sec. III, we determine both the XY-to-

Haldane and Haldane-to-AFM transition lines accurately using DMRG calculations and use 

field theory arguments to explain the effect of long-range interactions on the boundary of the 

Haldane phase. In Sec. IV, we introduce the CSB phase and explain its emergence using 

spin-wave theory. The boundary between the CSB and XY phases is determined by a 

numerical calculation of central charge. In Sec. V, we show that all five phases possess 

distinct signatures that could be observed in near-future trapped ion quantum simulations 

with chains of 16 spins. Finally, we conclude the paper in Sec. VI and comment on a number 

of open questions.

I. MODEL HAMILTONIAN AND PHASE DIAGRAMS

We consider the following spin-1 Hamiltonian with long-range XXZ interactions in a 1D 

open-boundary chain:

H = ∑
i > j

1
(i − j)α [Jxy(Si

xS j
x + Si

yS j
y) + JzSi

zS j
z] . (1)

Here Jz ∈ (−∞, ∞) and α ∈ (0, ∞) are allowed to vary continuously, and we consider both 

the Jxy = 1 (antiferromagnetic) and Jxy = −1 (ferromagnetic) cases. We note that, for 0 < α < 

1, Eq. (1) does not have a well-defined thermodynamic limit when Jxy and/or Jz is 

ferromagnetic, since the ground-state energy density diverges. To make the ground-state 

energy extensive, we may impose an energy renormalization factor Nα−1, first introduced by 

Kac [58], when taking the thermodynamic or continuum limit (here N is the chain length). 
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For finite-size numerical calculations, we do not need to implement the Kac renormalization 

for 0 < α < 1 since ground-state properties are unaffected by energy renormalization [59].

Figure 1 shows our full phase diagram for both Jxy = 1 and Jxy = −1, with actual phase 

boundaries plotted using the results of calculations discussed in the following sections. The 

nearest-neighbor interaction limit is achieved at α → ∞ (1/α = 0). In this limit, the 

Hamiltonian in Eq. (1) with Jxy = −1 is equivalent to the one with Jxy = 1, as can be seen by 

performing a local unitary transformation that flips every other spin in the x-y plane while 

preserving the spin commutation relations: Si
x, y ( − 1)iSi

x, y. The different ground-state 

phases of this short-range Hamiltonian have been well studied [60–62]. Notably, Haldane 

first conjectured [3,4] that for λ1 < Jz < λ2, a disordered gapped phase (the Haldane phase) 

will emerge. At Jz = λ2, the ground state undergoes a second-order phase transition from the 

Haldane phase to an AFM phase, which belongs to the same universality class as the 2D 

Ising model. The value λ2 ≈ 1.186 has been found by various numerical techniques 

including Monte-Carlo [63], exact diagonalization [64], and DMRG [65–67]. At Jz = λ1, a 

Berezinskii-Kosterlitz-Thouless (BKT) transition intervenes between the Haldane phase and 

a gapless disordered XY phase at Jz < λ1. The value of λ1 is theoretically predicted to be 

exactly zero after mapping Eq. (1) (for α = ∞) to a field theory model using bosonization 

[68]. This prediction is supported by conformal field theory arguments [69] and a level 

spectroscopy method based on a renormalization group analysis and the SU(2)/Z2 symmetry 

of the BKT transition [61,70–72]. Numerically, λ1 ≈ 0 has been verified via finite-size 

scaling [64,73,74] and DMRG [65]. Finally, at Jz = λ0 = −1, a first-order phase transition 

from the XY phase to a ferromagnetic Ising phase takes place [61,66,75].

We now introduce our results for the long-range interacting case (1/α > 0). For Jxy = 1 and Jz 

> 0, long-range interactions are frustrated and the Haldane-to-AFM phase transition point 

λ2(α) increases moderately as α decreases, without changing the universality class of the 

transition. For sufficiently small Jz < 0, the ferromagnetic long-range interactions along the z 
direction eventually favor a ferromagnetic ground state, inducing a first-order transition at 

λ0(α). The magnitude of the critical coupling, |λ0(α)|, decreases monotonically from 1 (at α 
= ∞) to 0 (for all α ⩽ 1) in the thermodynamic limit. The XY-to-Haldane phase boundary 

λ1(α) becomes negative for finite α, eventually terminating in a tricritical point at the 

intersection of FM, Haldane, and XY phases. The entire XY phase (including the XY-to-

Haldane phase boundary) has conformal symmetry with c = 1, and the XY-to-Haldane phase 

boundary remains a BKT transition until it terminates at the tricritical point. We note that the 

phase diagram [Fig. 1(a)] is similar to Fig. 1 in Ref. [76], which studies the XXZ spin-1 

chain with next-nearest-neighbor interactions of tunable strength. This is partially because 

the frustrated long-range interactions in the x-y plane effectively cancel each other at 

different ranges, so their influences on the phase boundary are somewhat similar to those 

from next-nearest-neighbor interactions. However, we point out that the full 1/rα long-range 

interactions, frustrated or not, will result in power-law decaying correlation functions in the 

gapped phases (see Ref. [57] for details); such correlations are absent in models with next-

nearest-neighbor interactions [76–79].
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For Jxy = −1, where long-range interactions in the x-y plane are not frustrated, the phase 

diagram [Fig. 1(b)] shows a number of important qualitative differences from the nearest-

neighbor phase diagram as α is decreased. First, the XY-to-Haldane phase boundary bends 

significantly toward positive Jz, and we find the Haldane phase to terminate at α ≈ 3 for Jz = 

1. Second, we expect the XY phase to disappear for α ≲ 3 due to the breakdown of 

conformal symmetry [33,35]. Third, for α ≲ 3 a new CSB phase emerges—this is not in 

violation of the Mermin-Wagner theorem, as it no longer applies for this range of 

interactions [2,52,80–83]. The CSB-to-AFM phase transition is expected to be first-order, 

since at large Jz and small α, quantum fluctuations play negligible roles for both the Néel-

ordered state and the ordered CSB state. This behavior is similar to the transition between 

the AFM phase and the large-D phase (where a large positive anisotropy term D∑i (Si
z)2

causes all spins to stay in the ∣ Si
z = 0  state) reported in Refs. [65,66,75]. The Haldane phase 

has a c = 1 critical phase boundary with the XY phase, a c = 0.5 phase boundary with the 

AFM phase [67], and a possibly exotic phase boundary with the CSB phase, a boundary that 

is not described by a 1+1D CFT.

II. FM PHASE AND ITS BOUNDARY

Because the ferromagnetic state with all spins polarized along ±z (or an arbitrary 

superposition of these two states) is an exact eigenstate of the Hamiltonian for any value of 

α and Jz, we expect a first-order quantum phase transition at the boundary of the FM phase. 

The FM state has an energy EFM = Jz Σi>j(i − j)−α, and the phase transition out of this state, 

defining the critical line Jz = λ0(α), occurs when some other eigenstate with no 

ferromagnetic order appears with a lower energy. The dependence of λ0 on α can be 

estimated using the following intuitive argument. For a given Jz < 0, the energy density of 

the ferromagnetic state in the thermodynamic limit is given by 

ϵFM = Jzζ(α) [ζ(α) ≡ ∑r = 1
∞ r−α is the Riemann zeta function], which diverges as α → 1. For 

Jxy = 1, the magnitude of the energy density arising from the term 

∑i > j (Si
xS j

x + Si
yS j

y) ∕ (i − j)α can be at most η(α) ≡ ∑r = 1
∞ ( − 1)r − 1 ∕ rα (the Dirichlet eta 

function), with this value obtained for any state that is Néel-ordered along some direction in 

the x-y plane. The competition between the energy of these two classical states gives a 

critical point Jz ≈ −η(α)/ζ(α), which smoothly varies from Jz = −1 at α = ∞ to Jz = 0 at α = 

1. For Jxy = −1, the situation is quite different, because the polarized state along any 

direction in the x-y plane has an energy density equal to −ζ(α), and thus we naively expect 

the phase boundary to be at Jz = −1 for all α > 0.

More formally, the boundary can be calculated via a spin-wave analysis. We treat the spin 

state that is polarized along the +z direction as the vacuum state with no excitations and 

apply the Holstein-Primakoff transformation (for spin 1) to map spin excitations (spin-

waves) into bosons: Si
z = 1 − ai

†ai, Si
+ ≡ Si

x + iSi
y = 2ai

†(1 − ai
†ai ∕ 2)1 ∕ 2

. In the weak 

excitation limit, ai
†ai ≪ 1, we can approximate Si

+ ≈ 2ai
†, and our Hamiltonian becomes

Gong et al. Page 5

Phys Rev B. Author manuscript; available in PMC 2019 July 02.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Hsw ≈ ∑
i > j

−Jz(ai
†ai + a j

†a j) + Jxy(ai
†a j + a j

†ai)
(i − j)α , (2)

where we have ignored the interaction terms ai
†aia j

†a j since ai
†ai , a j

†a j ≪ 1 is assumed. 

Assuming for the moment periodic boundary conditions, this quadratic Hamiltonian can be 

diagonalized by Fourier transformation, Hsw = 2∑k ωkck
†ck, with the following dispersion 

relation (q ≡ 2πk/N) for an infinite system

ω(q) = − Jz ∑
r = 1

∞
r−α + Jxy ∑

r = 1

∞
cos(qr) ∕ rα . (3)

If ωmin ≡ min ω(q) > 0, then the ground state of Hsw is the vacuum state of all modes k, and 

ai
†ai = 0 for all i, consistent with the approximation ai

†ai ≪ 1. If ωmin < 0, then the ground 

state has an extensive number of spin excitations and the spin-wave approximation should 

break down, and we do not expect the polarized state in the z direction to be the quantum 

ground state. The ωmin = 0 condition thus sets the phase boundary for Hsw. For Jxy = 1, ωmin 

= ω(q = π) = −Jz ζ(α) − η(α), leading to a critical line of Jz = −η(α)/ζ(α). For Jxy = −1, 

ωmin = ω(q = 0) = (1 − Jz)ζ(α), leading to a critical line at Jz = −1, independent of α. These 

results exactly match with the previous intuitive arguments.

We now compare the above spin-wave theory prediction with infinite-size DMRG 

calculations [84,85] for Jxy = 1. As seen in Fig. 2, the numerical results agree well with the 

spin-wave theory at large α, and the spin-wave prediction of λ0(α) is asymptotically exact 

as α → ∞. However, a small but increasing difference in λ0(α) is seen as α decreases. For 

α ≳ 1.5, our infinite-size DMRG calculations converge well (see appendix A for our 

numerical treatment of long-range interactions), and we conjecture that it is the spin-wave 

approximation that starts to break down when α decreases. This is possibly due to stronger 

effects of interactions between spin-wave excitations as α becomes smaller, so that the spin-

wave approximation (which ignores interactions) becomes less and less accurate. While our 

infinite-size DMRG calculations do not converge well for α ≲ 1.5, the spin-wave prediction 

should be asymptotically exact as α → 1, since the FM state’s energy is super extensive for 

α ⩽ 1 and λ0(α ⩽ 1) = 0. As a result, in Fig. 1(a) we have adopted the spin-wave prediction 

for the FM phase’s boundary, but made the boundary line dotted for 1 < α < 2 to represent a 

small uncertainty in the transition point [for α > 2 the uncertainty of the transition point is 

well below the resolution of Fig. 1(a)]. For Jxy = −1, our infinite-size DMRG calculations 

provide exactly the same transition point λ0(α) = −1 as the spin-wave theory, independent of 

α [Fig. 1(b)].
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III. HALDANE PHASE AND ITS BOUNDARY

The existence of the Haldane phase in a spin-1 XXZ chain makes the phase diagram much 

richer than that of a spin-1/2 XXZ chain. We focus first on the XY-to-Haldane phase 

boundary λ1(α). The transition out of the Haldane phase is signaled by a vanishing of the 

string-order correlation function 𝒮ij
ξ ≡ 〈Si

ξS j
ξ∏i < k < j ( − 1)

Sk
ξ
〉(ξ = x, y, z) when |i − j| → ∞. 

However, because the phase transition is of the BKT type, 𝒮ij
ξ  changes rather smoothly with 

Jz and α for a finite |i − j|, and it is very challenging to find the exact transition point 

numerically. Finite-size scaling using exact diagonalization on small chains must be 

performed very carefully due to logarithmic corrections in system size [61,86–88], and 

infinite-size DMRG yields a phase transition point that depends strongly on the bond 

dimension χ (the dimension of the matrix product states used [89]), since the ground state 

bipartite entanglement entropy S grows logarithmically with system size N according to 

CFT: S = c log N + const [90]. As seen in Fig. 3, for χ = 100 and at α = ∞, the string-order 

correlation function 𝒮ij
z  appears to start vanishing at Jz ≈ 0.3, instead of at Jz = 0 as predicted 

by field theory [68]. However, this is consistent with previous infinite-size DMRG 

calculation results [65,66]. To extract a more accurate phase boundary, we perform a scaling 

of χ ranging from 50 to 200 near the XY-to-Haldane phase boundary, following a procedure 

similar to that in Ref. [65]. We then extract the XY-to-Haldane phase boundary (white line in 

Fig. 3) by determining the location where 𝒮ij
z (χ ∞) vanishes, which now correctly yields 

Jz ≈ 0 at α = ∞. However, we expect a few percent uncertainty in the transition point due 

the use of 𝒮ij
z  at a finite separation |i − j|, and due to the error in extrapolating 𝒮ij

z (χ ∞).

To explain why long-range interactions bend the XY-to-Haldane phase boundary in opposite 

directions for ferromagnetic and antiferromagnetic Jxy, we use an effective field theory first 

proposed by Haldane [3] and developed by Affleck [91]. The proper inclusion of long-range 

interactions within this field theoretic approach was discussed in detail in Ref. [57]. Here, 

we give a brief review of this field-theory treatment. Consider first the case of Jxy = Jz = 1. 

In this case, each spin-1 is mapped to a staggered field n(2i + 1
2 ) = (S2i − S2i + 1) ∕ 2 and a 

uniform field l(2i + 1
2 ) = (S2i + S2i + 1) ∕ 2. Importantly, we observe that the classical ground 

state of H is always Néel-ordered for any α > 0, with n2(x) = 1 and l(x) = 0 for any position 

x. The intuition behind this decomposition is that, in the quantum ground state, n(x) should 

have only long-wave-length variations with n2(x) ≈ 1, while l(x) ≈ 0 should represent long 

wave-length perturbations to the direction of n(x) due to quantum fluctuations. Therefore, 

when working with the Fourier-transformed fields n(q) and l(q), we can expand the 

Hamiltonian in powers of the momentum q and keep only the leading order terms.

The effective Hamiltonian in the continuum limit and momentum space reads (the lattice 

spacing is set to 1 for simplicity)
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Heff ≈ ∫ dq[ω(q) ∣ n(q) ∣2 + Ω(q) ∣ l(q) ∣2, (4)

where the cross terms between n and l are ignored because they involve n(q) near q = π. The 

dispersion relations Ω(q) and ω(q) can be expanded at small q as [92]:

ω(q) ≡ 2 ∑
r = 1

∞
( − 1)r cos(qr)

rα ≈ − 2η(α) + η(α − 2)q2 + O(q4),

Ω(q) ≡ 2 ∑
r = 1

∞ cos(qr)
rα ≈ 2ζ(α) + ζ(α − 2)q2 + O(q4) + 2Γ(1 − α)cos[π

2 (α − 1)] ∣ q ∣α − 1 .

(5)

For the n field, we need to keep the q2 term since the zeroth-order term gives a constant due 

to the approximation n2(x) ≈ 1. The zeroth-order term in q for the l field is the dominant 

source of quantum fluctuations, and we can ignore higher-order terms in determining 

whether Heff is gapped or not (they do contribute to the long-distance behavior of correlation 

functions though [57]). Thus the Hamiltonian is approximately given by 

Heff ≈ ∫ dq[η(α − 2)q2 ∣ n(q) ∣2 + 2ζ(α) ∣ l(q) ∣2]. In a coherent-spin-state path-integral 

representation, the action is quadratic in the field l and it can be integrated out [1,93]. The 

remaining path integral over the staggered field n defines a 1+1D O(3) nonlinear sigma 

model, with Lagrangian density (nonlinear constraint n2(x) = 1 implied)

ℒ(x) ≈ 1
g ( ∣ ∂n ∕ ∂t ∣2 − v2 ∣ ∂n ∕ ∂x ∣2) . (6)

Here the effective coupling g and spin-wave velocity v depend both on α and the lattice 

spacing (their exact values are not important to us). The coupling strength g flows towards 

infinity under renormalization group for the above Lagrangian [1,93], suggesting a 

disordered ground state with an excitation gap. This is corroborated by the SU(𝔫) variant of 

the Hamiltonian in the 𝔫 ∞ limit, which can be analytically solved and contains a mass 

gap [91,94]. Now we adopt a phenomenological treatment [95,96] of the above Lagrangian 

(Eq. 6): The nonlinear constraint n2 = 1 can be approximately removed by introducing a 

mass gap Δα and a renormalized spin-wave velocity vα. We thereby arrive at a free field 

theory with the Lagrangian density (written in momentum space)

ℒ(q) ∝ ∣ ∂n ∕ ∂t ∣2 − (Δα
2 + vα

2q2) ∣ n(q) ∣2 . (7)

Since Δα→∞ ≈ 0.41 [97,98] and Δα→0 = 1 (where the Hamiltonian becomes integrable), we 

infer that Δα should increase as α decreases. This speculation is confirmed by accurate 

finite-size DMRG calculations of Δα in Ref. [57].

Next, we consider the case of Jxy = 1 but Jz < 1. We can then write
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H = ∑
i > j

1
(i − j)αSi ⋅ S j − (1 − Jz) ∑

i > j

1
(i − j)αSi

zS j
z . (8)

Following Refs. [76] and [91], the anisotropy term above can be treated as a negative mass 

term (1 − Jz) f αnz
2(q) to the Lagrangian density ℒ(q) in Eq. (7). The precise value of the 

renormalization factor fα is not important to us, but we expect it to continuously decrease as 

α becomes smaller, since the staggered field dominates in the Haldane phase and long-range 

interactions [∑i > j
1

(i − j)α
Si

zS j
z in Eq. (8)] are increasingly frustrated as α decreases. The 

mass gap for the field nz is now smaller than for nx and ny, and reads 

Δα(Jz) = Δα
2 − (1 − Jz) f α. Combined with the above discussion that Δα should increase with 

decreasing α, we require progressively more negative Jz to close the gap and transition into 

the XY phase as α decreases, thus explaining the shape of the XY-to-Haldane phase 

boundary in Fig. 3(a).

For Jxy = −1 and Jz < 1, the classical ground state is no longer Néel ordered and the field 

theory employed above is not valid. However, by rotating every other spin by π about the z 
axis, we generate a transformed Hamiltonian

H′ = ∑
i > j

( − 1)i − j − 1

(i − j)α Si ⋅ S j + ∑
i > j

Jz − ( − 1)i − j − 1

(i − j)α Si
zS j

z . (9)

Now the classical ground state is Néel ordered (along any direction for Jz = 1). The first term 

above is isotropic, and gets mapped to

∑
i > j

( − 1)i − j − 1

(i − j)α Si ⋅ S j ≈ ∫ dq[Ω(q) ∣ n(q) ∣2 + ω(q) ∣ l(q) ∣2], (10)

where the roles of ω(q) and Ω(q) are swapped as compared to Eq. (4). For α < 3, Ω(q) in Eq. 

(5) is now dominated by the nonanalytic term |q|α−1 at small q, and we can no longer obtain 

the simple free Lagrangian in Eq. (7). In Ref. [57], it is shown that the |q|α−1 term in the 

dispersion of n(q) in Eq. (10) leads to a renormalization group flow towards a gapless 

ordered phase spontaneously breaking an SU(2) symmetry for α < αc ≲ 3. For our complete 

Hamiltonian H′ in Eq. (9), the anisotropy leads instead to a U(1) continuous symmetry 

breaking phase for α < αc′  (see the next section for further discussions, where αc′  is estimated 

to be 2.9 at Jz = 1). Our infinite-size DMRG calculations in Fig. 3(b) suggest that the 

Haldane phase terminates at a critical α around 3.1 for Jz = 1, and the XY phase is expected 

to exist in between the CSB phase and the Haldane phase at Jz = 1 for αc′ < α < αc.
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For α > 3, Ω(q) is dominated by q2 and we can once again reduce H′ to the free field 

Lagrangian Eq. (7), but with a different mass gap Δα′ , and spin-wave velocity vα′ . The 

anisotropy term in Eq. (9) changes the gap to Δα′ (Jz) = Δα
′2 − (gα − Jzhα). Here gα is a 

renormalization factor due to nonfrustrating long-range interactions ( − 1)i − j − 1

(i − j)α
Si

zS j
z in Eq. 

(9), and should thus increase as α decreases, while hα is a renormalization factor due to 

frustrating long-range interaction 1
(i − j)α

Si
zS j

z in Eq. (9), and should decrease as α decreases. 

Together with the expectation that the gap Δα′ , should decrease with α [47,57] due to the 

appearance of gapless continuous symmetry breaking phase at α ≲ 3, we conclude that the 

gap closes at a point with Jz strictly larger than zero in the presence of long-range 

interactions, again consistent with our numerical results.

We point out that a different field theoretic approach based on non-Abelian bosonization 

[57,68] can also be employed to predict the qualitative changes to the XY-to-Haldane phase 

boundary. This technique has been used to predict the XY-to-Haldane phase boundary of a 

spin-1 XXZ chain with next-nearest-neighbor interactions [76], which is a reasonable 

approximation to our model when α is large enough that next-nearest-neighbor interactions 

dominate over the next-longer-range interactions.

We end this section with a brief discussion of the boundary between the Haldane and AFM 

phases. Both the Haldane and AFM phases are gapped and have finite entanglement entropy 

in the infinite-system-size limit [99]. Thus we see well-converged results for bond 

dimensions of χ ⩾ 100 in our infinite-size DMRG calculations. We extract the Haldane-to-

AFM phase boundaries using the spin-spin correlation functions Cij
z ≡ Si

zS j
z  (see Fig. 4), and 

plot them as black lines in Figs. 3(a) and 3(b). Good agreement with existing literature [63–

66] is found for the Haldane-to-AFM transition point at α = ∞ (1.15 < Jz < 1.2). The 

bending of the Haldane-to-AFM phase boundary toward larger Jz for both Jxy = 1 and Jxy = 

−1 in the presence of long-range interactions can be understood via simple energetic 

considerations. In the AFM phase, the spins are (nearly) antialigned in the z direction; long-

range interactions are strongly frustrated, and the energy E = ∑i > j Si
zS j

z ∕ (i − j)α at α → 0 

is only half of the α = ∞ case for a perfectly Néel ordered state. In the Haldane phase, the 

AFM order of spin correlations 〈Si · Sj〉 decays exponentially (followed by a small power-

law tail [57]), and thus the ground state energy E = ∑i > j Si ⋅ S j ∕ (i − j)α is much less 

frustrated by the long-range interactions. As a result, we expect the disordered ground state 

in the Haldane phase to have progressively lower energy than an AFM ordered state as a 
decreases at a given Jz, and hence a larger (but always finite even for α → 0) Jz is needed to 

make the transition from the Haldane phase into the AFM phase.

IV. CSB PHASE AND ITS BOUNDARY

The celebrated Mermin-Wagner theorem rigorously rules out continuous symmetry breaking 

in 1D and 2D quantum and classical spin systems at finite temperature, as long as the 

Gong et al. Page 10

Phys Rev B. Author manuscript; available in PMC 2019 July 02.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



interactions satisfy the convergence condition ∑i > j Jijrij
2 < ∞ in the thermodynamic limit (rij 

and Jij are respectively the distance and coupling strength between sites i and j) [2]. The 

long-distance properties of 1D spin systems at zero temperature can often be related to those 

of a 2D classical model at finite temperature; however, in the process of this mapping, the 

long-range interactions are only inherited by one of the two spatial directions in the classical 

model, and the Mermin-Wagner convergence condition will be satisfied for interactions 

decaying faster than 1/r3. Thus we expect no continuous symmetry breaking in the ground 

state of our Hamiltonian Eq. (1) for α > 3. Indeed, we have found exclusively disordered or 

discrete (Z2) symmetry breaking phases for α > 3 in our phase diagrams (Fig. 1). 

Continuous symmetry breaking can (and does) appear when α < 3. To gain a better 

understanding of the robustness of symmetry breaking states to quantum fluctuations, below 

we carry out a spin-wave analysis [100]. Similar analysis can be also found in Ref. [44] and 

[45] for Heisenberg chains with long-range interactions.

We start by considering the Jxy = −1 case, and take the state with all spins polarized along 

the +x direction as the vacuum state. With this choice of vacuum, and assuming that the 

density of spin waves is small ( ai
†ai ≪ 1 in the following expressions), the Holstein-

Primakoff mapping is now Si
x = 1 − ai

†ai Si
y ≈ (ai

† + ai) ∕ 2, Si
z ≈ (ai

† − ai) ∕ i 2. Under this 

mapping, and dropping terms that are quartic in bosonic operators (again based on the 

assumption that ai
†ai ≪ 1, H becomes

Hswx = ∑
k = − N ∕ 2

N ∕ 2
(ak

† a−k)
ωk μk

μk ωk

ak

a−k
† ; (11)

ωk = ∑
r = 1

N ∕ 2 1
rα +

Jz − 1
2 ∑

r = 1

N ∕ 2 1
rαcos 2πk

N r , (12)

μk = −
Jz + 1

2 ∑
r = 1

N ∕ 2 1
rαcos 2πk

N r , (13)

where ak = 1
N ∑ je

i2π jk ∕ Na j. Hswx can be diagonalized with a Bogoliubov transformation, 

yielding noninteracting Bogoliubov quasiparticles with a spectrum νk. Importantly, when |

ωk| > |μk|, νk > 0 and the vacuum is dynamically stable. When |ωk| < |μk|, νk is imaginary 

and the system is dynamically unstable indicating that we have made the wrong choice of a 

classical ground state. Using the expressions for ωk and μk in Eqs. (12) and (13), we find 

that |ωk| > |μk| is satisfied for all k ≠ 0 modes if and only if −1 ⩽ Jz < ζ(α)/η(α). This is 

because when Jz < −1, the classical ground state is ferromagnetic in z direction, and when Jz 

> ζ(α)/η(α) the classical ground state is Néel ordered along the z direction.
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Because the Bogoliubov quasiparticles consist of both particles and holes, the ground state 

of Hswx can have a finite or divergent density of spin excitations, measured by

ai
†ai = 1

N ∑
k ≠ 0

1
2([1 − μk

2 ∕ ωk
2]−1 ∕ 2 − 1)

N ∞ = 1
4π∫−π

π
dq([1 − μ2(q) ∕ ω2(q)]−1 ∕ 2 − 1) .

(14)

Expanding the integrand [1 − μ2(q)/ω2(q)]−1/2 above around q = 0 to the lowest order in 1/q, 

we find that

[1 − μ2(q) ∕ ω2(q)]−1 ∕ 2 ≈
(1 + Jz)ζ(α)

2ζ(α − 2)q2 − 4Γ(1 − α)cos[π
2 (α − 1)] ∣ q ∣α − 1 , (15)

where Γ(x) is the gamma function. For α > 3, since [1 − μ2(q)/ω2(q)]−1/2 ∝ 1/|q| to leading 

order in 1/q, the spin-wave density ai
†ai ∼ ln(N) divergesas N → ∞ according to Eq. (14). 

This means the long-range ferromagnetic order along the x direction is destroyed by 

quantum fluctuations in the thermodynamic limit; we expect that lim ∣ i − j ∣ ∞ Si
+S j

− = 0, 

and the system will be disordered (either Haldane or XY). For α < 3, instead we have 

[1 − μ2(q) ∕ ω2(q)]−1 ∕ 2 ∝ 1 ∕ ∣ q ∣(α − 1) ∕ 2 to leading order in q, and the excitation density 

ai
†ai  converges to a finite constant. As a self-consistency condition, we also require 

ai
†ai < 1 to prevent the breakdown of the spin-wave approximation [44,52]. We expect a 

CSB phase in the parameter region of ai
†ai < 1, with nonvanishing spin order in the x-y 

plane (i.e., lim ∣ i − j ∣ ∞ Si
+S j

− ≠ 0), and a disordered phase when ai
†ai > 1. By 

numerically evaluating Eq. (14), which gives ai
†ai  in the infinite-size limit [101], we have 

obtained a phase diagram for Jxy = −1 under spin-wave approximation (Fig. 5).

For Jxy = 1 and | Jz| < 1, classically the spins prefer to antialign in the x-y plane. Expanding 

around this classical state, the spin-wave approximation leads to the same Hamiltonian in 

Eq. (11) except that we have

ωk = ∑
r = 1

N ∕ 2 ( − 1)r − 1

rα +
Jz − 1

2 ∑
r = 1

N ∕ 2 ( − 1)r − 1

rα cos 2πk
N r , (16)

μk = −
Jz + 1

2 ∑
r = 1

N ∕ 2 ( − 1)r − 1

rα cos 2πk
N r . (17)
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As a result, now both μ(q) and ω(q) become fully analytic (in the N → ∞ limit) due to the 

alternating sign (−1)r in Eqs. (16) and (17). Expanding around q = 0, we have

[1 − μ2(q) ∕ ω2(q)]−1 ∕ 2 ≈
(1 + Jz)η(α)
2η(α − 2)q2 . (18)

As a result, ai
†ai  will be divergent for any α > 0 due to the 1/|q| singularity in the integrand 

of Eq. (14). Thus continuous symmetry breaking is forbidden for all α > 0 for Jxy = 1.

Now we confirm the spin-wave prediction of the CSB phase’s boundary using DMRG 

calculations. Naively, one should calculate the CSB phase’s order parameter 

lim ∣ i − j ∣ ∞ Si
+S j

− . However, we find that in the XY phase Si
+S j

− ∼ 1 ∕ ∣ i − j ∣η decays 

with a rather slow power law (e.g., η = 0.25 at Jz = 0 and α = ∞). At the maximum 

separation that we can calculate accurately using either finite or infinite-size DMRG, Si
+S j

−

only shows a crossover from the XY phase to the CSB phase. To faithfully determine the 

boundary of the CSB phase, we instead calculate the effective central charge ceff as a 

function of α and Jz. We obtain ceff by calculating the half-chain entanglement entropy S for 

two chains with different total lengths N1 and N2 using a finite-size DMRG algorithm [102]. 

Explicitly, for large N1 and N2, we have

ceff ≈ 6
S(N1) − S(N2)

ln(N1) − ln(N2) . (19)

In the XY phase (including its boundaries) and at the boundary between the Haldane and 

AFM phases, we expect 1+1D conformal symmetry in the underlying field theory model 

[67,69], with ceff being the actual central charge representing the conformal anomaly [90]. In 

the Haldane, FM, and AFM phases, no 1+1D conformal symmetry exists due to the presence 

of a gap. Although the CSB phase is gapless, we expect a breakdown of 1+1D conformal 

symmetry due to the 1/rα long-range interactions that become relevant in the RG sense for α 
≲ 3 [33,35,83]. We emphasize that in phases with no conformal symmetry, ceff does not have 

the meaning of the central charge and is used only as a diagnostic here to numerically find 

phase boundaries.

We identify the XY-to-CSB phase boundary in Fig. 6 as the place where ceff starts to become 

appreciably (5–10%) larger than 1. Here we find good agreement with the XY-to-CSB phase 

boundary predicted by spin-wave theory in Fig. (5) for −1 < Jz ≲ 1. Together with 

perturbative field theory calculations presented in Ref. [83], we expect the phase boundary 

in Fig. 6 to be accurate within a few percent. The accuracy of the calculated ceff can be 

further improved by finite-size scaling, which is however beyond the scope of the current 

study. The location of the CSB-XY-Haldane tricritical point is estimated to be at α ≈ 2.75 

and Jz ≈ 1.35.
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From Ref. [83], it follows that the XY-to-CSB transition is a BKT-like transition that 

belongs to a universality class different from the XY-to-Haldane BKT transition. The 

Haldane-to-CSB transition is somewhat exotic, because the Haldane phase maps to a high-

temperature disordered phase in a 2D classical model [93], and in the absence of long-range 
interactions, the CSB phase exists in 2D only at zero temperature [2] and is unlikely to 

undergo a phase transition directly to a high-temperature disordered phase. We also argue 

that the CSB-to-Haldane transition is not described by a 1+1D CFT, as supported by our 

numerical calculations shown in Fig. 6(b), where ceff changes smoothly (at least for finite 

chains) from a value larger than 1 to 0 during the CSB-to-Haldane transition.

The CSB-to-AFM phase transition is very likely to be first order, similar to the transition 

between the large-D and AFM phases studied in Refs. [66] and [75], despite the existence of 

quantum fluctuations in both phases. As shown in Fig. 6, we observe a sharp peak in ceff at 

small as when Jz is varied, indicating a first order transition [67], with further evidence that 

includes jumps in sublattice magnetization and spin-spin correlation across the CSB-to-

AFM transition (not shown).

V. EXPERIMENTAL DETECTION

It was theoretically proposed in Refs. [54] and [55] that the Hamiltonian we consider can be 

simulated (for widely tunable Jz and 0 < α < 3) by using microwave field gradients or optical 

dipole forces to induce spin-spin interactions in a chain of trapped ions. The simulation of 

Eq. (1) with Jxy = 1 and Jz = 0 was experimentally demonstrated for a few ions with α tuned 

around 1 [56], where the ground state was adiabatically prepared by slowly ramping down 

an extra single-ion anisotropy term D(t)∑i (Si
z)2, with D(t) > 0. As the system size increases, 

the energy gap separating the ground state from the rest of the spectrum will become 

progressively smaller near the point where a phase transition between the “large-D” phase 

and the XY/Haldane/FM/AFM phase occurs in the thermodynamic limit [75]. To avoid a 

slow ground state preparation process, we can adiabatically ramp down a staggered magnetic 

field in the z direction, h(t)∑i = 1
N ( − 1)iSi

z, with h(t) > 0 [54,55]. By preparing an initial state 

that is the highest excited state of the staggered field Hamiltonian, the same adiabatic 

ramping process will lead us to the ground state of the Hamiltonian Eq. (1) with the opposite 

sign of both Jxy and Jz. As discussed in Ref. [55], the spin correlation functions Si
zS j

z  and 

the string-order correlation 𝒮ij
z ≡ 〈Si

zS j
z∏i < k < j ( − 1)

Sk
z
〉 can be measured for any i and j, 

since one can obtain the complete statistics of all spins’ magnetization using spatially 

resolved measurements. Together with arbitrary single-spin rotations performed with 

microwave or optical Raman transitions, we can measure these correlations along any 

direction. Near-future experiments will most likely be limited to a few tens of spins. 

Although this limitation makes it difficult to probe continuous phase transitions, one can 

nevertheless observe important signatures of all five phases discussed in the manuscript by 

tuning Jz/Jxy and α deep into each phase. These signatures are summarized below and shown 

in Fig. 7.
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FM phase [Fig. 7(a)]: Within the FM phase, Si
zS j

z = 1 and Si
xS j

x = 0 for any i and j, thus 

confirming perfect alignment of spins along the z direction.

AFM phase [Fig. 7(b)]: For sufficiently large Jz > 0, we have Si
zS j

z ≈ ( − 1)i − j, showing a 

near perfect antialignment of spins along the z direction. In contrast, Si
xS j

x  vanishes over a 

separation of just a few sites.

Haldane phase [Fig. 7(c)]: 𝒮ij
z  converges quickly to a nonzero constant as |i − j| increases. In 

contrast, Si
zS j

z  and Si
xS j

x  vanish over a separation of just a few sites.

XYphase [Fig. 7(d)]: We consider the XY phase for Jxy = 1 since the XY phase hardly exist 

for α < 3 and Jxy = −1. 𝒮ij
z  and Si

zS j
z  both decay quickly to zero as |i − j| increases. Si

xS j
x

oscillates and its amplitude decays very slowly (the slow decay reflects a relatively small 

value of the critical exponent associated with the correlation function decay).

CSB phase [Fig. 7(f)]: As in the XY phase, both 𝒮ij
z  and Si

zS j
z  decay quickly to zero. 

However, Si
xS j

x  converges quickly to approximately 0.5 at large |i − j|, showing a near 

perfect ordering of spins in the x − y plane. Note that we are not explicitly breaking U(1) 

symmetry here, so Si
xS j

x = Si
yS j

y = 1
2 Si

+S j
− . This is done because it is desirable for the 

experiment to operate within the ∑i = 1
N Si

z = 0 subspace, where magnetic field noise and 

unwanted phonon couplings are suppressed [55,56].

Finally, we point out that, even in the experimental setup already demonstrated in Ref. [56], 

for which Jz = 0, one can still explore the two most interesting phases studied in this paper: 

the Haldane phase and the CSB phase. Note that, for Jxy = 1, Jz = 0 lies close to the Haldane-

to-XY phase boundary, and thus one observes signatures of both phases, as in Fig. 7(e). Here 

the Haldane phase is identified via bulk correlations, but one can alternatively confirm the 

existence the Haldane phase by preparing edge excited states and measure edge excitation 

amplitudes [57].

VI. CONCLUSION AND OUTLOOK

By tuning the anisotropy Jz/|Jxy| and the power-law exponent α, we have explored a rich 

variety of quantum phases—and the transitions between them—in a long-range interacting 

spin-1 XXZ chain. For Jxy = −1, long-range interactions give rise to a rather unusual phase 

diagram due to the emergence of a continuous symmetry breaking phase in one spatial 

dimension. Because the CSB phase cannot happen in a short-range interacting 1D spin-

system, the nature of the phase transitions into and out of it is rather interesting; an in-depth 

study of the universality class of the CSB-to-XY transition was carried out in a separate 

work [83], where a similar transition in a long-range interacting spin-1/2 XXZ chain is 

analyzed. On the other hand, the CSB-to-Haldane transition, absent in spin-1/2 chains, 

requires further study to be understood thoroughly. The CSB-Haldane-AFM tricritical point 
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is reminiscent of the tricritical point at the intersection of the large-D, Haldane and AFM 

phases, which has been related to the integrable Takhtajan-Babujian model described by an 

SU(2)2 Wess-Zumino-Witten (WZW) model with central charge c = 3/2 [67,103–106]. 

Additional numerical calculations are needed to accurately determine the central charge at 

the CSB-Haldane-AFM tricritical point. Generalizations of our model to include single-ion 

anisotropy and a magnetic field are readily achievable in current trapped-ion experiments 

[55,56]. Understanding these exotic quantum phase transitions—induced by long-range 

interactions that are highly tunable in current experiments—requires the confrontation of 

numerous theoretical and numerical challenges, and motivates experimental quantum 

simulation of the model using AMO systems.
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APPENDIX:: NUMERICAL TREATMENT OF LONG-RANGE INTERACTIONS

In our infinite-size and finite-size DMRG code [85], the 1/rα long-range interactions are 

represented as a matrix product operator by fitting the power law to a sum of exponentials 

[51]. Specifically, we fit fr = 1/rα to f r′ = ∑k = 1
K cke

−r ∕ ξk for r = 1,2, ⋯ L. For a given L, we 

numerically find the minimum number of exponentials K that satisfy ∑r = 1
L ( f r − f r′)

2 ⩽ ϵ f , 

with ϵf denoting the residual tolerance. The maximal range L is set to the chain length in our 

finite-size DMRG calculations, and to 5000 in our infinite-size DMRG calculations (much 

larger than the 500 site separation of correlations calculated in Fig. 3). ϵf is set to 10−12 in 

our finite-size DMRG calculations, and 10−10 in our infinite-size DMRG calculations. For 

all the calculations shown in the main text, we find no distinguishable differences within the 

resolution of our plots if we further increase L or decrease ϵf.

As an example, we show in Fig. 8 relative differences of 𝒮1, 501
z  (for Jxy = 1, α = 2) and 

S1
+S501

−  (for Jxy = −1, α = 2) caused by increasing L from 5000 to 104 and by decreasing ϵf 

from 10−10 to 10−11. In all cases, the relative differences in the calculated observables are 

below 10−3.

We have avoided the use of DMRG results if α < 1.5 and interactions are unfrustrated in one 

or more directions (Jxy = −1 or Jz < 0 or both), because of the slow convergence of 

∑r = 1
L 1 ∕ rα with L as α → 1. Nevertheless, we do not expect new phase transitions in these 

situations based on Fig. 1, and we can instead infer the phases of the system there from the 

presented calculations.
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FIG. 1. 
Proposed phase diagram for (a) Jxy = 1 and (b) Jxy = −1. Five different phases are identified: 

a ferromagnetic (FM) Ising phase, an antiferromagnetic (AFM) Ising phase, a disordered 

XY phase, a topological Haldane phase, and a continuous symmetry breaking (CSB) phase. 

At α = ∞, the transition points are denoted by Jz = λ0,1,2 in (a). The FM-to-XY, FM-to-

CSB, and CSB-to-AFM transitions are first order (green line); the XY-to-Haldane transition 

is BKT type with central charge c = 1 (purple line); the Haldane-to-AFM transition is second 

order with c = 0.5 (yellow line); the CSB-to-XY transition (white dotted line) has c = 1, but 
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is a BKT-like transition corresponding to a universality class different from the XY-to-

Haldane transition [83]; the CSB-to-Haldane transition (black dotted lines) appears to be an 

exotic continuous phase transition not described by a 1+1D CFT. The location of solid 

transition lines are expected to be accurate in the thermodynamic limit, while the location of 

dotted transition lines may have a small uncertainty.
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FIG. 2. 
Comparison of the (first-order) transition point λ0(α) out of the FM phase calculated using 

infinite-size DMRG and spin-wave theory for Jxy = 1. The spin-wave theory predicts λ0(α) 

= −η(α)/λ(α). The infinite-size DMRG calculations use a bond dimension χ = 100, and 

increasing χ to 200 does not yield results distinguishable within the resolution of the plot. 

The transition point is numerically determined by finding the value of Jz at which the ground 

state energy density obtained from infinite-size DMRG calculations is equal to that of the 

FM state.
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FIG. 3. 

Infinite-size DMRG calculation of 𝒮ij
z ≡ 〈Si

zS j
z∏i < k < j ( − 1)

Sk
z
〉 for a separation of |i − j| = 

500. 𝒮ij
z = 1 in the FM phase and 𝒮ij

z ≈ 1 deep in the AFM phase for any i and j. As |i − j| → 

∞, 𝒮ij
z  is finite for the Haldane phase and zero for the XY phase, thus we can use it to locate 

the XY-to-Haldane phase boundary. (a) Jxy = 1. The FM phase boundary (green line) is 

given by the spin-wave prediction Jz = −η(α)/ζ(α). (b) Jxy = −1. The FM phase boundary 
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(green line) is exactly at Jz = −1. For both (a) and (b), we vary the bound dimension χ to 

accurately determine the XY-to-Haldane phase boundary, determining the value of Jz at 

which 𝒮ij
z  vanishes (for a large but finite |i − j|) and then extrapolating to the χ → ∞ limit 

(white squares fitted by the white line). The black line is the Haldane-to-AFM phase 

boundary, which is determined from Si
zS j

z  (see Fig. 4).
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FIG. 4. 

S1
zS501

z  as a function of Jz calculated using infinite-size DMRG for a few different sets of α 

and Jxy. The Haldane-to-AFM phase transition is clearly observed and we locate the 

transition point by finding the critical Jz (restricted to Jz > 0) above which S1
zS501

z > 0.1. 

The curves shown look nearly identical when we increase the bond dimension used from 

100 to 200.
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FIG. 5. 

Spin-wave excitation density ai
†ai  calculated using Eq. (14) for an infinite-size chain. For Jz 

> ζ(α)/η(α) (region to the right of the white line), imaginary frequencies appear in the 

Bogoliubov spectrum, indicating a classical instability toward the AFM phase. The region 

above the dotted and solid white lines has ai
†ai ⩽ 1, and is associated with the CSB phase. 

The remaining region in the plot has ai
†ai > 1, and is expected to be disordered. The 

disordered phase can be either the XY or the Haldane phase, but the spin-wave theory 

cannot distinguish one from the other. For better visibility, we have set ai
†ai = 1 for regions 

without CSB in the plot.
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FIG. 6. 
Calculation of the effective central charge ceff as a function of Jz and α for Jxy = −1, 

extracted from finite-size DMRG calculations with N1 = 100, N2 = 110, and a maximum 

bond dimension of 500. (a) The black squares (fitted by the black line) show where ceff starts 

to deviate from 1 when going from the XY to the CSB phase. The purple line and white line 

are from Fig. 3, and show the boundaries of the Haldane phase. (The calculation of ceff is 

inaccurate in predicting the location of the XY-to-Haldane transition due to strong finite-size 

effects [61,86–88].) For better contrast, locations with c > 2 are shown with the color 
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corresponding to c = 2. (b) For our finite-size chains, the XY-to-Haldane BKT phase 

transition is signaled by a continuous drop of ceff from 1 to 0 (α = 3.5). The Haldane-to-

AFM phase transition is identified by a peak with value around 0.5 in ceff (α = 3.5 and α = 

2.67). The CSB-to-Haldane transition is expected to be continuous and not associated with a 

central charge (α = 2.67). The CSB-to-AFM transition has a sharp peak in ceff (α = 2.21), an 

indication of a first-order transition [67].
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FIG. 7. 
Signatures of all five phases for a N = 16 spin chain. Except for (e), we tune Jxy, Jz, and α to 

set the ground state deep into each phase. Each phase is distinguished from the other phases 

by different behaviors in various spin-spin correlation functions.
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FIG. 8. 

Relative differences of 𝒮1, 501
z  (blue) calculated for Jxy = 1, α = 2 and S1

+S501
−  (red) 

calculated for Jxy = −1, α = 2 caused by (a) increasing L from 5000 to 104 (with K 
increasing from 9 to 10) and (b) decreasing ϵf from 10−10 to 10−11 (with K increasing from 9 

to 10).
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