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Brain inflammation is associated with various types of neurodegen-

erative diseases, including Alzheimer disease (AD). Quantifying
inflammation with PET is a challenging and invasive procedure,

especially in frail patients, because it requires blood sampling from

an arterial catheter. A widely used alternative to arterial sampling
is a supervised clustering algorithm (SVCA), which identifies the

voxels with minimal specific binding in the PET images, thus

extracting a reference region for noninvasive kinetic modeling.

Methods:We tested this algorithm on a large population of subjects
injected with the translocator protein radioligand 11C-PBR28 and

compared the kinetic modeling results obtained with the gold stan-

dard of arterial input function (VT/fp) with those obtained by SVCA

(distribution volume ratio [DVR] with Logan plot). The study com-
prised 57 participants (21 healthy controls, 11 mild cognitive impair-

ment patients, and 25 AD patients). Results: We found that VT/fp
was greater in AD patients than in controls in the inferior parietal,

combined middle and inferior temporal, and entorhinal cortices.
SVCA-DVR identified increased binding in the same regions and

in an additional one, the parahippocampal region. We noticed how-

ever that the average amplitude of the reference curve obtained
from subjects with genetic high-affinity binding for 11C-PBR28

was significantly larger than that from subjects with moderate affin-

ity. This suggests that the reference curve extracted by SVCA was

contaminated by specific binding. Conclusion: SVCA allows the
noninvasive quantification of inflammatory biomarker transloca-

tor protein measured with 11C-PBR28 but without the need of

arterial sampling. Although the reference curves were contami-

nated with specific binding, the decreased variance of the out-
come measure, SVCA DVR, allowed for an apparent greater

sensitivity to detect regional abnormalities in brains of patients

with AD.
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The need of arterial sampling to quantify the binding potential
of PET tracers in the brain is probably the main obstacle to the

widespread use of translocator protein (TSPO) radioligands in

research protocols, let alone in clinical practice. In expert hands,

placing an arterial catheter in the radial artery takes only a

few minutes, is well tolerated by patients, and carries little risk,

but it is a logistically challenging and costly procedure. It requires

trained personnel and special techniques to analyze the plasma
samples, such as high-performance liquid chromatography. In ad-

dition, plasma measurements of parent concentrations and plasma

free fraction are noisy and prone to errors (1). At least 5 ap-

proaches have been proposed as noninvasive alternatives to arte-

rial sampling: image-derived input function, population-derived

input function, simultaneous estimation of the input function,

pseudo reference region, and supervised clustering algorithm

(SVCA), the approach examined in this paper. Image-derived in-

put function from small brain vessels is seldom trustworthy: not
only are partial-volume effects challenging to correct without

scaling with blood samples, but PET images cannot distinguish

the photons emitted by the parent compound from those of its

radiometabolites. Template curves such as those used for popula-

tion-derived input functions may not faithfully capture individual

variability, and robust estimates are obtained only when at least

one blood sample is used to properly scale the template curve.

Although the simultaneous estimation of the input function needs

at least one blood sample, together with the time–activity curves

of several brain regions (2), Schain et al. estimated BPND (binding
potential) noninvasively for 11C-PBR28 using a template input

curve and demonstrated that it was able to distinguish between

healthy controls and patients with Alzheimer disease (AD) (3).

However, a template curve still has to be previously generated

from subjects scanned with arterial sampling, and the shape of

the curve obtained from a population of healthy subjects may

not necessarily reflect that of pathologic conditions (3).
A relative method of measurement, by comparing the uptake of

the target region to that of a region devoid of receptors, would

obviate arterial sampling and arguably reduce the variability of the

estimates, since the input function and the free fraction are

common to both regions. However, since TSPO is expressed

ubiquitously in the brain, a proper reference region does not exist.

Nevertheless, Lyoo et al. successfully quantified 11C-PBR28 in a

clinical protocol using a pseudo reference region (4). A pseudo
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reference region is one that has a certain amount of specific bind-
ing but is not affected by the course of the disease. Using this
approach, Lyoo et al. reanalyzed a large database of 57 subjects,
comprising healthy controls, patients with mild cognitive impair-
ment (MCI), and patients with AD (5). By using the SUV ratio
(SUVR) over the cerebellum, they were able to replicate the find-
ings obtained with full kinetic modeling. They showed that TSPO
binding was greater in AD patients than in either healthy or MCI
subjects, and also identified 1 additional region, suggesting that
this approach may have greater sensitivity (4). Of course, an im-
portant limitation of this method is that it requires previous knowl-
edge that the designated pseudo reference region is not affected by
the disease under study. In the study of Lyoo et al., the use of the
cerebellum as a pseudo reference region was justified by several
lines of evidence: during AD, the cerebellum is relatively spared
from neurodegeneration and the morphology of its microglia dif-
fers from that of the activated microglia in the neocortex. In ad-
dition, similar values were observed for arterial input function (VT/
fp) and SUV in the cerebellum among the healthy controls, MCI
patients. and AD patients (4).
A few years ago, Turkheimer et al. described an SVCA (6).

SVCA uses predefined kinetic classes to segment the tissue and
to automatically extract reference curves, defined as the average
curve of all voxels where the specific binding component is minimal.
This algorithm, initially validated for 11C-(R)-PK11195, would allow
the noninvasive quantification of TSPO across a variety of diseases,
independently of the availability of a reference region. Indeed, it has
been used in different clinical conditions associated with microglial
activation (7–10). However, 11C-(R)-PK11195 is a radioligand with
low specific binding, and there seems to be an inverse relationship
between the affinity of the tracer and the successful implementation
of SVCA (11). Recently Garcı́a-Lorenzo et al. (12) showed that
SVCA can also be applied to 18F-DPA-714, a TSPO tracer with
intermediate affinity for TSPO (;1.5-fold that of 11C-(R)-PK11195
(13)). 11C-PBR28 is one of the most widely used TSPO tracers
worldwide and has high affinity for TSPO (;5- to 6-fold that of
11C-(R)-PK11195 (13)).
The aim of this work was to test the suitability of SVCA to

quantify 11C-PBR28 noninvasively. We attempt to replicate the
results of the same large database analyzed by Lyoo et al., which
comprised healthy controls, MCI patients, and AD patients. This
also allowed a direct comparison with the pseudo reference
approach.

MATERIALS AND METHODS

Subjects

All data from the previous study were included and reanalyzed for

the current study (4). We included 57 participants (21 healthy controls,
11 MCI patients, and 25 AD patients). All MCI and AD patients were

positive for amyloid-b after screening with 11C-Pittsburgh compound
B PET scans. Therefore, AD patients met the criteria for probable AD

dementia with evidence of an AD pathophysiologic process (14), and
MCI patients met the criteria for MCI due to a high or intermediate

likelihood of developing AD (15). Individual TSPO binding affinity

was determined using the leukocyte binding assay (16). All partici-
pants were included in our previous study (4), and image data were

reanalyzed for the current study.
This study was approved by the Combined Neuroscience In-

stitutional Review Board of the National Institutes of Health Intra-
mural Research Program. All subjects or their surrogate provided

written informed consent to participate.

Acquisition of PET and MR Images

PET images were acquired in an Advance PET scanner (GE
Healthcare). Before the emission scan, a 68Ge transmission scan was

acquired for 8 min for later attenuation correction. After the intrave-
nous injection of 678.2 6 35.5 MBq of 11C-PBR28 for 1 min, dynamic

PET data were acquired for 90 min, and arterial blood was sampled 23
times with time intervals ranging from 0.25 to 15 min during the emis-

sion scan. In 27 time frames with increasing scan duration from 0.5 to
5 min, 3-dimensional dynamic PET images were reconstructed with a

filtered backprojection algorithm in a 128 · 128 · 35 matrix with 2 · 2
· 4.25 mm voxels. Sampled arterial blood was corrected for metabolite

fraction measured by reverse-phase chromatography, and a plasma input
function was obtained. The fP of radiotracer was measured by ultrafil-

tration and normalized to standard plasma (17).
T1-weighted MR images were acquired in a 3-T Achieva scanner

(Philips) using a turbo field echo sequence (repetition time, 8.1 ms;
echo time, 3.7 ms; flip angle, 8; matrix, 181 · 256 · 256; voxel size, 1

· 0.983 · 0.983 mm).

Image Processing Steps

FreeSurfer 5.1 (Massachusetts General Hospital, Harvard Medical
School; http://surfer.nmr.mgh.harvard.edu) was used for creation of

participant-specific volume of interest (VOI). In brief, T1-weighted

MR images were processed with inhomogeneity correction, skull-
stripping, and segmentation into gray and white matter based on the

intensity gradient and connectivity of voxels. After tessellation into
trigones, 3-dimensional gray and white matter surfaces were created.

Cerebral cortex was segmented into smaller cortical areas with the
probabilistic labeling algorithm by inflating the white matter surface

and overlaying the curvature information on the inflated surface
(18,19). Subcortical structures were also segmented using the proba-

bilistic registration technique (20). Composite VOI mask images in-
cluding 112 cortical and subcortical regions were created. Finally, we

created participant-specific composite VOI mask images for 12 corti-
cal (prefrontal, sensorimotor, inferior parietal, superior temporal, mid-

dle and inferior temporal, precuneus, anterior cingulate, posterior
cingulate, occipital, entorhinal, parahippocampal cortices, and hippo-

campus) and 3 subcortical regions (striatum, thalamus, and cerebellar
cortex) by merging the anatomically related regions.

Statistical parametric mapping 12 (SPM12; Wellcome Depart-
ment of Cognitive Neurology) and in-house programs implemented

in MATLAB R2015b (MathWorks) were used to process the PET
images. Except for the first 3 time frames, dynamic PET images were

realigned to correct head motion during the scan time. For the VOI
analysis, the mean PET images were coregistered to individual T1-

weighted MR images, and then all time frames of realigned dynamic
PET images were coregistered using the transformation matrix

coregistering mean PET to MR images. By overlaying the composite
VOI masks, regional time–activity curves were obtained.

For the SVCA procedure, 4 types of tissue mask images (normal
gray matter, normal white matter, sinus, and pathologic gray matter)

were created in the MR space. To create the white matter mask least
affected by the activity from the surrounding gray matter, we first

extracted binarized gray matter and cerebrospinal fluid masks from the
composite VOI mask. After smoothing these masks using the gaussian

kernel with a 7-mm full width at half maximum, we chose the white
matter voxels affected by less than 1% of gray matter and cerebrospinal

fluid activity and created a white matter mask image in the MR space.

Pathologic gray matter masks were created with the voxels for the
inferior parietal and middle and inferior temporal cortices in which 11C-

PBR28 binding was significantly increased in AD patients (5). Sinus
masks were manually drawn on the PET images coregistered to MR

images with reference to the first 3 time frames of the dynamic PET
images.
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SVCA Procedure

We used a modification of an optimized SVCA method with 4
kinetic classes (10). Three kinetic classes (normal gray and white

matter and blood) were obtained from 21 controls, and 1 (pathologic

gray matter) from the 25 AD patients. First, the means and SD of

activities for each time frame were calculated within the whole brain

masks. The activities of coregistered dynamic PET images were then

standardized by subtracting the means and dividing by the SD. By

overlaying the masks for each tissue type on the standardized PET

images, standardized time–activity curves for each kinetic class were

obtained in each individual. Finally, 4 kinetic classes were established

after averaging time–activity curves. Additionally, 2 sets of kinetic

classes were separately established for each TSPO genotype.
For each voxel in the activity-standardized PET images, the

nonnegative least squares algorithm was used to find 4 coefficients

for each kinetic class that would minimize the difference between the

estimated time–activity curve and the standardized time–activity

curve (6). Thereby, each coefficient was mapped. Finally, the SVCA

reference time–activity curve was established using the coefficient

map for normal gray matter within the gray matter mask to reduce
the contamination from the noisy white matter time–activity curve

(6,10). The whole procedure is summarized in Figure 1.

Kinetic Analysis
11C-PBR28 binding values were quantified as distribution volume

ratio (DVR) using a Logan reference plot, with k29 set at 0.13 min21

(21). The SVCA-derived Logan DVR values were compared with the

gold standard of total distribution volume, obtained with a 2-tissue-
compartment model, and corrected for plasma-free fraction (VT/fP).

Statistical Analysis

For direct comparison with the pseudo reference region approach,

we replicated the same statistical analyses performed by Lyoo et al.
(4). SVCA-derived Logan DVR values of 11C-PBR28 were compared

among the 3 groups using factorial ANOVAwith TSPO genotype as a
fixed factor, to correct for affinity differences related to the rs6971

single-nucleotide polymorphism (22). Age was entered as a covariate.

FIGURE 1. Processing steps for acquiring 4 template kinetic classes. (a) By using FreeSurfer, T1-weighted MR images were segmented into 112

regions. (b) After merging regions in parcellated segments, masks for whole brain, gray and white matter, and composite VOI mask images were

created. (c) White matter VOI masks least affected by activity of surrounding structures were created for each control. (d and e) PET images were

coregistered to T1-MR image using mean PET image. (f) Sinus masks for each control were created. (g) In AD patients, masks for pathologic gray

matter (pGM) were created. (h) Activity of PET images was standardized using whole brain masks. (i) Standardized time–activity curves for normal

white matter (nWM), normal gray matter (nGM), and blood were obtained from 21 controls. Likewise, standardized time–activity curve for pGM was

obtained from 25 AD patients. (j) By averaging standardized time–activity curves (TACs), template time–activity curves for 4 kinetic classes were

established. HC 5 healthy control.
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Bonferroni adjustment for multiple comparisons was used for com-

parisons between groups. SPSS (SPSS Inc.) was used for the statistical
analysis.

The coefficient of variation was calculated as SD/mean · 100 and
used to determine the variability of binding values. The correlation

between the binding values and the severity of dementia was explored

in 2 stages: first by obtaining the standardized residuals of the Clinical
Dementia Rating scale (sum-of-boxes scores and the DVR values in

combined middle and inferior temporal cortex after adjusting for age
and TSPO genotype) and second by calculating the Pearson correla-

tion between the 2 standardized residuals.

RESULTS

The SVCA-derived DVR values of the present study were
greater in AD patients than controls in the inferior parietal,
combined middle and inferior temporal, parahippocampal, and
entorhinal cortices. Compared with MCI patients, SVCA-DVR
values were greater in AD patients in the combined temporal
region and in the entorhinal cortex, although the entorhinal cortex
did not survive correction for multiple comparisons (Table 1). The
results of the present study closely replicated those of Kreisl et al.
(5) and are virtually identical to those of Lyoo et al. (4). Indeed,

Kreisl et al. found that VT/fp was greater in AD patients than
controls in the inferior parietal, combined middle and inferior
temporal, and entorhinal cortices, and greater than MCI subjects
in the combined middle and inferior temporal and entorhinal cor-
tices (5). With the pseudo reference region approach, Lyoo et al.
found an additional significant result in the parahippocampal re-
gion (4), the same additional region found in the present study.
SVCA-DVR values in the combined middle and inferior temporal

cortex were positively correlated with the Clinical Dementia Rating
sum-of-boxes scores. The level of significance was greater for SVCA-
DVR (P, 0.001) than that of either VT/fp (P, 0.01) or SUVR (P,
0.01) (Fig. 2). Notably, simple SUVs did not show any significant
group difference and were not significantly correlated to VT/fp values
(data not shown).
The variability of SVCA-DVR was much lower than that of VT/

fp and similar to that of SUVR values (Table 2) (4). Similar to
SUVR results, the SVCA-DVR values in mixed-affinity binder
(MAB) were paradoxically greater than those of high-affinity
binder (HAB) in all diagnostic groups and all regions (mean
SVCA-DVR among all regions [HAB vs. MAB]: 1.00 vs. 1.04
in healthy controls, 1.00 vs. 1.07 in MCI patients, and 1.01 vs.
1.08 in AD patients) (Table 3).

TABLE 1
Level of Statistical Significance by Region with Different Quantification Methods

Region

P (AD vs. HC) P (AD vs. MCI)

VT/fp SUVR SVCA-DVR VT/fp SUVR SVCA-DVR

Inferior parietal 0.028 ,0.0005 0.001 NS NS NS

Middle and inferior temporal 0.023 ,0.0005 ,0.0005 0.043 0.010 0.001

Precuneus NS 0.048* NS NS NS NS

Entorhinal 0.048 0.009 0.001 0.048 NS 0.025*

Parahippocampal NS 0.006 0.003 NS NS NS

*Did not survive regionwise correction for multiple comparisons.
NS 5 not significant.

P values were obtained from univariate ANOVA. Diagnosis and genotype were used as fixed factors.

FIGURE 2. Correlation between binding values of combined middle and inferior temporal cortex and sum of boxes of clinical dementia rating

(CDR) score. SVCA-derived DVR values show correlation similar to, and even slightly stronger than, those with VT/fp and SUVR, as reported by

Lyoo et al. (4).
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DISCUSSION

In this study we showed that a noninvasive SVCA could
accurately replicate the quantitative results obtained with arte-

rial sampling in a large clinical study involving healthy controls,

MCI patients, and AD patients. SVCA appears to be more sensitive

than modeling obtained with arterial sampling, as it identified an

additional region (parahippocampal gyrus) that differed between

controls and AD patients. This same additional region was found in
this same population of subjects also using the pseudo reference

region approach (4). Compared with full kinetic modeling,
SVCA shares with the pseudo reference region approach the
important advantage of not relying on blood data. Indeed, mea-

suring plasma concentrations of radioactivity, separating the
parent from its radiometabolites, and measuring the free frac-

tion are complex procedures (1) that introduce an element of
variability that is avoided when using DVR or SUVR. For in-

stance, a recent test–retest study of 11C-PBR28 SUVR values in
AD yielded low variability and high intraclass correlation co-

efficients and compared favorably with published values of 11C-
PBR28 variability (23).
In our study, the coefficient of variation was 13%–36% for VT/fp

and only 2%–11% for DVR (Table 2). However, the obvious
advantage of SVCA over SUVR is that a suitable pseudo reference

region does not need to be identified beforehand and may not even

TABLE 2
Coefficients of Variation for VT/fp, SUVR Obtained with
Pseudo Reference Region, and Logan-DVR Obtained

with SVCA

Parameter

Coefficient of variation (%)

VT/fp SUVR SVCA-DVR

HAB 13%–27% 1%–9% 2%–7%

MAB 16%–36% 4%–13% 3%–11%

TABLE 3
Regional 11C-PBR28 Binding Values in Patients with AD, Individuals with MCI, and Healthy Controls, Stratified by

TSPO Genotype

Parameter Patient Inferior parietal

Middle and

inferior temporal Precuneus Occipital Hippocampus Entorhinal Parahippocampal

VT (mL�cm−3)

HAB AD 4.7 ± 1.0 4.8 ± 1.1 4.5 ± 0.9 4.3 ± 0.9 4.4 ± 1.1 4.8 ± 1.1 4.0 ± 1.0

MCI 3.6 ± 1.1 3.8 ± 1.0 3.8 ± 0.9 3.6 ± 1.0 3.7 ± 0.9 3.8 ± 1.0 3.3 ± 0.8

HC 4.4 ± 1.1 4.3 ± 1.1 4.3 ± 1.0 4.3 ± 1.0 4.3 ± 1.2 4.5 ± 1.1 4.0 ± 1.1

MAB AD 3.0 ± 1.1 3.1 ± 1.1 3.0 ± 1.1 2.8 ± 0.9 2.9 ± 1.1 3.2 ± 1.1 2.6 ± 0.9

MCI 3.0 ± 0.6 3.0 ± 0.6 3.1 ± 0.7 2.8 ± 0.5 3.0 ± 0.6 3.1 ± 0.6 2.6 ± 0.5

HC 2.6 ± 0.6 2.6 ± 0.6 2.6 ± 0.6 2.6 ± 0.6 2.6 ± 0.5 2.7 ± 0.7 2.3 ± 0.5

VT/fP (mL�cm−3)

HAB AD 130.9 ± 28.0 135.1 ± 26.5 125.1 ± 24.6 119.9 ± 26.8 123.6 ± 25.3 134.9 ± 24.1 112.9 ± 24.5

MCI 98.0 ± 20.5 102.9 ± 18.5 104.8 ± 17.6 97.3 ± 17.8 100.0 ± 13.1 103.9 ± 14.2 89.9 ± 14.4

HC 104.2 ± 25.2 103.7 ± 28.1 104.6 ± 28.0 103.0 ± 25.9 102.8 ± 27.6 109.7 ± 29.0 94.1 ± 22.3

MAB AD 79.4 ± 25.8 81.2 ± 29.2 78.8 ± 28.2 74.4 ± 22.5 76.3 ± 29.5 85.7 ± 29.5 68.4 ± 24.4

MCI 68.9 ± 13.7 68.7 ± 13.2 70.7 ± 13.9 66.1 ± 10.3 69.1 ± 15.6 71.6 ± 17.5 60.1 ± 11.5

HC 65.9 ± 20.5 66.7 ± 19.0 65.8 ± 19.3 66.9 ± 20.8 65.2 ± 17.2 69.1 ± 21.6 59.3 ± 16.2

SUVR

HAB AD 1.056 ± 0.041 1.081 ± 0.068 1.054 ± 0.071 1.022 ± 0.043 0.996 ± 0.057 1.009 ± 0.091 0.920 ± 0.056

MCI 0.939 ± 0.011 0.980 ± 0.051 1.019 ± 0.072 0.948 ± 0.035 0.934 ± 0.084 0.921 ± 0.063 0.853 ± 0.059

HC 0.985 ± 0.045 0.975 ± 0.071 1.006 ± 0.050 0.997 ± 0.023 0.948 ± 0.024 0.946 ± 0.054 0.877 ± 0.026

MAB AD 1.117 ± 0.101 1.148 ± 0.060 1.111 ± 0.115 1.068 ± 0.053 1.062 ± 0.092 1.154 ± 0.060 0.993 ± 0.053

MCI 1.084 ± 0.122 1.100 ± 0.104 1.121 ± 0.147 1.047 ± 0.062 1.085 ± 0.075 1.118 ± 0.066 0.976 ± 0.039

HC 1.011 ± 0.061 1.046 ± 0.067 1.024 ± 0.055 1.029 ± 0.053 1.027 ± 0.053 1.070 ± 0.081 0.945 ± 0.058

SVCA-DVR

HAB AD 1.046 ± 0.037 1.060 ± 0.041 1.070 ± 0.043 1.062 ± 0.042 0.980 ± 0.049 0.973 ± 0.064 0.914 ± 0.052

MCI 0.981 ± 0.031 0.993 ± 0.037 1.084 ± 0.053 1.009 ± 0.021 0.933 ± 0.045 0.903 ± 0.037 0.864 ± 0.033

HC 1.008 ± 0.023 0.980 ± 0.042 1.061 ± 0.026 1.042 ± 0.034 0.938 ± 0.048 0.909 ± 0.042 0.873 ± 0.044

MAB AD 1.112 ± 0.074 1.135 ± 0.053 1.138 ± 0.099 1.099 ± 0.043 1.035 ± 0.088 1.102 ± 0.065 0.982 ± 0.058

MCI 1.079 ± 0.097 1.080 ± 0.082 1.151 ± 0.131 1.076 ± 0.064 1.053 ± 0.081 1.044 ± 0.054 0.957 ± 0.048

HC 1.026 ± 0.026 1.041 ± 0.037 1.066 ± 0.046 1.062 ± 0.029 1.011 ± 0.048 1.018 ± 0.065 0.935 ± 0.044

HC 5 healthy control; VT 5 total distribution volume; VT/fP 5 total distribution volume/free fraction of radioligand.

Data are presented as mean ± SD.
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exist. Thus, this technique can potentially be applied to any pop-
ulation and any disease.
By design, SVCA selects reference tissue voxels that are

assumed to be without specific binding (6). Of course, no voxel
is actually entirely devoid of TSPO, because this protein is ubiq-
uitously, if heterogeneously, distributed in the brain. For instance,
TSPO is highly expressed in the vascular endothelium (24). SVCA
was initially validated, and then repeatedly used (7–9), to quantify
11C-(R)-PK11195, a tracer with a low specific binding. Recently,
Rizzo et al. analyzed 3 different TSPO tracers (11C-(R)-PK11195,
18F-DPA-714, and 11C-PBR28) and argued that there may be an
inverse relationship between binding affinity and suitability for
clustering. An increase in affinity would also be associated with
a lower tissue contrast. Specifically, tracer affinity would modulate
the contrast between tissue kinetics by acting on both parenchymal
and vascular binding. High-affinity compounds would display a
higher vascular binding, and thus the tissue contrast would be
lower and the clustering more difficult (11).
In this study, the tracer with the highest affinity, 11C-PBR28,

displayed the highest similarity of tissue kinetics between the gray
and white matter classes (as defined by the trigonometric angle
between the kinetic vectors of the classes), 18F-DPA-714 had in-
termediate similarity values, and 11C-(R)-PK11195 had the lowest
similarity. SVCAwas subsequently validated for 18F-DPA-714 (12),
although the nonspecific curves of HABs and MABs were not
compared, as we did in the present study. Despite having the highest
class similarity, in this study we showed that 11C-PBR28 can be
amenable to quantification with SVCA and we were able to accu-
rately replicate the results obtained with standard kinetic modeling.
To further probe the suitability of 11C-PBR28 for cluster analysis,

we compared the nonspecific curves in HABs and MABs. If SVCA
could perfectly extract the nonspecific curve from 11C-PBR28 scans,
this curve would have the same amplitude in both populations, since
the TSPO polymorphism affects only the specific component.
However, as shown in Figure 3, the nonspecific curves of HABs

are significantly higher than those of MABs. This is of course due
to the contamination of the reference curves by the different
amount of specific binding. Notably, the difference between HABs
and MABs is evident even in the healthy brain, where the level of
TSPO expression is low (25). This could be explained by the
presence of TSPO in cells other than microglia or astrocytes, in
particular endothelial cells (24,25). Recently, Matheson et al.

warned against hasty implementation of reference models and
ratio methods (26), as both SUVR and DVR showed little to no
association with 11C-PBR28-VT. Specifically, they showed that al-
most all variability between brain regions can be attributed to a single
underlying dimension of variance, and the ratio between a target
region and a highly correlated reference region leaves minimal re-
sidual differences between individuals (26). Although they used only
a small number of healthy subjects, whose restricted range of VT
values may have affected the correlation, and they did not correct
the VT values for the plasma free fraction, we do share their concern.
A truly nonspecific reference curve should not be affected by geno-
type, but it did affect our SVCA-derived analyses, strongly suggesting
that the analysis is biased by specific binding contaminating the
reference curve. Despite this bias, the current results with SVCA-
DVR perfectly replicated those from a pseudo reference region (4).
Both methods showed apparently greater sensitivity than the gold
standard method using VT/fP presumably because of the decreased
variance in these 2 bloodless methods compared with VT/fP.
In summary, using a noninvasive SVCA algorithm, we were

able to accurately replicate the findings of a clinical protocol on a
large population of healthy controls, MCI patients, and AD patients.
In addition, we were able to identify an additional significant region,
likely because SVCA analyses do not require delicate and error-
prone blood analyses and thus are more sensitive. Although the
current results with SVCA-DVR perfectly replicated those from a
pseudo reference region, the extracted reference curves were biased
to some extent because they are not entirely free of specific binding.
The large population and effect size of this study may have facilitated
its replication, despite the bias present in the extracted reference
curves. It would be plausible that in a study with less statistical power
(e.g., fewer patients) a biased SVCAwould produce falsely negative
results. Therefore, the impact of this bias should be investigated
thoroughly before envisioning a widespread application of this
technique.

CONCLUSION

SVCA allows the noninvasive quantification of inflammatory
biomarker translocator protein measured with 11C-PBR28 but
without the need of arterial sampling. Although the reference
curves were contaminated with specific binding, the decreased
variance of the outcome measure, SVCA DVR, allowed for

FIGURE 3. Comparison of SVCA-extracted reference curves between HAB (black dots) and MAB (white dots). Errors bars are SD. In all pop-

ulations, area under curve was significantly higher for HAB (all P , 0.005), which suggests that SVCA reference curve is not completely free of

specific uptake and amount of this uptake depends on genotype status. HC 5 healthy control.
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an apparent greater sensitivity to detect regional abnormalities
in brains of patients with AD.
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