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BDNF Signaling Promotes Vestibular Compensation by
Increasing Neurogenesis and Remodeling the Expression of
Potassium-Chloride Cotransporter KCC2 and GABA ,
Receptor in the Vestibular Nuclei
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Reactive cell proliferation occurs rapidly in the cat vestibular nuclei (VN) after unilateral vestibular neurectomy (UVN) and has been
reported to facilitate the recovery of posturo-locomotor functions. Interestingly, whereas animals experience impairments for several
weeks, extraordinary plasticity mechanisms take place in the local microenvironment of the VN: newborn cells survive and acquire
different phenotypes, such as microglia, astrocytes, or GABAergic neurons, whereas animals eventually recover completely from their
lesion-induced deficits. Because brain-derived neurotrophic factor (BDNF) can modulate vestibular functional recovery and neurogen-
esis in mammals, in this study, we examined the effect of BDNF chronic intracerebroventricular infusion versus K252a (a Trk receptor
antagonist) in our UVN model. Results showed that long-term intracerebroventricular infusion of BDNF accelerated the restoration of
vestibular functions and significantly increased UVN-induced neurogenesis, whereas K252a blocked that effect and drastically delayed
and prevented the complete restoration of vestibular functions. Further, because the level of excitability in the deafferented VN is
correlated with behavioral recovery, we examined the state of neuronal excitability using two specific markers: the cation-chloride
cotransporter KCC2 (which determines the hyperpolarizing action of GABA) and GABA, receptors. We report for the first time that,
during an early time window after UVN, significant BDNF-dependent remodeling of excitability markers occurs in the brainstem. These
data suggest that GABA acquires a transient depolarizing action during recovery from UVN, which potentiates the observed reactive
neurogenesis and accelerates vestibular functional recovery. These findings suggest that BDNF and/or KCC2 could represent novel
treatment strategies for vestibular pathologies.
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In this study, we report for the first time that brain-derived neurotrophic factor potentiates vestibular neurogenesis and signifi-
cantly accelerates functional recovery after unilateral vestibular injury. We also show that specific markers of excitability, the
potassium-chloride cotransporter KCC2 and GABA , receptors , undergo remarkable fluctuations within vestibular nuclei (VN),
strongly suggesting that GABA acquires a transient depolarizing action in the VN during the recovery period. This novel plasticity
mechanism could explain in part how the system returns to electrophysiological homeostasis between the deafferented and intact
VN, considered in the literature to be a key parameter of vestibular compensation. In this context, our results open new perspec-
tives for the development of therapeutic approaches to alleviate the vestibular symptoms and favor vestibular function recovery.

ignificance Statement

Introduction

Cell proliferation in the adult mammal sometimes occurs after
lesions or pathological injury to the CNS, but these immature
new cells rarely provide any functional benefit. In addition, it is
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rare for newly generated cells to differentiate into neurons in the
adult mammal without the assistance of drug treatment and it is
even rarer to observe a complete recovery of function within a few

This work was supported by the Ministére de 'enseignement supérieur et de la recherche and the Centre National
de la Recherche Scientifique (Unité Mixte de Recherche 7260 Aix-Marseille Université). We thank Dr. Alexandra
Thomas from Yale University for reviewing and improving this manuscript, Valérie Gilbert and Elodie Mansour for
taking care of the animals, and Abdessadek EI Ahmadi for expertise in statistical analysis.



6200 - J. Neurosci., June 8, 2016 - 36(23):6199-6212

weeks. However, this unusual generative and restorative process,
which is more typical of the developing brain, happens after ves-
tibular loss in the adult cat’s brain.

Sudden, unilateral vestibular lesion abruptly shuts down the
spontaneous resting activity of the vestibular nuclei (VN) neu-
rons of the brainstem on the damaged side, resulting in an imbal-
ance with the intact contralateral VN neurons (Zennou-Azogui
et al., 1993; Ris et al., 1995; Ris and Godaux, 1998; Vidal et al.,
1998). In a wide variety of species, this imbalance produces di-
verse symptoms such as balance and gait problems, oscillopsia,
spontaneous nystagmus, vegetative disorders including nausea,
and other severe impairments (Cass and Goshgarian, 1990; La-
cour, 2006). These symptoms are described by patients as ex-
tremely unpleasant, but in most cases, they last a few weeks and
ameliorate over time in a process called vestibular compensation
(Smith and Darlington, 1991; Dieringer, 1995; Vidal et al., 1998;
Lacour and Tighilet, 2010). This functional recovery involves
sensory and behavioral substitution processes, which contribute
to the recovery of dynamic functions, and plasticity mechanisms
sustaining the restoration of activity between the deafferented
and the intact VN, which leads to the recovery of the static func-
tions of the vestibular system (Lacour and Tighilet, 2010). Many
neuroplasticity mechanisms have been described to support ves-
tibular compensation, such as changes in transcription factors
expression, alteration in neurotransmitter and hormonal sys-
tems, changes in neurotrophins and their receptors, modifica-
tions of the density of membrane receptors, and astrocyte and
microglial reactions (Lacour and Tighilet, 2010). Interestingly,
we were the first to demonstrate that a unilateral vestibular
neurectomy (UVN) induces a reactive neurogenesis in the VN of
adult cats (Tighilet et al., 2007). In a follow-up study, continuous
intracerebroventricular administration of an antimitotic drug
immediately after UVN completely blocked the reactive cell pro-
liferation and delayed 3-fold the recovery of posturo-locomotor
functions (Dutheil et al., 2009), indicating that UVN-induced
newborn cells contribute to behavioral recovery. In another study
that confirmed previous results, we reported that GABA is a ma-
jor regulator of vestibular compensation, not only by coordinat-
ing cellular events—including the different steps of reactive
neurogenesis—but also by regulating the speed of recovery of
posturo-locomotor functions (Dutheil et al., 2013).

Brain-derived neurotrophic factor (BDNF), a member of the
neurotrophin family of proteins, has been shown to promote
neurite outgrowth, cell survival, differentiation, migration, and
activity-dependent neuroplasticity in the CNS and peripheral
nervous system (Greenberg et al., 2009; Park and Poo, 2013). In
the context of adult hippocampal neurogenesis, BDNF is known
to influence neuronal activity through GABA-mediated effects
(Lee et al., 2002; Sairanen et al., 2005; Bergami et al., 2008; Wa-
terhouse et al., 2012). Interestingly, BDNF, through its associated
tyrosine kinase B receptor (TrkB), is also necessary for the normal
development of the vestibular system (Ernfors et al,, 1994;
Schimmang et al., 1995; Fritzsch et al., 1997; Lucas et al., 2014)
and for fine vestibular compensation in adult mammals (Bolger
et al., 1999; Maingay et al., 2000; Li et al., 2001). Based on this
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evidence, the current study sought to determine whether, after
vestibular injury, BDNF-TrkB signaling affects the following: (1)
the time course of recovery of vestibular functions, (2) postlesion
plasticity mechanisms in the deafferented VN, and (3) the expres-
sion level of two specific markers of excitability, the GABA,, re-
ceptor (GABA,R) and the cation-chloride cotransporter KCC2.

Materials and Methods

Ethics statement

All experiments were performed in accordance with the National Insti-
tutes of Health’s Guide for Care and Use of Laboratory Animals (NIH
Publication no. 80-23) revised in 1996 for the UK Animals (Scientific
Procedures) Act of 1986 and associated guidelines or the Policy on Ethics
approved by the Society for Neuroscience in November 1989 and
amended in November 1993. Every attempt was made to minimize both
the number of animals used and their suffering in this experiment. We
selected only the most important post-UVN time delay according to the
findings of our previous studies. Animals were housed in a large, con-
fined space with normal diurnal light variations and free access to toys,
water, and food.

Surgery and drug protocol

Adult male cats weighing between 4 and 5 kg were anesthetized with
ketamine (20 mg/kg, i.m.; Rhone Poulenc), received an analgesic (tolfe-
namic acid, 4 mg/kg, i.m.; Vetoquinol) and were kept at physiological
body temperature using a blanket. The vestibular nerve was sectioned on
the left side at the postganglion level to leave the auditory division intact
after mastoidectomy, partial destruction of the bony labyrinth, and sur-
gical exposure of the internal auditory canal (Xerri and Lacour, 1980).
Animals were maintained under antibiotics for 7 d and the same analge-
sics for 3 d. The classical postural, locomotor, and oculomotor deficits
displayed by the animals in the days after nerve transection were used as
criteria indicating the effectiveness of the vestibular nerve lesion. Com-
pleteness of vestibular nerve section had been assessed by histological
procedures in previous studies (Lacour et al., 1976). For the implantation
and use of osmotic minipumps containing saline, BDNF, or TrK antag-
onist (K252a), concentrations of BDNF and K252a were selected with
reference to studies showing the effect of in vivo infusion of BDNF on
neurogenesis (Pencea et al., 2001) and vestibular compensation (Main-
gay et al., 2000). K252a is a BDNF antagonist that has a high affinity for
the TrkB receptor and belongs to the K252 family of alkaloid toxins,
which are protein kinase inhibitors. BDNF and K252a (Sigma-Aldrich)
were diluted to the required concentrations using artificial CSF contain-
ing the following (in mwm): 124 NaCl, 5KCl, 1.2 KH2PO,, and 1.3 MgSO,,
tested for pH, and adjusted to a pH 7.0, if necessary. Subcutaneous mi-
nipumps (Alzet; flow rate 2.5 pl/h for 30 d) were filled with the solution
to infuse as described previously (Dutheil et al., 2009, 2013).

Study design

To determine the effects of BDNF or K252a infusion after UVN on the
different steps of reactive neurogenesis at the cellular level and on the
time course of the cats’ recovery at a behavioral level (see Fig. 1A4), we
studied 10 groups of male adult cats. Based on our previous findings
regarding the temporal expression pattern of neurogenesis in the VN
(Tighilet et al., 2007), two main time points were chosen: (1) 3 d after
UVN to allow us to examine the cell proliferation at its highest expression
and (2) 30 d after UVN while BrdU was injected 3 d after UVN to study
the survival and the differentiation of the proliferating cells in reaction to
the lesion. More specifically, the different groups were as follows: (1)
sham group: the animals (Group 1, n = 4) were submitted to anesthesia
and the same surgical approach as UVN without sectioning the nerve and
immediately received a continuous 0.9% NaCl infusion. These animals
were killed 30 d later; (2) UVN-NaCl group: animals underwent UVN
with continuous NaCl infusion and then received a BrdU injection (200
mg/kg, i.p.) and killed either 3 d later, when cell proliferation reached a
peak (Group 2, n = 4), or 30 d later to study the survival and the differ-
entiation of the proliferating cells (Group 3, n = 4); (3) UVN-BDNF
group: animals underwent UVN with continuous BDNF infusion, re-
ceived a BrdU injection, and were killed 3 d later (Group 4,n = 4) or 30 d
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Table 1. Antibodies and methods of detection
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Marker Primary antibody Secondary antibody Technique/coloration
BrdU Mouse, 1:100, Dako Horse anti-mouse, 1:200, Vector Laboratories DAB/brown

GFAP Rabbit, 1:200, Dako Goat anti-rabbit, 1:200, Vector Laboratories DAB/brown

GAD67 Mouse, 1:1000, Chemicon Horse anti-mouse, 1:200, Vector Laboratories DAB/brown

BrdU Rat, 1:100, Oxford Biotech Rabbit anti-rat, 1:200, Interchim Alexa Fluor 594/red
GFAP Rabbit, 1:200, Dako Goat anti-rabbit, 1:200, Interchim Alexa Fluor 488/green
GAD67 Mouse, 1:100, Chemicon Rabbit anti-mouse, 1:200, Interchim Alexa Fluor 488/green
NeuN Mouse, 1:100, Chemicon Rabbit anti-mouse, 1:200, Interchim Alexa Fluor 488/green
IBA1 Rabbit, 1:2000, Wako Goat anti-rabbit, 1:200, Interchim Alexa Fluor 488/green
ChAT Goat, 1:5000, Chemicon Donkey anti-goat, 1:2000, Jackson ImmunoResearch DAB/blue

Kce2 Rabbit, 1:250, Millipore Donkey anti-rabbit, 1:500, Jackson InmunoResearch Cy3/red

GABAA Mouse, 1:100, US Biol Life Donkey anti-mouse, 1:800, Life Technologies Alexa Fluor 488/green

.

Shown are the combination and sequential processing of primary and secondary antibodies used for i

later (Group 5, n = 4); and (4) UVN-K252a group: animals underwent
UVN with continuous K252a infusion, received a BrdU injection, and
were killed 3 d later (Group 6, n = 4) or 30 d later (Group 7, n = 4). The
two postlesion survival periods (days 3 and 30) were selected on the basis
of our previous data (Tighilet et al., 2007). Concerning the behavioral
investigations, 12 UVN cats were used for this study and received con-
tinuous infusion of NaCl (Group 8, n = 4), BDNF (Group 9, n = 4), or
K252a (Group 10, n = 4) after the surgery. Because the Alzet minipump
was filled with enough drug to be delivered continuously for 30 d, ani-
mals undergoing behavioral investigation stopped getting NaCl, BDNF,
or K252a delivered after 1 month and continued being tested until they
reached their pre-UVN performance or 160 d after UVN for the UVN-
K252a group (Group 10).

Cellular investigations

Tissue preparation. As described in a previous study (Dutheil et al., 2013),
BrdU (10 mg/ml; Sigma-Aldrich) was dissolved in a solution of NaCl
0.9% heated to 56°C and injected into animals (200 mg/kg). BrdU doses
were not likely to generate side effects, but were sufficient to mark the
cells in S-phase synthesizing DNA. Before BrdU administration, the cats
in each group were deeply anesthetized with ketamine dihydrochoride
(20 mg/kg, i.m.; Merial). The last hour before they were killed, animals
were deeply anesthetized with ketamine dihydrochloride (20 mg/kg, i.m.;
Merial) and then perfused with 0.9% NaCl (1 L per animal), followed by
freshly prepared paraformaldehyde 4% solution (2 L per animal). After
removal from the skull, brains were cut into several blocks containing the
VN. Blocks were rapidly frozen with dry ice and stored at —80°C. Cor-
onal sections (40 mm thick) were cut in a cryostat (Leica) for
immunochemistry.

Immunochemistry. Immunochemical labeling was performed accord-
ing to previously validated protocols (Brezun and Daszuta, 2000; Tighilet
etal., 2007). The differentiation of the newly generated cells was analyzed
in the UVN-NaCl, UVN-BDNF, and UVN-K252a groups injected
with BrdU 3 d after UVN and killed after 1 month. Double immu-
nofluorescence-stained sections incubated with BrdU and one of four
antibodies were used: NeuN, a postmitotic neuronal nuclei marker ex-
pressed in most neurons; the glial fibrillary acidic protein (GFAP), a
specific type of intermediate filament protein used as an astrocyte
marker; IBA1, an ionized calcium-binding adapter molecule 1 that is
specific to microglia and macrophages, but not cross-reactive with neu-
rons and astrocytes; GAD 67, the enzyme that catalyzes the decarboxyl-
ation of glutamate to GABA and expressed in GABAergic neurons; and
ChAT, a transferase enzyme responsible for the synthesis of the neu-
rotransmitter acetylcholine and expressed in cholinergic neurons. Each
antibody was processed sequentially, the differentiation marker detec-
tion first and then the BrdU labeling. For fluorescence labeling, sections
were incubated with a secondary antibody coverslipped in Mowiol. Dif-
ferentiation of the newly generated cells was analyzed with double-
labeling analysis performed using confocal imaging with a Zeiss LM 710
NLO laser-scanning microscope equipped with a 63x/1.32 numerical
aperture (NA) oil-immersion lens. The fields of view were then examined
by confocal microscopy, and 1 wm-step Z -series were obtained. For
GABA,R and KCC2 immunohistochemistry, sections were incubated

hemical and dual i

fluorescent stainings for BrdU, NeuN, GAD67, ChAT, GABA, receptor, KCC2, GFAP, or IBA1.

overnight at 22°C in a mixture of affinity-purified rabbit KCC2-specific
polyclonal antibody and the monoclonal mouse antibody against
GABA,RPB 2,3. Labeling was revealed with a mixture of donkey Cy3-
conjugated rabbit-specific antibody and donkey Alexa Fluor 488-
conjugated mouse-specific antibody and coverslips were mounted with a
gelatinous aqueous medium. The patterns of immunolabeling were an-
alyzed with a laser scanning confocal microscope (Zeiss LSM 710 META)
at high magnification (Plan Apochromat 63X 1.4 NA oil-immersion
objective). The optimal antibody dilutions and staining procedures are
described in Table 1.

Cell-counting method and quantification of GABA R and

KCC2 immunoreactivity

Cell counts were performed according to a previously validated protocol
(Dutheil et al., 2009, 2011). The VN were identified through Berman’s
stereotaxic atlas (Berman, 1968). BrdU *, GFAP *, IBA1 ", ChAT67 *,
and GADG67 " cells were quantified on both sides (left/right: sham-
operated cats; ipsilateral/contralateral: UVN-lesioned cats) for each VN
(medial, inferior, superior, and lateral VN: MVN, IVN, SVN, and LVN,
respectively) from selected serial frontal sections collected from the dor-
sal (5.2) to the caudal (12.1) part of the brainstem and depending on the
size and the rostrocaudal length of each VN. The cell count was done with
a Nikon microscope (Eclipse 80i) equipped with a motorized X-Y-Z-
sensitive stage and a video camera connected to a computerized image
analysis system (Mercator; Explora Nova). The total number of immu-
nolabeled cells was estimated using the optical fractionator method
(West et al., 1991). For quantification of KCC2 and GABA R immuno-
histochemistry, double fluorescence labeling was captured using frame-
channel mode to avoid any cross-talk between the channels. Each optical
section resulted from two scanning averages. Excitation of the fluoro-
chromes was performed with an argon ion laser set at 488 nm and a
helium/neon laser set at 575 nm. At high magnification, we only scanned
the lateral VN, which is constituted by giant neurons (100 wm average)
with visible nuclei and, for each soma, we digitized stacks of 1-um-thick
optical sections. We overlayed the internal and external borders, and
digitized intensity measurements of KCC2 and GABA R labeling using
ZEN 2012 software. This method of quantification has been validated in
other studies (Boulenguez et al., 2010; Sadlaoud et al., 2010; Bos et al.,
2013).

Behavioral investigations

Spontaneous nystagmus recovery. The day after UVN, each cat of the
behavioral cohort was placed on an apparatus with its head fixed, thus
maintaining the horizontal semicircular canals in the horizontal plane.
The frequency of the horizontal spontaneous nystagmus was measured
in the light as the number of quick phase beats toward the contralateral
side relative to UVN in 10 s (five repeated measures per animal per
sampling time) with a video camera (Sony HDV).

Posture recovery. Posture deficits and recovery were evaluated by mea-
suring the surface delimited by the four legs of the cats while they were
standing erect at rest on a device with a graduated transparent floor that
allowed them to be photographed from underneath. Five repeated mea-
surements were done for each cat tested at each preoperative and post-
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After UVN, behavioral recovery, reactive cell proliferation, and cell survival are altered by BDNF and K252a infusions in the deafferented VN. A, Experimental protocol to study the effects

of continuous infusion in the fourth ventricle of BDNF or K252a (a TrK receptor blocker) at the cellular level, accompanied by behavioral analyses (n = 4 animals per group). B, Curvesillustrating the
time course of disappearance of horizontal spontaneous nystagmus frequency for each group of cats at different postoperative days. €, Curves indicating the mean postoperative recovery of the
support surface after vestibular damage. D, Curves indicating the mean postoperative recovery of the equilibrium function after vestibular damage. The MaxP is defined as the highest beam rotation

speed that did not lead to a fall on four consecutive crossings. The curves are expressed in percentage of the preoperative maximal performance as a function of the postoperative time in days.

operative time so that each animal acted as its own control. An average
was calculated for each experimental session by an image analysis system
(canvas, 9TM; Deneba Software).

Equilibrium function recovery. The rotating beam test was performed
according to standard published procedures used in our laboratory (Xe-
rri and Lacour, 1980; Tighilet et al., 2006). Cats were first conditioned to
cross over the immobile beam few weeks before surgery and were re-
warded by a small piece of food placed in the target compartment. As a
rule, rotation velocity of the beam was progressively increased after four
consecutive trials without fall. Equilibrium function was quantified by
measuring the highest speed of beam rotation that did not induce a fall
and was called maximal locomotor balance performance (MaxP). For
more details, see Dutheil et al. (2009, 2013).

Statistical analysis of the behavioral and cellular data. Statistical analysis
was done with ANOVA to test for changes at the different postlesion
delays in the spontaneous nystagmus, the support surface, and the max-
imal equilibrium performance of the cats. Results were considered sig-
nificant at p < 0.05. The statistical analyses of the cellular data were also
evaluated by ANOVA to test the effects of the group (UVN-NaCl, UVN-
BDNF, or UVN-K252a), the structure (MVN, IVN, LVN, SVN), the side

(deafferented vs intact) and the postoperative time on BrdU, IBAI,
GFAP, ChAT, GAD67, KCC2, and GABA ,Rs immunostainings to deter-
mine whether there were any interactions between these variables.
ANOVA was followed by post hoc analysis with the Scheffé test and mul-
ticomparison Fisher’s test (StatView II; SAS Institute).

Results

BDNF signaling is required for behavioral recovery

after UVN

Unilateral vestibular damage results in a constellation of hetero-
geneous symptoms in mammals: ocular nystagmus (fast phase
directed to the intact side), head tilt toward the side of the lesion,
postural asymmetry, enhancement of the support surface, and
falling to the lesioned side in the first postlesion week in cats. To
determine whether BDNF signaling modulates behavioral recov-
ery of animals after UVN, we infused NaCl, BDNF, or K252a
intracerebroventricularly for longitudinal behavioral analyses of
Groups 8, 9, and 10 (see “Study design” section and Fig. 1A for
more information).
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Figure2. BDNF treatment alters vestibular cell proliferation and cell survival. A, Photomicrographs showing BrdU immunostainings in the deafferented MVN 3 or 30 d after UVN with continuous
druginfusion in the fourth ventricle (NaCl, BDNF, or K252a). B, Histograms comparing the mean values (SEM) of the number of BrdU * cells that incorporated BrdU at day 3 afater UVN. C, Histograms
comparing the mean values (SEM) of the number of BrdU ™ cells that incorporated BrdU at day 3 and survived 27 d later in the different deafferented VN. *p << 0.0001 compared with the same VN

in other groups.

Nystagmus

Unilateral vestibular damage produces a spontaneous nystag-
mus. BDNF infusion led to a decrease in the number of nystag-
mus beats at day 3 compared with K252a- and NaCl-treated cats
(vehicle: 10.25 beats/10 s, BDNF: 3 beats/10 s, K252a: 13.5
beats/10 s, p < 0.0001; Fig. 1B). Overall, the total disappearance
of spontaneous horizontal nystagmus was faster for the UVN-
BDNF group (4 d) than for the vehicle group (8 d) and the K252a-
treated group (13 d) (p < 0.0001).

Posture function recovery

Unilateral vestibular damage leads to an increased support sur-
face delimited by the four paw pads of four-footed animals. This
parameter reflects a good estimation of postural stability and
recovery. As a rule, the surface was ~50—100 cm? in cats before
UVN and significantly increased in the days after unilateral ves-
tibular lesion. Return to pre-UVN control values, normalized to
1, was faster when animals were infused with BDNF (22 d) rather
than NaCl (48 d). K252a drastically delayed the return to control
values: cats of this group recovered preoperative values only after
98 d (Fig. 1C). Two-way ANOVA established significant eff-
ects depending on the groups (p < 0.0001), the postlesion time
(p < 0.0001), and the interaction between these two factors
(p < 0.0001).

Locomotor balance recovery

The rotating beam experimental device test provides a reliable
behavioral measure of locomotor balance function consistent
with the time lag necessary for the progressive disappearance of
the posturo-locomotor vestibular symptoms experienced after
vestibular damage. The role of BDNF in the posturo-locomotor
recovery was tested in cats exposed to pre-UVN rotating beam
training. Congruent with the data of the posture function and the
nystagmus, BDNF improved substantially the dynamic locomo-
tor balance of the animals, which were able to cross the rotating

beam at their maximal performance after only 18 d after UVN,
whereas NaCl animals reached the same performance at 36 d. In
contrast, cats infused with K252a could not walk on the beam
rotating at the lowest speed until 66 d after UVN and finally
reached a plateau of 70% of their MaxP at 160 d (Fig. 1D). Two-
way ANOVA showed significant effects depending on the drug
infused (p < 0.0001), the postlesion time (p < 0.0001), and the
interaction between these two factors (p < 0.0001).

BDNEF expression influence cell proliferation and survival of
new cells in the VN after vestibular damage
Based on our previous studies (Dutheil et al., 2009, 2013), exog-
enous NaCl, BDNF or K252a was continuously delivered (intrac-
erebroventricularly via minipump) immediately after UVN in
adult cats to examine postlesion plasticity mechanisms in the VN.
We first assessed reactive cell proliferation in the VN (Groups 1,
2,4, and 6 as described in the “Study design” section) by measur-
ing the number of cells that incorporated the DNA synthesis
marker BrdU after short-term infusion (at day 3, when cell pro-
liferation has been described to reach a peak in this model of
lesion; Tighilet et al., 2007). Results showed that BDNF increases
the number of BrdU * cells by ~4-fold compared with the UVN-
NaCl group (p < 0.0001; Fig. 2A,B). In contrast, intracerebro-
ventricular administration of the high-affinity TrK receptor
blocker K252a caused an ~2-fold decrease of the BrdU ™ cells in
all of the deafferented VN group compared with the UVN-NaCl
group (p < 0.0001) and, as described previously, we did not
observe a significant number of BrdU * cells in sham animals.
Next, to assess the phenotype of the proliferative cells, BrdU
was administered 3 d after UVN and the phenotype of the BrdU *
cells was analyzed 27 d later (Groups 3, 5, and 7, as described in
the “Study design” section). Results showed that a substantial
number of cells that had incorporated BrdU at day 3 survived up
to 30 d in the NaCl-infused group. We also observed that BDNF
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BDNF treatmentincreases astrocyticand microglial cell populationin the VN. A, , lllustrations of GFAP ~ () or IBAT * (€) cellsin the left (lesioned) MVN of sham, UVN-NaCl, UVN-BDNF,

and UVN-K252a animals 30 d after UVN. Scale bars: 4, 50 m; B, 20 um. n = 4 animals per group. B, D, Histograms showing the effects of NaCl, BDNF, or K252a continuous infusion on the number
of GFAP ~ (B) or IBA1 ™ (D) cells in the four VN 30 d after UVN. Only values recorded on the lesioned side are llustrated and data from both sides of the sham group were pooled for direct comparison
with the subgroups of vestibular deafferented cats. SEMs are shown as vertical lines. Analyzes were assessed by ANOVA followed by Scheffe test for all of the VN and all groups (*p << 0.0001 vs the

same VN of other groups).

strongly increased the number of cells that had survived at this
time point (Fig. 2C), whereas K252a blocked this effect, decreas-
ing the number of BrdU * surviving cells by ~2-fold compared
with UVN-NaCl group. Therefore, our results suggest that, after
UVN, BDNF treatment facilitates, not only cell proliferation, but
also cell survival in the deafferented VN.

BDNF treatment for 30 d increases astrocytes and microglia
on the deafferented side

Next, we examined the impact of BDNF on astrocytes and
microglia in the deafferented VN. Results showed that BDNF
infused continuously for 30 d significantly increased the
average number of GFAP cells in all the VN compared with the
sham and the UVN-NaCl groups (average of all VN, sham:
20,876.73 cells, UVN-NaCl: 94,559 cells, UVN-BDNF: 163,
759.09 cells), whereas administration of K252a significantly
decreased this population in a proportion almost similar to
whatis observed in sham cats (UVN-K252a: 39,473.3 cells, p <
0.0001; Fig. 3A,B).

We also observed that UVN induced a significant increase in
microglial reaction at the day 30 after lesion in all of the deaffer-
ented VN of animals infused with NaCl. This effect was enhanced
by BDNF, whereas K252a blocked this effect because we observed

anumber of IBA1 " cells almost similar to basal sham conditions
(average of all VN, sham: 6880.05 cells, UVN-NaCl: 32,017.93
cells, UVN-BDNEF: 57,732.74 cells, UVN-K252: 11,877.71 cells,
p < 0.0001; Fig. 3C,D). Together, these results demonstrate that
BDNEF is a key modulator of post-UVN local increases in astro-
cytes and microglia.

BDNF treatment for 30 d increases the number of cholinergic
and GABAergic neurons

To determine whether BDNF influences neuromodulator sys-
tems involved in vestibular compensation processes, we used
ChAT and GAD67 immunomarkers to label cholinergic and
GABAergic neurons in the VN 30 d after UVN. The results indi-
cated that, in the sham group, the number of ChAT " neurons
was moderate and symmetric in both sides of the MVN (60.0
cells). Such proportion was comparable to the intact side of the
MVN in all experimental groups (intact side, UVN-NaCl: 65
cells, UVN-BDNF: 68.7 cells, UVN-K252a: 58.0 cells). However,
on the deafferented side, the number of ChAT * neurons was
significantly increased in the UVN-NaCl group and was in-
creased by BDNF (UVN-NaCl: 104.5 cells, UVN-BDNE: 176.8
cells, p < 0.0001), whereas K252a did not have any effect (UVN-
K252a: 56.8 cells). This suggests that UVN upregulates cholin-
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(lesioned) MVN of sham, UVN-NaCl, UVN-BDNF, and UVN-K252a animals 30 d after UVN. Scale bar, 20 um. n = 4 animals per group. €, Histograms showing the effects of NaCl, BDNF, or K252a
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ergic neurons exclusively on the lesioned side and this effect is
reinforced by BDNF but blocked by K252a administration
(Fig. 4B, C).

Although the number of GAD67 * neurons was moderate and
symmetric in both sides of the MVN in the sham group (95.9
cells), UVN increased the number of GAD67 * exclusively on the
deafferented side (365.1 cells, p < 0.0001 vs both the sham group
and the intact side). In contrast, a significant and symmetrical
bilateral increase (p < 0.0001) was observed in the UVN-BDNF
group (intact side: 368.2 cells, deafferented side: 372.0 cells) and a
smaller but significant increase of GAD67 " cells was also de-
tected in the deafferented MVN of the UVN-K252a group com-
pared with the sham group (186.4 cells, p < 0.0001; Fig. 2A, D).

Overall, this finding suggests that, in vestibular pathological con-
ditions, BDNF modulates cholinergic and GABAergic neuro-
modulation in the VN complexes.

BDNF influences the cell differentiation pattern of newborn
cells in the deafferented VN

The new cells that survived more than several weeks after UVN
are supposed to differentiate and to acquire a neurochemical
phenotype ~20 d after birth. Cell differentiation was investigated
by double immunohistochemical labeling using BrdU combined
with one of the four cell-type-specific markers: GFAP, NeuN,
IBA1, or GAD67. To avoid the possibility that cells being BrdU */
IBA1 " reflects phagocytosis of dying proliferating cells by micro-
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BDNF influences the cell differentiation pattern of newborn cells in the deafferented VN. Confocal analysis of differentiated newly generated cells by double immunostainings processed

on consecutive serial sections in the deafferented MVN of cats infused with BDNF (A) or K252a (B) infusion from days 0—30 after UYN. The BrdU ™ nuclei are shown in red and the other markers of
differentiation (GFAP, IBA1, NeuN, and GAD67) are shown in green. Histograms illustrating the percentage are defined as the ratio between the mean number of immunopostive elements
colocalizing a cell-type marker (GFAP, IBA1, NeuN, or GAD 67) and BrdU relative to the total mean number of BrdU ™ nuclei counted in the areas of quantification of the UYN-NaCl (), UYN-BDNF (D),

or UVN-K252a (E) groups. SEMs are shown as vertical lines.

glia, we counted only IBA1™ cells that displayed the typical
ramified morphology and in which BrdU staining was in the
center of the cell. As already described (Tighilet et al., 2007), no
colocalization of BrdU */ChAT * was found in any group (data
not shown), suggesting that newly generated cells in the deaffer-
ented VN did not differentiate into cholinergic neurons.

The photomicrographs in Figure 5, A and B, show the colo-
calization of BrdU with GFAP, NeuN, IBA1, and GADG67 cells
observed in the deafferented MVN at day 30 after lesion in the
UVN-BDNF (Fig. 5A) and UVN-K252a (Fig. 5B) groups. As de-
scribed previously (Dutheil et al., 2013), in the UVN-NaCl group,
the newly generated cells differentiated approximately in similar
proportion in all the VN (Fig. 5C). Many of the BrdU * cells were

double-immunolabeled with NeuN in all experimental groups,
indicating that some new cells differentiated into new non-
GABAergic neurons and acquired a different neuronal pheno-
type (Fig. 5C-E). As for the UVN NaCl-group, when BDNF was
infused for 30 d, the newly generated cells differentiated approx-
imately in similar proportion in the MVN (12% GFAP, 14%
IBA1, and 11% NeuN, respectively), IVN (12%, 13%, and 12%,
respectively), and LVN (10%, 10%, and 8%, respectively) (Fig.
5A,D). In contrast, in the SVN, GFAP and IBALI labeling were
higher (12% and 14%, respectively) than NeuN labeling (5%).
Interestingly, a larger soma surface with an enhanced dendritic
branching of BrdU */GAD67 " cells was observed in the group
treated with BDNF (Fig. 5A) compared with those treated with
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K252a, where BrdU "/GAD67 * cells exhibited both smaller
soma and dendritic fields (Fig. 5B). As for the rate of cell prolif-
eration and survival, the number of BrdU ™ cells that differenti-
ated into astrocytes (BrdU */GFAP " cells), neurons (BrdU*/
NeuN ™ cells), microglial (BrdU */IBA1 " cells), and GABAergic
neurons (BrdU */GAD67 ") was four times greater in the UVN-
BDNF group and two times lower in the UVN-K252a group com-
pared with the UVN-NaCl group. Overall, these findings show
that, in all the experimental groups, the newly generated cells
differentiated in the four different lineages approximately in sim-
ilar proportion in all VN.

KCC2 and GABA 4R expression are modulated by the
vestibular lesion and by BDNF infusion
To determine how BDNF can accelerate vestibular functional recov-
ery, we studied some of the local microenvironment changes that
could influence network excitability in the first 3 d after UVN. We
focused our analysis on the giant neurons of the LVN because it
contains excitatory glutamatergic neuronsinvolved in vestibulo-
spinal pathways regulating posturo-locomotor functions. Two
specific markers of neuronal excitability were selected: the cation-
chloride cotransporters KCC2, which determines the hyperpolariz-
ing action of GABA, and GABA,Rs. In the UVN-NaCl group, we
observed a significant decrease of KCC2 expression in the deaffer-
ented (ipsilateral) side (—32% vs sham group, p < 0.05; Fig. 6 A, B),
whereas a significant increase was found in the intact (contralateral)
side (+28% vs sham group, p < 0.05), revealing a significant asym-
metry between the two sides of the VN complex (p < 0.001) in this
short time window. In addition, GABAR expression was signifi-
cantly increased in both the lesioned side (+88%, p < 0.0001) and
the intact side (+186%, p < 0.0001) of the UVN-NaCl animals.
BDNF infusion did not alter KCC2 expression 3 d after UVN
compared with the sham group, but did induce a bilateral down-
regulation of the GABA R that was significant in the intact side
compared with shams (—43%, p < 0.001; Fig. 6 A, B). A signifi-
cant decrease in GABA,R expression was also observed in the
intact side compared with the deafferented side of UVN-BDNF
animals (—23%, p < 0.005). Therefore, BDNF seems to be in-
volved in the regulation of GABA R expression in an early time
window after UVN (days 1-3). Interestingly, blocking the action
of endogenous BDNF by K252a infusion during these first 3 d
after UVN led to a significant bilateral increase of KCC2 and
GABA 4R expression in the deafferented side (+70%, p < 0.05 for
KCC2 and +100%, p < 0.001 for GABA,R) and the intact side
(+128%, p < 0.001 for KCC2 and +183%, p < 0.0001 for
GABA,R) compared with shams. Overall, this suggests that
blocking BDNF action after UVN increases both KCC2 and
GABA R immunolabeling.

Discussion

We report here for the first time that BDNF potentiates ves-
tibular neurogenesis and accelerates functional recovery after
vestibular injury. We also show that KCC2 and GABA Rs un-
dergo remarkable fluctuations within the VN, suggesting that
GABA acquires a transient depolarizing action in the VN dur-
ing the recovery period. This novel plasticity mechanism
could explain in part how the VN returns to electrophysiolog-
ical homeostasis, considered in the literature to be a key pa-
rameter of vestibular compensation.

Neurotrophins and their TrK receptors are widely distributed
in the main VN in mammals (Furukawa et al., 1998; Zhang et al.,
2003, 2007; Lacour and Tighilet, 2010). Here, we show that
BDNF treatment accelerates the restoration of oculomotor and

J. Neurosci., June 8, 2016 - 36(23):6199-6212 * 6207

posturo-locomotor functions. Consistent with these experi-
ments, a previous study of intra-VN administration of BDNF in
the guinea pig showed decreased spontaneous nystagmus after
vestibular damage (Maingay et al., 2000). Moreover, we found
that TrkB blockade delays the recovery of all impaired functions,
especially posturo-locomotor activity, as described in another
study conducted in guinea pigs showing that BDNF blockade
delayed postural compensation after unilateral labyrinthectomy
(Bolger et al., 1999). Therefore, vestibular compensation time
course is strongly accelerated by local action of BDNF in the VN.

We have shown that BDNF and its receptor TrkB are
strongly upregulated at 3 d after UVN in the deafferented VN,
which coincides with the highest production rate of newborn
cells (Lacour and Tighilet, 2010). Here, we show that contin-
uous BDNF administration into the fourth ventricle after
UVN significantly increases the production of newly gener-
ated cells, confirming the proneurogenic properties of this
growth factor in vivo. Similarly, a previous study showed that
BDNF infusion into the lateral ventricle of the adult rat leads
to new neurons in the striatum, septum, thalamus, and hypo-
thalamus (Pencea et al., 2001). Next, we used K252a and
showed that it strongly attenuated the proneurogenic action of
UVN. One month after the lesion, we observed that BDNF
increased cell survival compared with saline, whereas K252a-
treated animals had the lowest rate of cell survival and did not
achieve complete vestibular compensation. More specifically,
we observed that newborn GABAergic neurons exhibited both
smaller soma and dendritic fields in K252a-treated animals,
whereas these cells exhibited a larger soma surface with en-
hanced dendritic branching in the UVN-BDNF group. Axon
growth and dendrite development are key processes for the
establishment of a functional neuronal network and it was
reported recently that dendritic branching is BDNF dependent
(Ribeiro et al., 2015). Together, our results demonstrate that
BDNF action through TrkB receptors amplifies cell prolifera-
tion, survival, and development of functional dendritic
branching in the deafferented VN of the vestibular-lesioned
cats. We suggest that BDNF may contribute to the integration
of newborn neurons into functional networks, which would
favor the behavioral recovery.

Astrocyte-expressed factors are known to modulate neural
progenitor cell differentiation (Song et al., 2002; Gonzalez-
Perez and Quinones-Hinojosa, 2012) and are potent regula-
tors of synapse formation, tuning, and maintenance in both
developing and adult brain (Xu et al., 2009; Roberts et al.,
2010; Chung et al., 2013). Microglia are also involved in syn-
apse elimination and can release various neurotrophic and
anti-inflammatory factors favoring cell proliferation, survival,
and regeneration (Aguzzi et al., 2013; Cherry et al., 2014).
M2-like microglial activation has been shown to be protective
and to belong to the healthy neurogenic niche in vitro by
maintaining normal neuronal precursor cell activity (Bu-
tovsky et al., 2006; Walton et al., 2006). In addition, environ-
mental enrichment known to increase neurogenesis is
accompanied by an increase in anti-inflammatory-type mi-
croglia (Ziv et al., 2006). Likewise, in this study, we observed
an increase in both astrocytes and microglia concurrently with
the formation of new neurons at day 3 after UVN that were all
promoted by BDNF and reduced by K252a. We hypothesize
that astrocytes and microglia promote a benefic environment
for neurogenesis in our model and could also remodel the
synaptic environment by removing unwanted and dysfunc-
tional synapses uncorrelated to activity. Such a mechanism
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Figure6.  KCC2and GABA,R expression is modulated either by vestibular lesion and BDNF infusion. A, Confocal analysis of neurons immunostained with either the KCC2 or GABA,R located in the
contralateral (intact) and ipsilateral (lesioned) lateral VN of sham or UVN animals infused with NaCl, BDNF, or K252a from days 03 after UVN. Scale bar, 20 m. n = 4 animals per group. B,
Histograms showing the effects of NaCl, BDNF, or K252a continuous infusion on KCC2 or GABA,Rimmunostainingsin both intact and lesioned lateral VN 3 d after UVN. SEMs are shown as vertical lines.
Data from both sides of sham group were pooled for direct comparison with the subgroups of vestibular deafferented cats. *Significant differences between groups of animals or between lesioned
versus intact side in the same animal in the UVN-NaCl, UVN-BDNF, and UVN-K252a groups. *p << 0.005; **p << 0.001; ***p << 0.0001.
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Summary of the cascade of events underlying modulation of chloride homeostasis in the deafferented VN after UVN. In the adult, in physiological conditions or on the intact side of the

VN (right side), the presence of KCC2 on the cells leads to alow [Cl ~]; concentration. When GABA activates GABA,R, it then triggers a hyperpolarizing action through the influx of CI . After UVN (left
side), microglia and astrocytes are strongly upregulated in the deafferented VN. We hypothesize that microglia, as well as nerve terminals, release BDNF, which in turn activates TrkB receptors and
downregulates KCC2 expression. A lower concentration in KCC2 then decreases the chloride extrusion capacity of the cell; [C| "] then accumulates and causes a collapse in the transmembrane
chloride gradient. The anion flux being inverted, GABA,R activation leads, in such conditions, to an efflux of Cl —, thus increasing the excitability of the cells. Interestingly, at the same time point (3 d
after UVN), apeak of BrdU ™ cells is observed on the lesioned side of the VN and is correlated with a peak of BDNF expression as well. This suggests that BDNF, released by both neurons and glia, could

modulate cell proliferation, survival, and excitability.

would shape neuronal networks and help to keep the most
efficient connections to rebalance electrical activity between
the deafferented and intact VN.

We have shown that the expression of cholinergic neurons
increases after UVN, but newly generated neurons do not acquire
a cholinergic phenotype (Tighilet and Lacour, 1998; Tighilet et
al., 2007). This observation suggests that, after deafferentation,
ChAT protein expression is upregulated locally. In the present
study, we confirmed this result and also show that, 30 d after
lesion, BDNF infusion potentiated this effect. Likewise, it has
been described that BDNF enhances acetylcholine release (Auld
etal., 2001) and promotes a cholinergic phenotype in basal fore-
brain neurons (Nonner et al., 2000) through a TrkB-dependent
mechanism (Burgess and Aubert, 2006). Interestingly, ACh ago-
nists and acetylcholinesterase inhibitors have also been found to
increase the firing activity of VN neurons in vitro and in vivo
through muscarinic and nicotinic receptors (Yamamoto, 1967;
Ujihara et al., 1989; Phelan and Gallagher, 1992). Therefore, we
strongly suggest that BDNF-TrkB signaling causes the upregula-
tion of ChAT expression in the ipsilateral VN of the BDNF-UVN
group and may help rebalance the activity between the ipsilateral
and contralateral VN, which is considered to be a pivotal step in
behavioral recovery.

GABAergic transmission is essential for healthy brain physi-
ology during development and throughout adult life; any dis-
crepancy between excitation and inhibition can cause severe
pathological conditions such as epilepsy (Ben-Ari, 2014). Recent
evidence indicates that GABAergic signaling alters post-UVN-
related plasticity mechanisms occurring in the VN and can influ-
ence directly the time course of vestibular compensation (Dutheil
et al., 2013). Consistent with our previous studies (Tighilet and

Lacour, 2001; Dutheil et al., 2009, 2011, 2013), we confirm here
that UVN promotes proliferation of GABAergic neurons exclu-
sively on the ipsilateral side, which likely helps to rebalance the
ratio of excitation to inhibition between the two VN. Surpris-
ingly, we observed that BDNF infusion led to a symmetric in-
crease of GABAergic neurons in both the intact and lesioned VN,
whereas a TrkB receptor antagonist blocked this effect. TrkB and
its ligand, BDNF, could modulate GABAergic transmission in the
VN, as demonstrated in the rat hippocampus (Frerking et al.,
1998) and mouse cerebellum (Rico et al., 2002). These data imply
that BDNF and GABA both facilitate a return to electrophysio-
logical homeostasis between the VN on the deafferented and
intact sides, which is a key component of vestibular functional
recovery.

Restoration of vestibular neurons’ excitability on the deaffer-
ented side is known to be a key parameter for functional recovery
(Lacour and Tighilet, 2010). It is also well accepted that the ex-
citability level of the local environment significantly affects adult
neurogenesis (Chun et al., 2006; Segi-Nishida et al., 2008; Kokaia,
2011). We thus examined how the TrKB-BDNF signaling path-
way can accelerate vestibular compensation, focusing on two
neuronal markers that reflect the level of excitability: the cation-
chloride cotransporter KCC2 and the GABA ,R. Downregulation
of KCC2 has been shown to decrease the chloride extrusion ca-
pacity of the cell, which leads to intracellular accumulation of
[C17] ions and thus induces a depolarizing outward chloride
current from GABARs in response to GABA (Coull et al., 2003,
2005), as illustrated in Figure 7. Here, we show that whereas
GABA R expression is increased on both sides of the LVN 3 d
after UVN in lesioned cats infused with saline, KCC2 expression
is asymmetrical (i.e., decreased in the lesioned LVN and in-
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creased in the intact LVN). Consistent with this result, several
studies have shown a decreased KCC2 expression after a different
type of lesion in the adult mammal brain (Cramer et al., 2008;
Modol et al., 2014a, 2014b), thus triggering a reduction in KCC2
expression responsible for an increase in local neurons’ excitabil-
ity (i.e., a depolarizing response to GABA; Nabekura et al., 2002;
Toyoda et al., 2003; Kahle et al., 2008; Boulenguez et al., 2010;
Sadlaoud et al., 2010).

In addition, the microglia—-BDNF-TtkB signaling also ap-
pears to be able to shift neurons toward a more excitable state.
Under nerve injury conditions, microglia become activated
(McMahon et al., 2005) and express purinergic P2X4 recep-
tors (Tsuda et al., 2003). Stimulation of P2X4 receptors cause
microglia to secrete BDNF, which in turn acts on TrkB recep-
tors’ neurons that downregulate KCC2 (Rivera et al., 2002,
2004; Ferrini and De Koninck, 2013), thus decreasing the
chloride extrusion capacity of the cell. A similar mechanism
could be envisioned in our UVN model, in which microglia
are significantly upregulated in the deafferented VN. BDNF
would act on TrkB receptors and cause an excitatory action of
GABA through the observed downregulation of KCC2 expres-
sion. Interestingly, it has been shown that blockade of micro-
glia—BDNF-TrkB signaling at the spinal level caused a return
of Egapa to more negative values in spinal cord slices from rats
with established allodynia (Coull et al., 2005). Consistent with
this, our results showed a downregulation of microglia in the
VN of the UVN cats in which BDNF action was blocked, com-
bined with an upregulation of both KCC2 and GABA,R
expression. Behaviorally, this group showed a very slow and
incomplete functional recovery. We therefore suggest that
blocking BDNF action and its cellular consequences on KCC2
and GABA,R expression causes a strong inhibitory action of
GABA in the vestibular environment of these animals, which is
responsible for their slower and incomplete compensation. In
contrast, because we found that, 3 d after UVN, BDNF infu-
sion downregulated GABA,R and did not induce KCC2
expression changes in the LVN, we believe that bilateral reduc-
tion of GABA ,R immunoreactivity is likely to reflect a reduc-
tion of local inhibition that seems beneficial for vestibular
compensation. Collectively, the data described here reveal
that KCC2 modulation appears to be a novel and impo-
rtant mechanism contributing to vestibular compensation
through the restoration of spontaneous activity in the deaffer-
ented VN. Our results also highlight a short therapeutic criti-
cal time window between 1 and 3 d after UVN when some
markers of excitability are locally altered and during which the
effects of pharmacological treatments are likely to be more
efficient.

In conclusion, this study provides new information about
the remarkable plastic changes in the structural organization
and functional properties of neuronal circuits during vestibu-
lar compensation. It highlights the importance of both BDNF
and KCC2 in the normalization of local excitability through
GABA . Rs, which could represent a novel treatment strategy.
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