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Abstract

Topological phases of matter are primarily studied in systems with short-range interactions. In 

nature, however, nonrelativistic quantum systems often exhibit long-range interactions. Under 

what conditions topological phases survive such interactions, and how they are modified when 

they do, is largely unknown. By studying the symmetry-protected topological phase of an 

antiferromagnetic spin-1 chain with 1/rα interactions, we show that two very different outcomes 

are possible, depending on whether or not the interactions are frustrated. While unfrustrated long-

range interactions can destroy the topological phase for α ≲ 3, the topological phase survives 

frustrated interactions for all α > 0. Our conclusions are based on strikingly consistent results from 

large-scale matrix-product-state simulations and effective-field-theory calculations, and we expect 

them to hold for more general interacting spin systems. The models we study can be naturally 

realized in trapped-ion quantum simulators, opening the prospect for experimental investigation of 

the issues confronted here.

Since the discovery of topological insulators [1–3], there has been tremendous interest in 

exploring various topological phases of matter, both theoretically [4,5] and experimentally 

[6–8]. Topological phases are generally associated with—and derive much of their presumed 

utility from stability against local perturbations. But precisely what constitutes “local” in this 

context is a subtle issue; power-law decaying (1/rα) interactions, which are present in many 

experimental systems, do not necessarily qualify [9–11]. Recent theoretical advances have 

begun to elucidate the conditions under which long-range interacting systems maintain some 

degree of locality [12,13], potentially providing some insight into effects of long-range 

interactions on topological phases of matter. And recently, explicit theoretical evidence of 

topological order has been found in a variety of long-range interacting systems, including 

dipolar spins [14] or bosons [15], fermions with long-range pairing [16] and hopping 

[ 17,18], and electrons with Coulomb interactions [19]. These results notwithstanding, a 

complete understanding of how topological phases respond to the addition of long-range 

interactions is still lacking.
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The stability of topological phases to small local perturbations is intimately connected to the 

existence of a bulk excitation gap [20,21], and the introduction of long-range interactions to 

a short-range Hamiltonian supporting a topological phase poses several potential challenges 

to this connection. First, even if the gap remains finite, long-range interactions can change 

the ground-state correlation decay from exponential to power law [16,18,22,23]. Thus 

topological phases with local interactions are, at the very least, subject to qualitative changes 

in their long-distance correlations. Second, the gap can in principle close in the presence of 

long-range interactions, even when they decay fast enough that the total interaction energy 

remains extensive [20,24]. Third, long-range interactions have the ability to change the 

effective dimensionality of the system [25,26], and thus might change the topological 

properties even if the gap does not close [16,18]. We emphasize that the understanding of 

these issues is not of strictly theoretical interest. Many of the promising experimental 

systems for exploring or exploiting topological phases of matter, e.g., dipolar molecules 

[27–29], magnetic [30] or Rydberg atoms [31], trapped ions [32–37], and atoms coupled to 

multimode cavities [38], are accurately described as quantum lattice models with power-law 

decaying interactions. The unique controllability and measurement precision afforded by 

these systems hold great promise to improve our understanding of topological phases [39–

42], but first we must reliably determine when—despite their long-range interactions—they 

can be expected to harbor the topological phases that have been theoretically explored for 

short-range interacting systems.

To address these general questions, in this Rapid Communication we study a spin-1 chain 

with antiferromagnetic Heisenberg interactions, which is a paradigmatic model exhibiting a 

symmetry-protected topological (SPT) phase [43,44]. Specifically, we consider two 

extensions of the short-range version of this model by including long-range interactions that 

decay either as 𝒥α(r) = 1 rα or as 𝒥α′ (r) = ( − 1)r − 1 rα, which could be simulated in 

trapped-ion based experiments for 0 < α < 3 [45,46]. Based on a combination of large-scale 

variational matrix-product-state (MPS) simulations and field-theory calculations, we 

establish and explain a number of important and potentially general consequences of long-

range interactions. The 𝒥α′ (r) interactions are unfrustrated, being antiferromagnetic 

(ferromagnetic) between spins on the opposite (same) sublattice. In this case, numerics and 

field-theoretic arguments suggest the destruction of the topological phase for α ≲ 3, 

accompanied by a closing of the bulk excitation gap and spontaneous breaking of a 

continuous symmetry in one dimension (1D), consistent with other recent findings on the 

relevance of long-range interactions for α < D + 2 in D-dimensional quantum systems 

[47,48]. The 𝒥α(r) interactions are frustrated, and, remarkably, do not close the bulk 

excitation gap for any α > 0. In addition, two key properties of the SPT phase, a doubly 

degenerate entanglement spectrum [49] and a nonvanishing string-ordered correlation [50], 

are both preserved. However, because of the long-range interactions, spin-spin correlations 

and the edge-excitation amplitudes only decay exponentially within some intermediate 

distance scale, after which they decay algebraically. We expect these qualitative changes to 

be quite general, occurring in other long-range interacting systems in which the topological 

phase survives.
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Model.

We consider a spin-1 chain with either frustrated or unfrustrated long-range Heisenberg 

interactions:

Hα = ∑
j, r > 0

𝒥α(r)S j ⋅ S j + r, Hα′ = ∑
j, r > 0

𝒥α′ (r)S j ⋅ S j + r . (1)

With only nearest-neighbor interactions (α → ∞), H∞ = H∞′  is usually called the Haldane 

chain, which has been extensively studied theoretically [51–53], numerically [54–58], and 

experimentally [59,60]. The low-lying states of the Haldane chain are shown in Fig. 1(a) for 

an open boundary chain with even size L. The unique ground state has total spin S = 0. The 

first set of excited states has S = 1 (ℏ = 1), contains spin excitations only near the edge of 

the chain, and is separated from the ground state by an energy gap (edge gap) that is 

exponentially small in L and topologically protected. Consequently, these excited states 

belong to a degenerate ground-state subspace in the thermodynamic (L → ∞) limit. The 

second set of excited states all have S = 2, contain spin excitations in the bulk of the chain, 

and have an energy gap (bulk gap) that converges to a finite value when L → ∞. The 

entanglement structure of the four ground states is close to that of the Affleck-Kennedy-

Lieb-Tasaki (AKLT) states [61] shown at the bottom of Fig. 1(a), where each spin-1 is 

decomposed into two spin-1/2’s, pairs of spin-½’s on neighboring sites form singlets, and 

the system is finally projected back onto the spin-1’s. The four quasidegenerate ground 

states correspond to the four states formed by the two unpaired spin-½’s at the edge.

We use variational MPS calculations [62–65] to determine the ground-state entanglement 

structure of Hα and Hα′  in Figs. 1(b) and 1(c). For α > 0 (α > 3), the ground-state 

entanglement spectrum of Hα(Hα′ ), defined as the eigenvalues of the left/right half chain’s 

reduced density matrix, is dominated by the two largest degenerate eigenvalues λ1 = λ2 ≈ 
0.5. This can be understood heuristically as the result of cutting a spin-½ singlet in the 

AKLT state, and suggests the survival of the topological Haldane phase. For Hα′  with α ≲ 3, 

the entanglement spectrum has an entirely different structure, and we will study the related 

ground-state properties below.

Effective field theory.

The low-energy physics of the Haldane chain can be understood via field-theoretic analysis 

due to Haldane [52] and Affleck [66]; here, we build on their work to provide a field-

theoretic treatment of the long-range interacting model. We begin by decomposing the spin 

operators into staggered and uniform fields, n(2i + 1
2 ) = (S2i − S2i + 1) 2 and 

l(2i + 1
2 ) = (S2i + S2i + 1) 2. The intuition behind this decomposition is that the classical 

ground state of both Hα and Hα′  is Néel ordered for any α > 0, with n2(x) = 1 and l(x) = 0. 

We therefore expect that in the quantum ground state n2(x) ≈ 1, while l(x) ≈ 0 represents 

small quantum fluctuations in the direction of n(x). Importantly, we expect that only long-

Gong et al. Page 3

Phys Rev B. Author manuscript; available in PMC 2019 July 02.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



wavelength fluctuations of n(x) and l(x) will be important at low energy. In momentum 

space, we can write Hα ≈ ∫ dq[ω(q)|n(q)|2 + Ω(q)|l(q)|2] and 

Hα′ ≈ ∫ dq[ Ω (q) ∣ n(q) ∣2 + ω(q) ∣ l(q) ∣2] [67], with

ω(q) = 2 ∑
r = 1

∞
𝒥α′ (r)cos qr, Ω (q) = 2 ∑

r = 1

∞
𝒥α(r)cos qr . (2)

For any α > 0, ω(q) is analytic at small q and can be expanded as ω0 + ω2q2 + O(q4), 

whereas Ω(q)is nonanalytic at small q with an expansion Ω0 + Ω2q2 + λ|q|α−1 + O(q4). The 

coefficients ω0,2, Ω0,2, and λ depend on α, but their exact values are not important for the 

following analysis. Physically, the analyticity (nonanalyticity) of the spectrum arises because 

the long-range interactions interfere destructively (constructively) for the staggered field. 

Keeping only the lowest nontrivial order in q for the dispersion of both n(q) and l(q) turns 

out to be sufficient for obtaining qualitatively correct behavior of the excitation gap. 

Therefore, we keep only the 0th-order term in the dispersion of l(q), and the next-leading 

term in the dispersion of n(q) [for n(q), the 0th-order term only adds a constant to the 

Hamiltonian due to the constraint n2(x) = 1]. Thus for α > 0 (α > 3) the Hamiltonian Hα(Hα′ )

is approximately given by (ignoring the order-unity coefficients) 

Hα~Hα′ ~∫ dq[q2 ∣ n(q) ∣2 + ∣ l(q) ∣2]. When the zero-temperature partition function is expressed 

as a coherent-spin-state path integral, the action is quadratic in the field l and it can be 

integrated out [68,69]. The remaining path integral over the staggered field n is a (1 + 1)D 

O(3) nonlinear sigma model, with Lagrangian density [nonlinear constraint n2(x) = 1 

implied]

ℒ(x) ≈ 1
g ( ∣ ∂n ∂t ∣2 − vs

2 ∣ ∂n ∂x ∣2) . (3)

Here, g is an effective (α- and short-distance-cutoff-dependent) coupling strength, and the 

spin-wave velocity vs is also α dependent. This model is gapped and disordered [51].

To investigate the ground-state properties of Eq. (3), we can remove the constraint n2(x) = 1, 

while phenomenologically introducing a mass gap Δα and a renormalized spin-wave 

velocity vα (the parameters Δα′  and vα′  will be used to describe the Lagrangian for Hα′ ) 

[57,58]. Transforming to momentum space, we thereby arrive at a free-field Lagrangian 

density

ℒ(q) ∝ (∂n ∂t)2 − ( Δα
2 + vα

2q2) ∣ n(q) ∣2 . (4)

This Lagrangian leads to ground-state correlations 𝒞ij = Si
zS j

z
0 [where ⟨⋯⟩m denotes the 

expectation value in the state |m⟩ defined in Fig. 1(a)] that decays as
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𝒞ij ∝ ( − 1)r∫ eiqrdq
Δα

2 + vα
2q2 ∝ ( − 1)rK0(r ∕ ξα) . (5)

Here, ξα ≡ vα/Δα (or ξα′ ≡ vα′ Δα′  for Hα′ ) defines the correlation length, and K0(x) is a 

modified Bessel function, which behaves as K0(x)~exp( − x) x for large x.

For α < 3, the nonanalytic |q|α−1 term in Hα′  dominates the dispersion of n(q) at small q, and 

Eqs. (3) and (4) are not valid. To analyze this case, we write down the renormalization group 

(RG) flow equation for the coupling strength g under the scaling transformation x → xe−l to 

one-loop order [68,70],

dg
dl = α − 3

2 g + g2

4π . (6)

For α < 3, an unstable fixed point appears at g* = 2π(3 − α), and for a bare coupling g < g* 

the RG flow is towards a weak-coupling ordered state at g = 0 [68]. The bare coupling, and 

therefore the value of α at which this phase transition occurs, is difficult to determine a 
priori. But we nevertheless expect (and confirm numerically) that for α < αc, with 2 < αc < 

3, the gap will close as the system spontaneously breaks the continuous SU(2) symmetry of 

Hα′  [48,71].

Comparison with numerics.

Using finite-size MPS calculations, we have obtained the bulk excitation gap E2 − E1 and 

the correlation length [fitted using Eq. (5)] for both Hα and Hα′ . As shown in Figs. 2(a) and 

2(b), we see consistent results with the field-theory predictions. For Hα, the gap remains 

open for all α > 0, and the correlation length decreases together with α due to both an 

increase of the bulk gap, and a decrease of the spin-wave velocity (as a result of a weakened 

Néel order for longer-range interactions). To the contrary, for Hα′ , the gap decreases quickly 

as the interactions become longer ranged, and the correlation length diverges when α 
decreases to around 3, suggesting the disappearance of the topological phase at α ≲ 3 [72]. 

Calculation of the string-ordered correlation 𝒮ij ≡ Si
zS j

zΠi < k < j( − 1)
Sk

z

0
 of both Hα and Hα′

at α = 1.5 [Fig. 2(c)] provides further evidence that the topological phase survives for Hα, 

but not for Hα′ , for 0 < α ≲ 3.

We now analyze the effects of terms beyond leading order in q that have been ignored in our 

field-theory treatment. Including the higher-order analytic terms, such as the O(q4) term, 

will result in negligible corrections to the correlation functions that decay in distance faster 

than Eq. (5) [57]. However, even for α > 3, inclusion of the nonanalytic O(|q|α−1) term will 

add a power-law tail to the correlation functions, which will dominate over Eq. (5) at long 
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distance. In the Supplemental Material, we show by a more involved field-theory calculation 

that, for Hα, 𝒞ij decays as 1/rα+4 at large r. Our MPS calculations using L = 500 spins [Fig. 

2(d)] show remarkable agreement with the field-theory predictions, even capturing the 

oscillations in ∣ 𝒞ij ∣ occurring at intermediate distance where the short-range and long-range 

contributions to the correlation functions are of comparable magnitude and interfere. A 

power-law tail in 𝒞ij should also exist for Hα′ , but the increased correlation length prevents 

us from observing its existence clearly for α > 3.

Edge-excited states.

We expect the influence of long-range interactions on the edge- and bulk-excited states to be 

strong at small α; because the topological phase of Hα′  does not survive for α ≲ 3, we will 

focus on Hα from now on. Edges can be introduced into the field theory by replacing the two 

end spin-1’s with spin-1/2’s, represented by τL (τR) for the left (right) edge, resulting in an 

edge-bulk coupling Hamiltonian Hc = Σi = 2
L − 1Si ⋅ [τL (i − 1)α + τR (L − i)α] [57]. For the 

edge-excited state |1⟩ [Fig. 1(a)], τL,R are polarized in the +z direction, and we expect Si
z  to 

decay away from the ends. Solving the free theory defined by Eq. (4) and treating Hc using 

standard first-order perturbation theory [57], we find that 

nz(x) 1 ∝ ∫ dq {exp[iq(L − x)] − exp[iq(x − 1)]} ( Δα
2 + vα

2q2) ∝ exp[ − (L − x) ξα] − exp[ −
(x − 1) ξα]

for even L. In addition, ⟨lz (x)⟩1 contributes a power-law correction 1/(x − 1)α+2 + 1/(L − 

x)α+2 for x far away from both ends [73]. Our numerical calculation of ⟨Sz(x)⟩1, shown in 

Fig. 3(a), agrees well with a sum of these two contributions, clearly exhibiting an 

exponential followed by 1/rα+2 decay.

The edge gap |E1 − E0| can be obtained by using a path integral to integrate out the n> field 

[57], resulting in an effective edge-edge Hamiltonian ∝ (−1)L exp(−L/ξα)τL · τR. This 

scaling is confirmed, at relatively small L, by the numerical results in Fig. 3(b). However, 

the numerics also reveal that at large L the edge gap receives a long-range correction given 

by 1/Lα. This remarkably simple result, including the unity prefactor, can be understood as 

follows. The edge-excited states behave differently from the bulk-excited states due to 

correlations between the orientations of τ1 and τ2, and therefore ⟨Si · Sj)1 − ⟨Si · Sj⟩0 is very 

small unless i and j are very close to 0 and L, respectively. Thus we have E1 − E0 ≈ L−α 

∑i<j(⟨Si · Sj⟩1 − ⟨Si · Sj⟩0⟩) = 1/Lα, where the last equality is a sum rule following from the 

total spin of the ground (S = 0) and edge-excited (S = 1) states.

Bulk-excited states.

As in the short-range Haldane chain, the elementary bulk excitations of Hα are spin-1 

magnons [55–57]. Physically, the magnon represents fluctuations in the staggered 

magnetization, and, from Eq. (4), these fluctuations have a dispersion relation 

ϵα(q) = Δα
2 + (vαq)2 ≈ Δα + q2vα

2 (2 Δα ) (valid at small q). The lowest-energy magnon 

wave function Ψ0(x) can be extracted from the numerics using the relation 
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∣ Ψ0 (i) ∣2 ≈ ∣ Si
z

2 − Si
z

1 ∣. The presence of long-range interactions gives the magnon an 

additional potential energy due to the edge-bulk coupling Hamiltonian Hc, and Ψ(x) can be 

approximately described by the following Schrödinger equation (with Dirichlet boundary 

condition at x = 1, L),

vα
2

2 Δα

∂2 Ψ (x)
∂x2 + 1

2
1

(x − 1)α + 1
(L − x)α Ψ (x) = ℰ Ψ (x) . (7)

The kinetic (potential) energy always scales as 1/L2 (1/Lα); therefore, for α > 2 and large L, 

the potential energy can be ignored. The ground-state energy ℰ0 ≈ vα
2π2 (2 Δα L2) and 

probability density |Ψ0(x)|2 ≈ (2/L)sin2(πx/L) are then identical to those of a particle in a 

box, as confirmed numerically in Figs. 3(c) and 3(d). The relation 

E2 − E1 ≈ Δα + vα
2π2 (2 Δα L2) allows us to obtain both vα and Δα through finite-size 

scaling [Fig. 2(b)], and we confirm that the correlation length determined by ξα = vα/Δα 
agrees with that obtained by fitting 𝒞ij using Eq. (5). For α < 2, the potential energy 

dominates the kinetic energy for large L, and the potential can be approximated as harmonic 

around x = L/2. Thus |Ψ0(x)|2 resembles a Gaussian [Fig. 3(c)], and a simple scaling 

analysis predicts a width γ ∝ L1−α/2. In the large-L limit, |Ψ0(x)|2 becomes sharply peaked 

at x = L/2 and, from Eq. (7), we expect the bulk gap to scale as Δα + (2/L)α, which is clearly 

observed in Fig. 3(d). Since E2 − E1 = 2 when α = 0, it follows that Δα→0 = 1, consistent 

with Fig. 2(a).

Outlook.

The stability of the topological Haldane phase to 1/rα interactions for all α > 0 is favorable 

for trapped-ion based experiments, as stronger couplings can be achieved for smaller α 
[36,37]. Moreover, because the correlation length shrinks for longer-range interactions, a 

relatively small number of ions will suffice to suppress finite-size effects. Probing the 

topological phase by measuring both 𝒞ij and 𝒮ij with single-site resolution is nearly 

impossible in typical condensed-matter systems, but is quite straightforward in ion traps 

[74]. Based on the generality of our field-theory analysis, we speculate that for generic 

lattice models, the tails in the power-law interactions can possibly destroy the topological 

phase only when long-range interactions are unfrustrated and α < D + 2. Experimentally, 

unfrustrated long-range interactions can be easily implemented by generating a 1/rα 

ferromagnetic interaction [71]. We hope that our work can serve as a springboard for future 

studies on how distinct topological phases behave in the presence of long-range interactions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
(a) Low-lying energy levels of the Haldane chain for even L. The entanglement structure of 

ground states is shown at the bottom. The ground states in the total Sz = 0, 1, 2 subspace are 

named |0〉, |1〉, |2〉 and have energies E0, E1, E2. (b), (c) The mth largest value λm (m = 1, 2, 

…, 8) of the ground-state entanglement spectrum for Hα (b) and Hα′  (c) using finite-size 

MPS calculations with L = 200. We choose the |1〉 state to avoid extra entanglement between 

edge spins. For Hα′ , the entanglement spectrum for 1.5 ⩽ α ⩽ 4 will exhibit a smooth 

crossover between the α = 1.5 and α = 4 cases due to the finite system size, but we expect a 

sharp transition at some α ≲ 3 in the thermodynamic limit. The exact pair degeneracies in 

{λm} are a result of the spatial-inversion symmetry protecting the topological phase [44,49].
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FIG. 2. 
(a) Bulk gap Δα and ground-state correlation length ξα in the L → ∞ limit, obtained by 

finite-size scaling for 200 ⩽ L ⩽ 500. (b) Bulk gap Δα′  and ξα′  with L = 100 and L = 300. (c) 

Ground-state string-ordered correlation function 𝒮ij for Hα and Hα′  with α = 1.5 and L = 

300. For various α and 200 ⩽ L ⩽ 500, we consistently find that 𝒮ij quickly saturates to a 

finite value for Hα at all α > 0, but vanishes at large distance for Hα′  at α ≲ 3. (d) Ground-

state spin-spin correlation 𝒞ij for α = 0.5 and L = 500. This choice of α = 0.5 is arbitrary, 

but assists in a clear presentation of the coexisting exponential and 1/rα+4 power-law decays.
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FIG. 3. 
(a) Distribution of an edge excitation in state |1〉 for L = 500 and α = 2. (b) Edge gap |E1 − 

E0| as a function of the chain size L for α = 3. (c) Lowest-energy magnon probability density 

distribution for L = 200 and α = 3.0, 0.5. (d) The finite-size correction to the lowest magnon 

excitation energy [see Eq. (7)]. For α = 3, we obtain vα = 2.18 and vα/Δα ≈ 4.51, in good 

agreement with the ξα ≈ 4.55 obtained in Fig. 2.
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