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Pannexin 1 Differentially Affects Neural Precursor Cell
Maintenance in the Ventricular Zone and Peri-Infarct Cortex
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We demonstrated previously that Pannexin 1 (Panx1), an ion and metabolite channel, promotes the growth and proliferation of ventric-
ular zone (VZ) neural precursor cells (NPCs) in vitro. To investigate its role in vivo, we used floxed Panx1 mice in combination with viruses
to delete Panx1 in VZ NPCs and to track numbers of Panx1-null and Panx1-expressing VZ NPCs over time. Two days after virus injection,
Panx1-null cells were less abundant than Panx1-expressing cells, suggesting that Panx1 is required for the maintenance of VZ NPCs. We
also investigated the effect of Panx1 deletion in VZ NPCs after focal cortical stroke via photothrombosis. Panx1 is essential for maintain-
ing elevated VZ NPC numbers after stroke. In contrast, Panx1-null NPCs were more abundant than Panx1-expressing NPCs in the
peri-infarct cortex. Together, these findings suggest that Panx1 plays an important role in NPC maintenance in the VZ niche in the naive
and stroke brain and could be a key target for improving NPC survival in the peri-infarct cortex.
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Introduction
Pannexins (Panx1, Panx2, and Panx3) form channels that are
permeable to ions and small metabolites such as ATP (Bao et al.,
2004). They were discovered based on their homology to the gap
junction forming proteins in invertebrates, the innexins (Pan-

chin et al., 2000), but form primarily single-membrane channels
(for review, see Sosinsky et al., 2011). Panx1 is enriched in the
nervous system and was originally detected in mature neurons
(Ray et al., 2005; Vogt et al., 2005). Panx1 channels are activated
by mechanical stimulation, membrane depolarization, increased
extracellular K�, oxygen– glucose deprivation, and caspase cleav-
age (Bruzzone et al., 2003; Bao et al., 2004; Locovei et al., 2006;
Thompson et al., 2006; Ma et al., 2009; Silverman et al., 2009;
Chekeni et al., 2010; Santiago et al., 2011).

Recently, we discovered Panx1 expression in postnatal neural
precursor cells (NPCs) of the ventricular zone (VZ) (Wicki-
Stordeur et al., 2012; Wicki-Stordeur and Swayne, 2013). VZ
NPCs continually undergo proliferation, differentiation, and mi-
gration through the rostral migratory stream (RMS) (for review,
see Ming and Song, 2011). Along this journey, a large proportion
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Significance Statement

Here, we demonstrate that Pannexin 1 (Panx1) maintains a consistent population size of neural precursor cells in the ventricular
zone, both in the healthy brain and in the context of stroke. In contrast, Panx1 appears to be detrimental to the survival of neural
precursor cells that surround damaged cortical tissue in the stroke brain. This suggests that targeting Panx1 in the peri-infarct
cortex, in combination with other therapies, could improve cell survival around the injury site.
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are lost (Morshead and van der Kooy, 1992), whereas the surviv-
ing NPCs become resident postmitotic neurons in the olfactory
bulb. These cells are important in olfactory-associated learn-
ing and memory (Mak and Weiss, 2010; Sakamoto et al.,
2014). We found that Panx1 promotes VZ NPC proliferation
in vitro (Wicki-Stordeur et al., 2012). In the present study, we
investigated the impact of Panx1 deletion on the number of
VZ NPCs in vivo over time. We used floxed Panx1 mice
injected intracerebroventricularly with control and Cre-
recombinase retroviruses coexpressing different fluorescent
markers (Tashiro et al., 2006a; Tashiro et al., 2006b) to track
both Panx1-null and Panx1-expressing NPC numbers over
time, essentially a measure of NPC “maintenance.” In addi-
tion, because focal cortical ischemia is well known to activate
VZ NPCs to increase their proliferation rate (for review, see
Ohab and Carmichael, 2008) and because Panx1 has been
strongly associated with stroke (Thompson et al., 2006; Barg-
iotas et al., 2011; Bargiotas et al., 2012; Dvoriantchikova et al.,
2012; Xiong et al., 2014) and inflammation (for review, see
Makarenkova and Shestopalov, 2014), we also investigated the
impact of Panx1 deletion on VZ NPC numbers in the context
of stroke both in the VZ and in the peri-infarct cortex.

Overall, our results suggested that the presence of Panx1 was
differentially important for the maintenance of NPCs depending
on their location. The deletion of Panx1 impaired NPC mainte-
nance in the VZ niche. In the context of stroke, which stimulates
NPC proliferation, the effect of Panx1 deletion was similar but
significantly delayed. In contrast, maintenance of NPCs in the
peri-infarct cortex (that had migrated from the VZ) was im-
proved by Panx1 deletion. Together, these findings represent im-
portant first steps in examining the NPC-specific role of Panx1 in
the healthy brain and in the context of stroke.

Materials and Methods
Animals. All procedures were performed in agreement with the guide-
lines of the Canadian Council for Animal Care and the University of
Victoria and University of Ottawa Animal Care Committees. Focal cor-
tical ischemia was induced by photothrombosis of the cortical microvas-
culature (as described in Watson et al., 1985). Briefly, adult (2– 4
months) “floxed” Panx1-LoxP mice (on a 129 background confirmed by
genotyping; Dvoriantchikova et al., 2012) were anesthetized using iso-
fluorane and maintained at 37°C with a heating pad. A 1% Rose Bengal
(Sigma-Aldrich) solution (in brain buffer: 0.04 M NaH2PO4, 0.16 M

Na2HPO4) was injected intraperitoneally 2–5 min before laser illumina-
tion. The skull was exposed by a midline incision and a site 2.25 mm left
of the midline and 0.7 mm anterior to bregma was illuminated for 10 min
by a laser calibrated to 532 nm. Retrovirus was used to target primarily
late-stage NPCs (Tashiro et al., 2006a; Tashiro et al., 2006b) in the VZ.
CAG-red fluorescent protein (RFP) and CAG-green fluorescent protein
(GFP)-Cre viruses were mixed in a 1:1 ratio and injected bilaterally at the
time of stroke at coordinates 1.2 mm right and left of the midline, 1.0 mm
posterior to bregma, and 1.9 mm in depth. Mice were killed at 2, 5, or 10 d
postinjection/photothrombosis (dpi/PT) [n � 7 (4 male, 3 female) for 2
dpi/PT and n � 6 for 5 dpi/PT (2 male, 4 female) and 10 dpi/PT (4 male,
2 female)]. Naive floxed Panx1 mice were given bilateral virus injection
without stroke, and killed at 2 or 10 dpi [n � 5 (3 male, 2 female) for 2 dpi
and n � 6 (3 male, 3 female) for 10 dpi]. Naive wild-type 129 control
mice were given bilateral virus injection without stroke and killed at 2 dpi
[n � 7 (4 male, 3 female)].

Microscopy. Mouse brain cryopreservation and serial cryosectioning
were performed as described previously (Swayne et al., 2010; Wicki-
Stordeur et al., 2012). Antibodies were diluted in 10 mM PBS supple-
mented with 0.3% Triton X-100 and 3% bovine serum albumin.
Confocal immunofluorescence imaging was performed as described pre-
viously (Wicki-Stordeur et al., 2012, 2013; Wicki-Stordeur and Swayne,
2013) using a Leica SP8 confocal microscope. In general, representative

images were produced with Adobe Photoshop CS5 Extended software
and uniformly adjusted for brightness/contrast.

For virus quantifications, 600 � 400 �m boxes were drawn around the
VZ dorsolateral corner, the ventral boundary of the stroke, and the me-
dial edge of the stroke boundary and aligned with the pial surface as
shown in the figures. In addition, representative coronal slices from each
animal were taken for virus quantifications in the RMS (see Fig. 1). Our
area of quantification was equivalent between animals and was restricted
to the circle/oval of condensed nuclei rostral to the opening of the lateral
ventricles. Hoechst 33342 was used as a nuclear counterstain in all im-
ages. RFP fluorescence was present in both cytoplasmic and nuclear com-
partments of the NPCs, whereas GFP signal was localized to the nucleus.
Therefore, our VZ and RMS counting criteria were that a positive cell
must have GFP and/or RFP signal overlapping with a Hoechst-positive
nucleus. Panx1-expressing NPCs possessed RFP fluorescence only and
Panx1-null NPCs had nuclear GFP fluorescence with or without RFP
fluorescence. Quantification of transduced NPCs in the VZ of wild-type
129 control mice revealed relatively equal expected populations of RFP-
positive only and GFP-positive NPCs per VZ (45% vs 55%, each � 2%;
n � 7, 2 dpi). We saw no significant differences in NPC labeling between
hemispheres in stroke animals and therefore presented pooled contralat-
eral and ipsilateral data for each subsequent analysis. Data are presented
as mean number of NPCs per VZ or RMS quantification region (outlined
above). The data from each individual animal was considered as an in-
dependent biological replicate.

For lineage analysis, images of equal area were taken from the dorso-
lateral corner of the VZ and overlap between Cre-GFP or RFP and DCX
signal was analyzed. Our counting criteria were such that a transduced
cell was considered DCX-positive if 2/3 of its surface was surrounded by
DCX signal in at least 1 plane of a confocal z-stack.

For proliferation analysis, images of equal area were taken from the
dorsolateral corner of the VZ and overlap between Cre-GFP or RFP and
Ki67 signal was analyzed. Our counting criteria were such that a trans-
duced cell was considered Ki67-positive if the corresponding nucleus
overlapped with Ki67 signal in at least one plane of a confocal z-stack.

For apoptosis analysis, images of equal area were taken from the peri-
infact cortex (as described above) and overlap between Cre-GFP or RFP
and activated caspase 3 (*Casp3) was analyzed. Our counting criteria
were such that a transduced cell was considered *Casp3-positive if the
corresponding nucleus overlapped with *Casp3 signal in at least one
plane of a confocal z-stack.

Antibodies. Primary antibodies used were as follows: anti-doublecortin
(DCX; 1:1000; Millipore), anti-Ki67 (1:200; BD Biosciences), and anti-
cleaved caspase 3 (1:3000; Cell Signaling Technology). Secondary antibodies
used were Alexa Fluor 647-conjugated AffiniPure donkey anti-rabbit IgG,
DyLight 405-conjugated AffiniPure donkey anti-guinea pig IgG, and Dy-
Light 649-conjugated AffiniPure donkey anti-mouse IgG (all 1:300; all from
Jackson ImmuoResearch).

Statistical analysis. Statistical analyses were performed using Prism for
Mac OS X version 5.0d software (GraphPad). Statistical tests are reported
in each figure legend. For ANOVA’s the “expression” factor refers to the
Panx1 expression status of the transduced cells (Panx1-expressing vs
Panx1-null). All variances are reported as SEM. Significance was denoted
as p � 0.05 (*), p � 0.01 (**). Exact p-values are provided in the figure
legends.

Results
Panx1 is required for maintenance of VZ NPCs
We demonstrated previously the presence of Panx1 in VZ NPCs
and their progeny (Wicki-Stordeur et al., 2012; Wicki-Stordeur
and Swayne, 2013) and showed that Panx1 promoted VZ NPC
proliferation in vitro (Wicki-Stordeur et al., 2012). We therefore
predicted that Panx1 is important for the regulation of VZ NPCs
in vivo. To investigate this hypothesis, we used a retrovirus strat-
egy to genetically ablate Panx1 in VZ NPCs (Tashiro et al., 2006a;
Tashiro et al., 2006b). In this approach, a combination of Cre-
GFP/RFP-control retroviruses was injected by intracerebroven-
tricular injection into floxed Panx1 mice in a 1:1 ratio (Fig. 1A).
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As outlined in the diagram in Figure 1B, in the course of this
study, we investigated both naive and stroke conditions and
quantified the fluorescently labeled NPCs in the dorsolateral cor-
ner of the VZ, the RMS, and the peri-infarct cortex. We used the
quantification of the number of labeled NPCs over time as a
metric for maintenance (i.e., the preservation of a consistent pop-
ulation size). Because naive animals underwent a similar surgical
procedure for virus injection (without dye injection/laser illumi-
nation), they were considered as sham controls for stroke surgery
(henceforth referred to as “naive/sham”).

We introduced the retrovirus mixture into the floxed Panx1
strain (naive/sham animals) and counted the number of Panx1-
null and Panx1-expressing NPCs in the VZ (Fig. 2A). Prior work
in wild-type mice (see Materials and Methods) established that
equally sized populations of GFP-positive and RFP-positive only
NPCs per VZ were expected if Panx1 deletion had no effect.
However, initially (2 dpi), there were �70% less Panx1-null
NPCs (GFP-positive) than Panx1-expressing NPCs (RFP-
positive only). Over time, the number of Panx1-expressing NPCs
decreased (and there was no statistically significant change in the
number of Panx1-null NPCs) such that, by 10 dpi, there was no
significant difference between Panx1-null and Panx1-expressing
NPCs. We confirmed that virtually all of the transduced NPCs
(both Panx1-null and Panx1-expressing) 2 dpi were positive for
DCX (Fig. 2B), a marker for late stage NPCs (neuroblasts) and
immature neurons (for review, see Ming and Song, 2011).

We reasoned that a defect in proliferation associated with
Panx1 deletion could have caused the lower abundance of Panx1-

null NPCs. To examine the proliferation status of infected NPCs,
we immunostained for Ki67 (Fig. 2C), a marker of actively cy-
cling cells (for review, see Scholzen and Gerdes, 2000). The per-
centage of Ki67-positive NPCs was independent of Panx1
expression status. Another possible explanation for the loss of
Panx1-null NPCs in the VZ could be accelerated migration out of
the VZ into the RMS. However, the number of Panx1-null NPCs
was low in the RMS (Fig. 2D), ruling out this possibility. We also
immunostained for activated caspase 3, a marker for cells under-
going apoptosis (for review, see Thornberry and Lazebnik, 1998).
We did not detect any activated caspase 3-positive cells in the VZ.
Together, these results suggest that Panx1 is essential for mainte-
nance of VZ NPCs, but does not affect proliferation, migration,
or caspase 3-dependent apoptotic mechanisms in vivo.

Stroke delays the effect of Panx1 deletion on VZ
NPC maintenance
VZ NPCs are activated by cortical stroke to hyperproliferate de-
spite their distance from the injury site (for review, see Ohab and
Carmichael, 2008) and Panx1 is activated by stimuli associated
with stroke (Thompson et al., 2006; Silverman et al., 2009;
Weilinger et al., 2012). We therefore investigated whether corti-
cal stroke alters the effects of Panx1 deletion on VZ NPC main-
tenance using the photothrombotic (PT) model (Fig. 3). Note
that virus injection was performed during the same surgical
procedure.

Stroke increased the total numbers of infected NPCs (GFP- and
RFP-positive populations combined) at 2 dpi (naive/sham: 11.9 �

Figure 1. Experimental outline for retrovirus-mediated Panx1 deletion in VZ NPCs in naive/sham and stroke mice. A, Panx1-LoxP mice were given intracerebroventricular injections of retroviral
particles to introduce Cre-GFP or RFP-control vectors (1:1 ratio). Naive/sham and photothrombotic stroke conditions were examined 2 and 10 d after surgery. Panx1-expressing (RFP � only) and
Panx1-null (Cre-GFP � and Cre-GFP �/RFP �) NPCs were counted. RFP signal was present throughout the cell, whereas Cre-GFP signal was localized to the nucleus. B, Diagram representing areas
of quantification in the VZ, RMS, and peri-infarct cortex. Labels refer to the figures in which the corresponding data can be found.
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1.3, stroke: 41.5 � 10.1 transduced cells/VZ, p � 0.0264 by unpaired
t test), which was expected because the population of DCX-positive
NPCs has been reported to increase in response to cortical stroke (for
review, see Ohab and Carmichael, 2008). At 2 dpi/PT, Panx1-null
and Panx1-expressing NPCs were equally abundant (no significant
difference by two-factor ANOVA) in the VZ (Fig. 3A) and virtually
all transduced cells were DCX-positive (Fig. 3B). However, by 10
dpi/PT, the number of Panx1-null NPCs was significantly reduced
to naive/sham levels, whereas the number of Panx1-expressing
NPCs remained elevated. We added an intermediate time point (5
dpi/PT) to gain further insight into the dynamics of this reduction in
Panx1-null NPCs. The Panx1-null NPC numbers were already
largely (albeit not significantly) reduced by 5 dpi/PT.

The percentage of Ki67-positive NPCs was independent of
Panx1 expression status (Fig. 3C), suggesting that the loss of

Panx1-null NPCs was not due to a reduction in proliferation.
Furthermore, the abundance of labeled NPCs in the RMS was
independent of Panx1 expression status (Fig. 3D), suggesting that
there was no effect of Panx1 deletion on migration. We also im-
munostained for activated caspase 3, a marker for cells undergo-
ing apoptosis, and again did not detect any activated caspase
3-positive cells in the VZ. Together, these results suggest that
Panx1 is also essential for maintaining elevated VZ NPC numbers
after stroke and does not affect proliferation, migration, or
caspase 3-dependent apoptotic mechanisms.

Panx1-null NPCs are more abundant in the
peri-infarct cortex
We also hypothesized that deletion of Panx1 could influence the
survival of VZ NPCs that migrate into the peri-infarct cortex (for

Figure 2. Panx1 deletion is associated with a loss of VZ NPCs. Ai, Panx1-null (GFP �) and Panx1-expressing (RFP � only) NPC numbers per VZ at 2 and 10 dpi in naive/sham animals. The number
of Panx1-null NPCs was lower than Panx1-expressing NPCs at 2 dpi (2 dpi, n � 5; 10 dpi, n � 6; expression: F(1,18) � 7.898, p � 0.0116; time: F(1,18) � 1.123, p � 0.3033; interaction: F(1,18) �
8.764, p � � 0.0084; by 2-factor ANOVA; Bonferroni post hoc **p � 0.01 for expression at 2 dpi). Aii, Maximum-intensity projections of representative confocal Z-stacks of the VZ at 2 (left) and
10 dpi (right). Scale bars, 10 �m. V, Ventricle; cc, corpus callosum, str, striatum. Hoechst 33342 was used as a nuclear counterstain. Bi, The vast majority of Panx1-expressing and Panx1-null VZ NPCs
were immunoreactive for DCX (2 dpi, n � 6, p � 0.3930 by unpaired t test). Bii,, Maximum-intensity projection of a representative confocal Z-stack demonstrating DCX immunoreactivity of
transduced VZ NPCs. Scale bar, 10 �m. Arrows indicate DCX � transduced cells. Ci, The percentage of transduced VZ NPCs immunoreactive for Ki67 was not affected by time after injection or Panx1
expression status (2 dpi, n � 4; 10 dpi, n � 6; expression: F(1,16) � 0.1885, p � 0.6699; time: F(1,16) � 1.633, p � 0.2195; interaction: F(1,16) � 0.1582, p � 0.6961 by 2-factor ANOVA). Cii,
Maximum-intensity projection of a representative confocal Z-stack from the VZ showing Ki67-immunoreactivity of transduced VZ NPCs. Scale bar, 10 �m. Arrows indicate Ki67 � transduced NPCs.
Hoechst 33342 was used as a nuclear counterstain. D, Quantification of transduced NPC numbers in the RMS at 2 and 10 dpi (2 dpi, n � 5; 10 dpi, n � 6; expression: F(1,16) � 7.293, p � 0.0158;
time: F(1,16) � 9.584, p � 0.0069; interaction: F(1,16) � 10.42, p � 0.0053 by 2-factor ANOVA; Bonferroni post hoc **p � 0.01 for expression at 2 dpi).
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review, see Ohab and Carmichael, 2008) because Panx1 has been
implicated in neuronal death (for review, see Weilinger et al.,
2013) and inflammatory signaling (for review, see Makarenkova
and Shestopalov, 2014) that persists in the peri-infarct cortex for
days after the acute ischemic event (for review, see Brouns and De
Deyn, 2009). There was a significantly greater abundance of
Panx1-null NPCs in the peri-infarct cortex at 5 dpi/PT that per-
sisted at 10 dpi/PT (Fig. 4A,B). This increase in Panx1-null NPCs
in the peri-infarct cortex was not likely due to altered migration
given that, at 2 dpi/PT, there was not a surge of Panx1-null NPCs
into the peri-infarct cortex nor the RMS. Analysis of the expres-
sion of activated caspase 3 within the transduced peri-infarct
NPCs suggested that a relatively low percentage of these NPCs
(�10%) were apoptotic (Fig. 4C). Our interpretation of these

results is that Panx1-null NPCs persist longer in the peri-infarct
cortex.

Discussion
Here, we examined the impact of the deletion of Panx1 in VZ NPCs
in the context of the healthy (naive/sham) and stroke-injured brain.
This study builds on our recent discovery of Panx1 expression in
Nestin-positive/glial fibrillary acidic protein (GFAP)-positive,
Nestin-positive/GFAP-negative (Wicki-Stordeur et al., 2012), and
DCX-positive (Wicki-Stordeur and Swayne, 2013) VZ NPCs. Our
previous results demonstrated that blocking Panx1 channels in pri-
mary VZ NPC cultures reduced the number of VZ NPCs (Wicki-
Stordeur et al., 2012), suggesting that Panx1 is involved in the
regulation of their proliferation and/or maintenance in vitro.

Figure 3. Panx1 is essential for maintaining elevated VZ NPC numbers after stroke. Ai, Panx1-null and Panx1-expressing NPC numbers per VZ at 2, 5, and 10 dpi/PT. Naive/sham data
from Figure 2A are overlaid in light gray. The number of Panx1-null NPCs significantly decreased over time (2 dpi/PT, n � 7; 5 and 10 dpi/PT, n � 6, expression: F(1,32) � 2.854, p �
0.1008; time: F(2,32) � 4.644, p � 0.0169; interaction: F(2,32) � 4.902, p � 0.0139 by 2-factor ANOVA; Bonferroni post hoc *p � 0.05 for expression at 10 dpi/PT). Aii, Maximum-
intensity projections of representative confocal Z-stacks of the VZ show transduced NPCs at 2 (left) and 10 dpi/PT (right). Scale bars, 10 �m. V, Ventricle; cc, corpus callosum; str, striatum.
Hoechst 33342 was used as a nuclear counterstain. Bi, The vast majority of transduced VZ NPCs were immunoreactive for DCX (2 dpi/PT, n � 6, p � 0.5202 by unpaired t test). Bii,
Maximum-intensity projection of a representative confocal Z-stack from the VZ demonstrating DCX-immunoreactivity of transduced VZ NPCs. Scale bar, 10 �m. Arrows indicate DCX �

transduced NPCs. Ci, The percentage of transduced VZ NPCs immunoreactive for Ki67 was not affected by Panx1 expression status, but was affected by time after stroke (2 dpi/PT, n �
7, 5 and 10 dpi/PT, n � 5; expression: F(1,28) � 0.8049, p � 0.3760; time: F(2,28) � 3.461, *p � 0.0454; interaction: F(2,28) � 0.1508, p � 0.8607 by 2-factor ANOVA). Cii,
Maximum-intensity projection of a representative confocal Z-stack demonstrating Ki67 immunoreactivity of transduced VZ NPCs. Scale bar, 10 �m. Arrows indicate Ki67 �-transduced
NPCs. Hoechst 33342 was used as a nuclear counterstain. D, Quantification of Panx1-null and Panx1-expressing NPC numbers in the RMS at 2, 5, and 10 dpi/PT. The number of transduced
NPCs was not affected by Panx1 expression status and did not significantly change over time (2 and 5 dpi/PT, n � 6; 10 dpi/PT, n � 5; expression: F(1,28) � 3.593, p � 0.0684; time:
F(2,28) � 1.812, p � 0.1820; interaction: F(2,28) � 1.998, p � 0.1545 by 2-factor ANOVA).
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To test the hypothesis that Panx1 regulates NPCs in vivo in the
context of the healthy adult brain, we used a retrovirus-mediated
approach to selectively delete Panx1 in late-stage VZ NPCs in
floxed Panx1 mice. Initially, there were 70% fewer Panx1-null
NPCs than Panx1-expressing NPCs in the VZ (2 dpi; Fig. 2). Our
analyses suggested that Panx1 is required for maintenance of VZ
NPCs through a mechanism other than proliferation, differenti-
ation, migration, or apoptosis.

How does Panx1 promote NPC maintenance in the VZ niche?
In the VZ of the healthy brain, a large percentage of NPCs are
normally lost (Morshead and van der Kooy, 1992). Recent evi-
dence shows that these NPCs are cleared by neighboring NPCs
(DCX-positive neuroblasts), which are the primary phagocytic
cells in the VZ (Lu et al., 2011). Further work has shown that this
phagocytic process in NPCs is likely regulated by a noncanonical
P2X7-dependent mechanism that is inhibited in the presence of
ATP (Lovelace et al., 2015). In this mechanism established in vitro
and in vivo by Gu and colleagues (Gu et al., 2009, 2010, 2011,
2012), P2X7 is required for phagocytosis, but when activated in
the presence of ATP, it dissociates from its binding partner non-
muscle myosin, thereby abolishing further P2X7-mediated
phagocytosis (for review, see Wiley and Gu, 2012). This suggests
that ATP could act as a survival (“don’t-eat-me”) signal in addi-
tion to its previously defined roles in purinergic-receptor-
mediated regulation of NPC maintenance and differentiation
(for review, see Cavaliere et al., 2015). In other words, deletion of

Panx1 (a well known ATP-release channel) rendered cells vulner-
able to “premature” clearance by resident phagocytic NPCs in a
process termed “phagoptosis” (for review, see Brown and Neher,
2012 and Brown et al., 2015), resulting in the low abundance of
Panx1-null NPCs in the healthy VZ.

Panx1-null cells were more abundant in the peri-infarct cor-
tex (5 and 10 dpi/PT) and a low percentage (�10%) of trans-
duced NPCs demonstrated signs of apoptosis, suggesting that the
loss of Panx1 improved NPC maintenance. Overall, we did not
observe a large number of activated caspase 3-positive cells in
general, suggesting that apoptosis is not the primary mediator of
NPC death in the peri-infarct cortex at this delayed period (days)
after stroke. In fact, recent data suggest that the death of vulner-
able neurons in the peri-infarct cortex occurs due to phagoptosis
of viable cells exposed to sublethal stimuli (Neher et al., 2013).
These cells present “find-me/eat-me” signals that attract phago-
cytic microglia (Neher et al., 2011; Neniskyte et al., 2011; Geiger-
Maor et al., 2012; Neher et al., 2013). Find-me/eat-me signals for
microglia include things such as phosphatidylserine externaliza-
tion and release of ATP (for review, see Patel et al., 2013). So how
does Panx1 deletion factor in? In the peri-infarct cortex, ATP
activates P2Y12 receptors expressed on microglia to elicit che-
motaxis and phagocytosis of the target cell (Honda et al., 2001;
Irino et al., 2008; Ohsawa et al., 2010). Therefore, the presence of
Panx1 in NPCs in the peri-infarct would render NPCs vulnerable
to phagoptosis. This is in stark contrast to ATP-mediated inhibi-

Figure 4. Panx1-null NPCs persist in the peri-infarct cortex. A, Percentages of Panx1-null and Panx1-expressing NPCs in the peri-infarct cortex. Ai, Panx1-null and Panx1-expressing NPCs were
equally abundant at 2 dpi/PT (n �6, p �0.4812 by unpaired t test). Note that 1 of the 7 brains did not have a single transduced NPC in the peri-infarct at 2 dpi/PT; data are represented as percentage
of total transduced NPCs due to a large variability in NPC number reaching the peri-infarct cortex between mice. Aii, Panx1-null and Panx1-expressing NPC percentages at 5 dpi/PT (n � 4, p �
0.0208 by unpaired t test). Note that 2 of the 6 brains did not have a single transduced NPC in the peri-infarct at 5 dpi/PT. Aiii, Panx1-null NPCs were more abundant than Panx1-expressing NPCs at
10 dpi/PT (n � 6, p � 0.0180 by unpaired t test). B, Maximum-intensity projection of a representative confocal Z-stack from the peri-infarct tissue 10 dpi/PT. Arrows indicate faint GFP � nuclei. C,
Maximum-intensity projection of a representative confocal Z-stack from the peri-infarct tissue 10 dpi/PT with yellow arrows indicating activated caspase 3 (*Casp3) � cells. Pie charts indicate the
percentage of total RFP � (Panx1-expressing; top) or GFP � (Panx1-null; bottom) cells that were *Casp3 � in the peri-infact across all animals. Hoechst 33342 was used as a nuclear counterstain.
Scale bars, 10 �m.
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tion of the noncanonical P2X7-dependent NPC-mediated NPC
phagocytosis in the VZ. Supporting this idea, ATP release
through Panx1 was recently reported to be the “find-me” signal
for phagocytic macrophages (Chekeni et al., 2010).

Promoting the survival of NPCs in the peri-infarct cortex has
been associated with improved stroke outcomes (for review, see
Xiong et al., 2010). Our results suggest that targeting Panx1 in the
peri-infarct cortex, in combination with other therapies, could
improve cell survival around the injury site. Tracking Panx1-null
peri-infarct NPCs over a longer time course will be required to
fully address the effects of Panx1 on peri-infarct NPC survival
and their impact on stroke outcomes.

As expected, based on previous studies that demonstrated
stroke increases numbers of VZ NPCs (for review, see Ohab and
Carmichael, 2008), we observed an increase in the number of
transduced/labeled VZ NPCs after stroke. Similar to a previous
report demonstrating bilateral NPC responses to focal stroke (Jin
et al., 2001), we observed bilateral increases in labeled VZ NPC
numbers. Elevated NPC numbers can persist for weeks and even
months after stroke (for review, see Ohab and Carmichael, 2008).
Our data suggested that Panx1 was required for the persistent
elevation of NPC numbers since Panx1-null NPCs were signifi-
cantly less abundant at 10 dpi/PT (Fig. 3). Compared with the
healthy (naive/sham) brain scenario (where Panx1 deletion led to
an immediate loss in cells at 2 dpi), it appeared that the effect of
Panx1 deletion on VZ NPCs was masked and/or delayed by
stroke. One aspect that our study did not address was whether
Panx1 plays a role in stroke-mediated activation of NPCs. We
induced stroke at the same time as retrovirus injection, so the
initial stroke stimulus preceded actual decreases in Panx1 expres-
sion. Additional studies with Panx1 deletion before stroke will be
needed to determine whether Panx1 plays a role in the initial
activation of NPCs after stroke.

In summary, our observations reveal a new role for Panx1 in
NPC maintenance in the VZ and support the growing body of
literature (for review, see Dahl and Keane, 2012), suggesting that
targeting peri-infarct Panx1 (in combination with other inter-
ventions) could improve outcomes after stroke.
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