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There is much evidence to suggest that
control of gene expression and protein
translation contribute to memory forma-
tion and consolidation in the hippocam-
pus (Costa-Mattioli et al., 2007; Cho et al.,
2015). Therefore, the intricate coordina-
tion of mechanisms that couple extracel-
lular signals to translational regulation is
essential for memory stability. Disruption
of such pathways might contribute to
memory decline in cognitive disorders
such as Alzheimer’s disease (AD).

Most cases of AD are sporadic, mean-
ing they are not tightly linked to gene mu-
tations. Nonetheless, several genetic risk
factors for late-onset, sporadic AD have
been reported. The strongest genetic risk
factor report is possession of the apolipo-
protein E �4 allele (ApoE4). Compared to
the ApoE2 or ApoE3 alleles, ApoE4 ap-
pears to promote metabolic impairment,
amyloid-� (A�) production, and tau ag-
gregation, which are hallmarks of AD
(Liu et al., 2013). The debate about the
culprits of AD pathology is still open, but
mounting evidence indicates that neuro-

nal stress-related mechanisms (initiated
by either A�, tau, or ApoE4) take place in
AD brains to induce synapse dysfunction,
memory loss, and neurodegeneration
(Lourenco et al., 2015).

Cellular stress signals converge to in-
crease phosphorylation of eukaryotic tra-
nslation initiation factor 2� (eIF2�-P),
resulting in transcriptional changes and
protein synthesis attenuation, in a set of
mechanisms collectively known as the inte-
grated stress response (ISR). eIF2� can be
phosphorylated by four different kinases,
namely double-stranded RNA-dependent
protein kinase (PKR), PKR-like endoplas-
mic reticulum kinase (PERK), general
control nonderepressible 2 (GCN2), and
heme-regulated kinase (HRI). eIF2�-P then
acts by blocking its partner, eIF2B, in the
translation initiation complex (Buffington
et al., 2014). Recent evidence has demon-
strated significant roles for ISR elements, in-
cluding PKR and eIF2�-P, in suppressing
memory, in either physiological or AD con-
texts (for review, see Buffington et al., 2014;
Lourenco et al., 2015).

In a recent paper in The Journal of Neu-
roscience, Segev, Barrera et al. (2015) ad-
dressed whether PKR could mediate the
deleterious impact of ApoE4 on memory.
They used a mouse model harboring two
genomic copies of either human ApoE3 or
ApoE4 alleles in place of the murine ho-
mologs. They initially found that ApoE4
mice exhibited impaired contextual mem-
ory in the fear conditioning paradigm, in
agreement with their previous observations

(Segev et al., 2013). They further demon-
strated that young (�3-month-old) ApoE4
mice had higher hippocampal levels of
mRNA encoding activating transcription
factor 4 (ATF4) than age-matched ApoE3
or wild-type mice (Segev, Barrera et al.,
2015).

This increase in ATF4 levels is interesting
for several reasons. ATF4 mRNA translation
is selectively induced when eIF2�-P in-
creases, despite general translational att-
enuation, and this drives ISR-related
transcriptional reprogramming (Buffing-
ton et al., 2014). Recently, ATF4 was de-
scribed as essential for synapse development
and morphogenesis (Liu et al., 2014), and
hippocampal silencing of ATF4 impaired
synapse plasticity and spatial memory for-
mation in mice (Pasini et al., 2015). How-
ever, ATF4 overexpression has been shown
to mediate oxidative stress-induced cell
death (Lange et al., 2008) and alter exp-
ression of several ISR factors, including
chaperones and the pro-apoptotic tran-
scription factor C/EBP-homologous pro-
tein (CHOP) in neurons (Galehdar et al.,
2010). Earlier reports have also indicated
that ATF4 could negatively impact memory,
as it was shown to oppose the actions of the
cAMP response element binding (CREB)
transcription factor in the hippocampus
(Chen et al., 2003). Thus, fine tuning of
ATF4 signaling appears essential for proper
synapse and cognitive function. Further-
more, increased ATF4 levels have been ob-
served in the brains of both AD patients
(Baleriola et al., 2014) and mouse models
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(Ma et al., 2013). A recent study by Baleriola
and colleagues (2014) identified ATF4 as a
retrograde neurodegenerative signal that
propagates from neurons exposed to toxic
A� oligomers (A�Os), known for their
central role in AD. Hence, ATF4 has the
potential to explain, at least in part, how
AD pathology spreads throughout brain
regions.

Segev, Barrera et al. (2015) next demon-
strated that PKR inhibition alleviates mem-
ory impairment and hippocampal ATF4
upregulation in ApoE4 mice. This is consis-
tent with previous reports that blocking
eIF2� kinases is effective in impeding AD-
related memory impairment in different an-
imal models (Lourenco et al., 2013; Ma et
al., 2013) and further extends the notion
that metabolic stress and ISR are integral
components of AD pathogenesis.

Neuroinflammation has been linked
to AD pathogenesis, and some evidence
suggests that inflammatory mechanisms
drive synapse and cognitive impairment
through ISR and metabolic stress (Lou-
renco et al., 2015). Human ApoE4 carriers
have elevated plasma levels of inflamma-
tory markers (Ringman et al., 2012), and
ApoE4 has been shown to exacerbate cen-
tral inflammatory responses that coincide
with decreased levels of synaptic markers
in mice (Maezawa et al., 2006; Tai et al.,
2015). A similar phenomenon is thought
to underlie A�O-induced cognitive dys-
function in AD models (Lourenco et al.,
2013). Therefore, current evidence sug-
gests that ApoE4 and A�Os may contrib-
ute to a toxic process that includes brain
inflammation and ISR and impairs syn-
apse and memory (Fig. 1).

The precise mechanisms by which
ApoE4 acts to increase AD risk remain to be
determined, and inflammation-dependent
cellular stress pathways might offer a consis-
tent explanation for ApoE4-linked AD
cases. The description of higher ATF4 levels
in brains of ApoE4 carriers than in noncar-
riers, and in AD subjects compared to cog-
nitively healthy controls, offers additional
support for this possibility (Baleriola et al.,
2014; Segev, Barrera et al., 2015). Still, fur-
ther investigation is required to establish a
causal role for ATF4 in ApoE4-induced
memory defects.

In addition to upregulation of ATF4,
eIF2�-P-dependent disruption of transla-
tion appears to mediate memory impair-
ment in AD (Ma et al., 2013), which is
consistent with the notion that protein syn-
thesis is essential for synaptic plasticity and
memory consolidation (Buffington et al.,
2014). One might thus envision that target-
ing aberrant translational regulation could

offer therapeutic benefit for cognitive de-
cline. In fact, ISRIB, a pharmacological
agent that counteracts eIF2�-P signaling
through eIF2B binding (Sekine et al., 2015),
reduces ATF4-dependent gene expression
while sustaining protein synthesis and en-
hancing memory in mice (Sidrauski et al.,
2013). Nonetheless, further efforts in pre-
clinical research and drug development are
needed to support the promising possibility
that ISR could become an effective target in
neurodegenerative disorders.

In conclusion, Segev, Barrera et al.
(2015) provide evidence that ISR medi-
ates memory impairment caused by the
ApoE4 allele, whose carriers are at higher
risk of developing AD. This opens the pos-
sibility that modulating ISR could represent
a potential preventive strategy against Apo
E4-related cognitive impairment. Further-
more, such findings offer a novel perspec-
tive in which similar mechanisms may drive
memory loss induced by different AD-
associated agents.
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