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Extension of Helix 12 in Munc18-1 Induces Vesicle Priming
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Munc18-1 is essential for vesicle fusion and participates in the docking of large dense-core vesicles to the plasma membrane. Recent
structural data suggest that conformational changes in the 12th helix of the Munc18-1 domain 3a within the Munc18-1:syntaxin complex
result in an additional interaction with synaptobrevin-2/VAMP2 (vesicle-associated membrane protein 2), leading to SNARE complex
formation. To test this hypothesis in living cells, we examined secretion from Munc18-1-null mouse adrenal chromaffin cells expressing
Munc18-1 mutants designed to either perturb the extension of helix 12 (�324 –339), block its interaction with synaptobrevin-2 (L348R),
or extend the helix to promote coil– coil interactions with other proteins (P335A). The mutants rescued vesicle docking and syntaxin-1
targeting to the plasma membrane, with the exception of P335A that only supported partial syntaxin-1 targeting. Disruptive mutations
(L348R or �324 –339) lowered the secretory amplitude by decreasing vesicle priming, whereas P335A markedly increased priming and
secretory amplitude. The mutants displayed unchanged kinetics and Ca 2� dependence of fusion, indicating that the mutations specifi-
cally affect the vesicle priming step. Mutation of a nearby tyrosine (Y337A), which interacts with closed syntaxin-1, mildly increased
secretory amplitude. This correlated with results from an in vitro fusion assay probing the functions of Munc18-1, indicating an easier
transition to the extended state in the mutant. Our findings support the notion that a conformational transition within the Munc18-1
domain 3a helix 12 leads to opening of a closed Munc18-1:syntaxin complex, followed by productive SNARE complex assembly and
vesicle priming.
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Introduction
The soluble N-ethylmaleimide-sensitive factor attachment pro-
tein (SNAP) receptor (SNARE) complex, which is pivotal to the

secretion of neurotransmitters, consists of the two target SNAREs
syntaxin-1 and SNAP-25, and the vesicular SNARE syna-
ptobrevin-2/VAMP2 (syb-2). Munc18-1, another protein ob-
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Significance Statement

The essential postdocking role of Munc18-1 in vesicular exocytosis has remained elusive, but recent data led to the hypothesis that
the extension of helix 12 in Munc18 within domain 3a leads to synaptobrevin-2/VAMP2 interaction and SNARE complex for-
mation. Using both lack-of-function and gain-of-function mutants, we here report that the conformation of helix 12 predicts
vesicle priming and secretory amplitude in living chromaffin cells. The effects of mutants on secretion could not be explained by
differences in syntaxin-1 chaperoning/localization or vesicle docking, and the fusion kinetics and calcium dependence were
unchanged, indicating that the effect of helix 12 extension is specific for the vesicle-priming step. We conclude that a conforma-
tional change within helix 12 is responsible for the essential postdocking role of Munc18-1 in neurosecretion.
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ligatory for neurotransmitter release (Ver-
hage et al., 2000; Voets et al., 2001), interacts
with SNAREs in at least two distinct confor-
mations. In the first, it binds via its central
hydrophobic cavity to the closed conforma-
tion of syntaxin-1, where the Habc domain
of syntaxin-1 occludes the SNARE motif
(Dulubova et al., 1999; Misura et al., 2000;
Burkhardt et al., 2008). In the second con-
formation, Munc18-1 binds to the assem-
bled— or assembling—SNARE complex
(Dulubova et al., 2007; Shen et al., 2007; Ma
et al., 2013; Shen et al., 2015). Both binding
modes include a separate interaction of the
N-terminal peptide of syntaxin-1 with
Munc18-1 (Shen et al., 2007; Burkhardt et
al., 2008), although the exact role of
this interaction is still being discussed
(Burkhardt et al., 2008; Deák et al., 2009;
Shen et al., 2010; Hu et al., 2011; Meijer et al.,
2012; Colbert et al., 2013; Dawidowski and Cafiso, 2016).

In neuroendocrine cells and neurons, Munc18-1 plays multi-
ple roles. Munc18-1 acts as a chaperone for syntaxin-1 (Medine et
al., 2007), and vice versa (Arancillo et al., 2013), during traffick-
ing through the ER and Golgi apparatus. Munc18-1 is also nec-
essary for vesicle docking to the plasma membrane (PM; Voets et
al., 2001). The docking phenotype can be overcome by stabilizing
SNAP-25:syntaxin dimers, to which synaptotagmin-1 (Syt1)
docks vesicles (de Wit et al., 2009). However, while the docking
phenotype is rescued, secretion remains abrogated (de Wit et al.,
2009), pointing to yet another essential function of Munc18-1 in
vesicle priming or fusion (Gulyás-Kovács et al., 2007).

Data from several laboratories have converged on the conclu-
sion that the essential stimulating function of Munc18-1 in secre-
tion involves domain 3a (Boyd et al., 2008; Hu et al., 2011; Han et
al., 2013, 2014; Parisotto et al., 2014). This is further supported by
the effect of PKC phosphorylation of residues within the domain
3a, which promotes vesicle priming (Nili et al., 2006). A specific
hypothesis for the role of the domain 3a has been suggested (Hu
et al., 2011; Parisotto et al., 2014), as follows: the N-terminal
region (amino acids 324 –339) of helix 12 of Munc18-1 (within
the domain 3a) can exist in the following two conformations (Fig.
1): first, a folded-back “closed” helical hairpin (Fig. 1A,B), where
P335 acts as a hinge, which was identified in the Munc18-1:syn-
taxin crystal (Misura et al., 2000; Burkhardt et al., 2008); and,
second, an extended “open” helical hairpin, where the amino acid
stretch from 324 to 339 extends helix 12 (Fig. 1C). The latter
conformation was identified in a crystal of Munc18-1 bound only
to the N-terminal peptide of syntaxin-4 (Hu et al., 2011). The
extended open helix 12 would sterically clash with closed
syntaxin-1. Thus, the conformational change in domain 3a from
the closed to the open helical hairpin might coincide with the
transition from the closed to the open syntaxin-1 and promote
SNARE complex formation. Moreover, helix 12 contains residues
that interact with part of the syb-2 SNARE domain (Xu et al.,
2010; Baker et al., 2015), raising the possibility that the extended
helix forms a template to structure syb-2. This was recently tested
in vitro using a vesicle fusion assay (Parisotto et al., 2014). In
support of the model, a mutation (L348R) found to eliminate
syb-2 binding abolished the fusion-promoting action of
Munc18-1, whereas mutation of the “hinge” proline (P335A)

increased the helicity of helix 12 and displayed a gain-of-function
phenotype in vitro (Parisotto et al., 2014).

Here, we tested this hypothesis in live adrenal chromaffin
cells. We found that the deletion of most of the helical hairpin
(�324 –339) or the disruption of syb-2 binding (L348R) impairs
neurosecretion. Conversely, the P335A mutation promotes ve-
sicular fusion by enhancing vesicle priming. Our results indicate
that a conformational change in helix 12 of Munc18-1 is crucial
for vesicular priming.

Materials and Methods
DNA constructs and protein purification for in vitro studies. The following
constructs were used: SNAP-25, the DNA construct (pFP247) encoding
His6-tagged SNAP-25 and the protein purification were described previ-
ously (Schollmeier et al., 2011); syntaxin-1A, a full-length His6-tagged
rat syntaxin-1 (encoded by pYS2) was expressed and purified as de-
scribed previously (Schollmeier et al., 2011) with the following modifi-
cations: (1) recombinant protein expression was induced at 25°C for 4 h
instead of 16°C overnight; (2) His6-tagged syntaxin-1 was incubated
overnight with 3 ml of Ni-NTA Agarose beads (Qiagen) with a continu-
ous flowrate of 0.5 ml/min; (3) 1.5% (w/v) sodium cholate hydrate
(Sigma-Aldrich) was used instead of 1% (w/v) Triton X-100 in the wash-
ing steps; and (4) the His6-tagged protein was eluted with an imidazole
gradient in the presence of 400 mM KCl; Syb-2/VAMP2, the His6-tagged
VAMP2 (encoded by pTW2) was expressed as previously described (We-
ber et al., 1998; Malsam et al., 2012); synaptotagmin, Rat Syt1 lacking the
luminal domain (encoded by pLM6) was expressed and purified as de-
scribed previously (Mahal et al., 2002; Malsam et al., 2012); and
Munc18-1, DNA constructs encoding GST-Munc18-1 wt and P335A
(pDP2) fusion proteins were described previously (Parisotto et al., 2014).
The Munc18-1 Y337A mutant was generated using QuikChange DNA
mutagenesis (Qiagen) with the following primers: (1) forward 5�-CT
GAAGAAAATGCCCCAGGCCCAGAAGGAGCTCAGCAA-3�; and (2)
reverse 5�-TTGCTGAGCTCCTTCTGGGCCTGGGGCATTTTCTTCAG-
3�. The resulting DNA construct (pTB5) was sequenced at GATC Biotech
[sequencing primer forward (5�-CTGCTGCCTATTGAAAATG-3�) and re-
verse (5�-CATTTTCAATAGGCAGCAG-3�)] to ensure sequence integrity.
Munc18-1 proteins were purified as described previously (Parisotto et al.,
2014) with the following modifications: (1) 200 mM KCl instead of 135 mM

KCl was used during all purification steps; and (2) the buffers did not contain
10 mM methionine.

Preparation of proteoliposomes. Proteoliposomes were prepared as de-
scribed previously (Malsam et al., 2012) with the following modification:
the fluorophores rhodamine-DPPE (N-(lissamine rhodamine B
sulfonyl)1,2-dipalmitoyl phosphatidylethanolamine) and NBD-DPPE
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Figure 1. Extension of helix 12 (opening of the helical hairpin) in Munc18-1. A, Crystal structure of the Munc18-1 (medium
purple) bound to closed syntaxin 1 (cyan; Burkhardt et al., 2008). B, Zoom image of A showing the 11th (to the left) and 12th helix
(middle right), the helical hairpin, and, with color codes, the residues mutated in this study, as follows: 324 –339 in red; P335 in
green; Y337 in blue; and L348 in orange. Y337 forms an H-bond (green) to the side chain of N135 in syntaxin-1. C, Crystal structure
of Munc18-1 bound to the syntaxin-4 N-peptide (Martin et al., 2013) showing the extended state of helix 12. SNAREs are not
included in that structure.
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(N-(7-nitro-2,1,3-benzoxadiaziole-4-yl)-1,2-dipalmitoyl phosphati-
dylethanolamine) were replaced by 0.5 mol% Atto488-DPPE (ATTO-
TEC) and 0.5 mol% Atto550-DPPE (ATTO-TEC).

Preparation of syntaxin-giant unilamellar vesicles. Giant unilamellar
vesicles (GUVs) containing syntaxin-1 were prepared as described pre-
viously (Malsam et al., 2012) with the following three modifications: (1)
Pt-coated glass slides (GeSIM mbH) were used instead of indium tin
oxide-coated glass slides; (2) a buffer containing 0.5 mM 4-(2-
hydroxyethyl)-1-piperazinepropanesulfonic acid, pH 7.4, and 0.5% glyc-
erol was used for the drying of the liposomes; and (3) for the swelling
reaction 2.5 V were applied for 1 h.

In vitro fusion assay. The small unilamellar vesicle (SUV)/GUV fusion
assay was performed and analyzed as described previously (Malsam et al.,
2012; Parisotto et al., 2012, 2014). Briefly, syntaxin-1 GUVs (14 nmol
lipid with a syntaxin 1/lipid ratio of 1:700) were preincubated in the
absence or presence of Munc18-1 wild type (WT), Munc18-1 Y337A, or
Munc18-1 P335A for 30 min at room temperature (RT). Subsequently,
SNAP-25 (1.7 �M) and syb-2/synaptotagmin SUVs (2.5 nmol lipid with a
syb-2/lipid ratio of 1:330 and a synaptotagmin-1/lipid ratio of 1:1180)
were added on ice in a total volume of 100 �l, and docking was performed
by with a 10 min preincubation period on ice. Atto 488 fluorescence was
monitored at 37°C in a Synergy 4 plate reader (BioTek; filter wheel set-
tings: excitation, 485/20 nm; emission, 525/20 nm) at intervals of 10 s for
a total of 30 min. The fusion signal was normalized to the signal after the
addition of 20 �l 5% (w/v) SDS and 5% (w/v) n-dodecyl-�-D-maltoside
and by subtraction of a negative control experiment performed in the
presence of the syb-2 cytoplasmic domain.

Mouse line, cell culture, constructs and, virus. Munc18-1-null mice of
either sex (Verhage et al., 2000) were obtained by crossing Munc18-1
heterozygotes and were recovered by cesarean section at embryonic day
18. Chromaffin cells were isolated from adrenal glands and were cultured
as previously described (Sørensen et al., 2003b). We introduced WT or
mutated Munc18-1 with Semliki Forest Virus (SFV). WT Munc18-1 and
mutants were expressed from a bicistronic message containing an inter-
nal ribosomal entry site and EGFP as expression control. Mutations were
introduced by overlapping primers, and all constructs were sequenced
before use. The cells were exposed to the activated virus after 48 –96 h of
incubation and were allowed to express the protein for 6 – 8 h before
measurements were made.

Electrophysiological recordings. Transfected cells were placed on the
stage of an Axiovert 10 microscope (Carl Zeiss), and expressing cells were
identified by the green fluorescent response to 475 nm illumination by a
monochromator (Polychrome IV, Till Photonics). Amperometry mea-
surements were performed with 5-�m-diameter polyethylene-insulated
carbon fibers (Thornel P-650/42, Cytec; Bruns, 2004). Fibers were
pressed gently against the cell while a constant voltage of 700 mV was
applied. Currents were amplified by an EPC-7 amplifier (HEKA Elek-
tronik), filtered at 2.9 kHz, and sampled at 11.5 kHz through an auxiliary
input channel of the EPC-9 patch-clamp amplifier. Cell membrane ca-
pacitance was measured simultaneously by the whole-cell patch-clamp
technique described by Lindau and Neher (1988). Pulse Software (ver-
sion 8.53) and an EPC-9 amplifier (HEKA Elektronik) were used in
“sine�dc” mode to record and inject currents. Currents were filtered at 3
kHz and sampled at 11.5 kHz. Secretion was stimulated by UV photolysis
of the Ca 2� cage nitrophenyl-EGTA by using UV light from a UV flash
lamp (JML-C2, Rapp OptoElectronics) or during the “Ramp” protocol
the monochromator was used for slow gradual Ca 2� uncaging; both
were controlled by the Pulse Software and triggered by the EPC-9 ampli-
fier. Ca 2� uncaging and measurements were conducted using a Fluar
40� objective (Zeiss). Fura dyes were excited alternatingly at 350 and 380
nm. Emitted light was detected by a photo diode (Till Photonics) in an
area around the cell defined by a View Finder (Till Photonics). The
output of the photo diode was connected to an auxiliary input channel on
the EPC-9 amplifier. The signal was filtered at 3 kHz and sampled at 11.5
kHz. The Ca 2� concentration was measured with a mixture of high- and
low-affinity Fura dyes (fura-4 and furaptra), as described by Voets
(2000). The free Ca 2� concentrations of calibration solutions were cal-
culated using a custom-written macro for IGOR Pro macro for IGOR Pro
(WavemMetrics), assuming a Kd of 0.222 �M for BAPTA and of 80 �M for

DPTA (diethylene triamine penta-acetic acid), while taking into account
the additional buffering of Ca 2� by the dyes nitrophenyl-EGTA and
ATP. The fluorescence signal was calibrated by performing a patch clamp
on chromaffin cells with seven or eight different calibration solutions.
For measurements, the patch pipette solution contained the following (in
mM): 100 Cs-glutamate, 8 NaCl, 4 CaCl2, 32 HEPES, 2 Mg-ATP, 0.3
NaGTP, 5 nitrophenyl-EGTA, 1 ascorbic acid, 0.4 fura-4f, and 0.4 furap-
tra (all from Invitrogen), adjusted to pH 7.2 with CsOH.

For kinetic analysis of capacitance traces, a triple exponential function
was fitted to individual traces using a custom-written macro in IGOR Pro
(WaveMetrics), as explained previously (Sørensen et al., 2003a;
Mohrmann et al., 2013). The amplitude associated with the fastest time
constant (� � 80 ms) is denoted the “fast burst,” whereas the amplitude
associated with the intermediate time constant (� � 80 ms) is denoted the
“slow burst.” The third (i.e., the slowest) exponential is required to cor-
rect for the sustained component. Since the sustained component in
some cells is more or less linear (i.e., the time constant is as long as or
longer than the measurement time), the time constant and amplitude of
this exponential are not informative and were not used directly. Instead,
the linear rate of the secretion at later times (�1 s) was calculated; this is
the “sustained component.” In some cells, a single exponential compo-
nent was sufficient to fit the burst; this component was then assigned as a
fast or a slow burst based on the fitted time constant, and the amplitude
of the other component was set to zero.

Immunocytochemistry and confocal imaging. Chromaffin cells from
WT or Munc18-1-null mice expressing the different constructs for 6 h were
fixed with 4% paraformaldehyde at day 3 in vitro (DIV3). The cells were
permeabilized by 5 min incubation in PBS containing 0.5% Triton X-100.
To block nonspecific binding, the cells were incubated for 30 min in PBS
containing 0.1% Triton X-100 and 2% normal goat serum. All antibodies
were diluted in this solution. The cells were incubated in the primary anti-
body solution [anti-Munc18 (Verhage laboratory) or anti-syntaxin (I379, a
gift from the Südhof laboratory)] for 1 h at RT. After washing three times
with PBS for 10 min, the cells were incubated in the secondary antibody
solution (goat anti-rabbit Alexa Fluor 546, Invitrogen) for 1 h at RT. The cells
were washed three times in PBS and mounted on microscopy slides with
Mowiol in preparation for the confocal microscopy. Chromaffin cells were
imaged with a 63� plan-neofluor lens (numerical aperture, 1.4; Carl Zeiss)
on a Zeiss 510 Meta Confocal Microscope. An additional zoom factor of 5
was applied, and the images were acquired with a frame size of 1024 � 1024
pixels. A single image of the equatorial plane of the chromaffin cells was
acquired. Fluorescence levels were quantified in ImageJ (National Institutes
of Health), syntaxin redistribution was quantified in ImageJ using the Plas-
MACC plugin (Kurps et al., 2014).

Electron microscopy. Chromaffin cells were fixed on DIV3 using alde-
hyde fixation protocol with 2.5% glutaraldehyde in 0.1 M cacodylate
buffer, pH 7.4, for 1 h and subsequently washed with 0.1 M cacodylate
buffer, pH 7.4. Due to cell detachment in high-pressure freezing/freeze
substitution (HPF/FS) protocols, HPF/FS could not be applied. Since a
side-by-side comparison between aldehyde fixation and HPF/FS on large
dense-core vesicle docking revealed no differences in conclusions (de Wit
et al., 2009), we relied on chemical fixation in this study. Postfixation was
performed for 1.5 h using a 1% osmium tetroxide and 1% ruthenium
tetroxide mixture in 0.1 M cacodylate buffer. Dehydration using a series
of ethanol concentrations (30 –100%) was performed before embedding
in Epon and polymerized at least for 15 h at 65°C. The coverslip was
removed from Epon resin by alternatively dipping into liquid nitrogen
and hot water. On flat Epon surface region with a high-cell density
monolayer was selected, cut, and mounted on prepolymerized Epon
blocks for thin sectioning. Ultrathin sections (�90 nm) were collected on
single-slot, Formvar-coated copper grids, and stained with uranyl acetate
and lead citrate. A JEOL 1010 transmission electron microscope was used
for high-resolution imaging. A vesicle membrane attached to the plasma
membrane was considered to be a docked vesicle. An infected cell was
identified based on the presence of SFV (droplet shape with dense core)
on the plasma membrane. Distance measurements were performed using
10,000� or 30,000� magnification images on iTEM software (EMSIS).

Statistics. For the analysis of electron microscopy data, a multilevel
comparison was used (Aarts et al., 2014). In other experiments, when
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more than two groups were compared we used one-way ANOVA, fol-
lowed by appropriate post hoc tests corrected for multiple comparisons to
locate a significant difference between any two groups. When comparing
two groups, we used a two-tailed t test. The level of significance is sym-
bolized with an asterisk (*p � 0.05, **p � 0.01, and ***p � 0.001).

Results
To investigate the role of helix 12 of Munc18-1 in live cells, we
performed experiments in mouse embryonic adrenal chromaffin
cells from the Munc18-1-null rescued by overexpression (OE) of
different Munc18-1 mutants or the WT protein using the Semliki
Forest Virus system (see Materials and Methods). Previous data
showed that Munc18-1 WT OE readily (within 6 h) rescues se-
cretion in Munc18-1-null cells (Toonen et al., 2006). The mu-
tated amino acids are shown in Figure 1, B and C: one mutation
(�324 –339) was a deletion of 16 aa, which form most of the
extended part of the �-helix 12. Another mutation was L348R,
which has been shown to compromise binding between
Munc18-1 and syb-2 (Parisotto et al., 2014). The P335A muta-
tion targeted the hinge proline (P335), which does not consider-
ably change syb-2 binding but leads to increased �-helicity of
the region, thereby favoring an extended conformation (Pari-
sotto et al., 2014). Finally, we tested an alanine mutation of Y337
(Y337A). In the closed helical hairpin conformation of
Munc18-1, Y337 forms a hydrogen bond with N135 in closed
syntaxin-1 and therefore might stabilize this conformation. Im-
munostaining for Munc18-1 after expression in Munc18-1-null
chromaffin cells showed that all constructs were highly expressed,
resulting in mainly diffuse cytoplasmic staining (Fig. 2A). Quan-
tification revealed a similar expression of Munc18-1 WT protein,
as well as the �324 –339, L348R, and P335A mutants, whereas the
Y337A mutant showed weaker expression, although still clearly
above endogenous levels (Fig. 2B).

Most mutations in the helix 12 rescue syntaxin-1 localization
and vesicle docking
It was suggested that the extended helix 12 in Munc18-1 is incom-
patible with binding to closed syntaxin-1 (Hu et al., 2011). In-
deed, the P335A mutation was found to slightly destabilize the
binding between Munc18-1 and monomeric syntaxin-1 (Han et
al., 2014), but we did not observe this in a previous study (Pari-
sotto et al., 2014). Impairment of the stability of the Munc18-1:
syntaxin complex could potentially compromise the chaperone
function of Munc18-1, which regulates syntaxin-1 transport to
the plasma membrane in normal amounts. Because the local
syntaxin-1 concentration is critical for neurotransmitter release
(Arancillo et al., 2013), we investigated this point by immuno-
staining Munc18-1-null chromaffin cells expressing the different
Munc18-1 mutants for syntaxin-1 (Fig. 3).

Expression of WT Munc18-1 in-null cells increased the tar-
geting of syntaxin-1 to the PM, and thus the PM/cytosol ratio
(Fig. 3A,B), which is in line with previous data (Gulyás-Kovács et
al., 2007; Gerber et al., 2008). Increased targeting was also found
for the �324 –339, the L348R and— despite the lower expression
level of this mutant (Fig. 2)—the Y337A (Fig. 3B). However, the
P335A resulted in an intermediate syntaxin-1 phenotype, which
was significantly different from neither the Munc18-1-null (ex-
pressing EGFP as a control) nor the Munc18-1 WT OE condition.
Thus, the P335A appears to be partly compromised in chaperon-
ing monomeric syntaxin-1 to the membrane, probably indicating
a weaker binding.

Elimination of either Munc18-1 or syntaxin-1 decreases the
pool of vesicles that is directly attached to the plasma membrane
in aldehyde-fixed chromaffin cells, the so-called docked vesicles
(Voets et al., 2001; de Wit et al., 2006). The D34N/M38V double
mutation in Munc18-1 rescues both syntaxin-1 and Munc18-1
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difference (ANOVA and post hoc t test with Bonferroni correction) to all conditions.
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levels, whereas docking is still suppressed (Gulyás-Kovács et al.,
2007); on the other hand, docking was rescued in Munc18-1-null
cells by manipulations, which create ectopic syntaxin-1:SNAP-25
dimers (de Wit et al., 2009). Thus, the relationship between
syntaxin-1 targeting and vesicle docking is not straightforward. We
next investigated whether the mutations affected vesicle docking.

Morphometric analysis on the ultrastructural level using electron
micrographs showed that Munc18-1-null cells were impaired in
docking, and this was rescued by the expression of Munc18-1 WT
(Fig. 4A,B). The �324–339, the L348R, and the P335A mutants all
rescued docking to levels indistinguishable from the WT protein
(Fig. 4A,B). All conditions had a similar number of total vesicles per
section (Fig. 4B), showing that docking to the plasma membrane is
selectively impaired in the absence of Munc18-1, not vesicle abun-
dance (Voets et al., 2001; de Wit et al., 2009).

Overall, these findings indicate that the mutations studied here
do not lead to dramatic differences in syntaxin-1 targeting or vesicle
docking—and that the reduced syntaxin-1 targeting by the P335A
mutant does not translate into a detectable defect in vesicle docking.

Mutations in helix 12 impair or enhance neurosecretion
Next, we evaluated secretion from Munc18-1-null chromaffin
cells overexpressing each of the mutations. Overexpression of
WT Munc18-1 was used as a control. Exocytosis was triggered by
uncaging Ca 2� from nitrophenyl-EGTA, while [Ca 2�]i was mea-
sured using a mixture of two fura dyes (see Materials and Meth-
ods). We monitored exocytosis by parallel measurements of
membrane capacitance and amperometry, which reports on re-
leased catecholamines. Uncaging Ca 2� in Munc18-1-null cells
overexpressing WT Munc18-1 resulted in robust secretion (Fig.
5A, black trace). In contrast, Munc18-1-null cells have hardly any
secretion at all (see Fig. 8A, gray trace; Voets et al., 2001; Toonen

et al., 2006; Gulyás-Kovács et al., 2007; de Wit et al., 2009). Ex-
pression of the L438R or the �324 –339 mutations both resulted
in markedly reduced secretion (Fig. 5A). In contrast, the P335A
mutation augmented secretion above WT levels (Fig. 5A). The
secretion within the first half second of the Ca 2� increase is often
referred to as the “exocytotic burst,” and approximately repre-
sents the fusion of those vesicles that were primed before the
uncaging event. This phase was statistically different between all
three mutations and the WT (mean 	 SEM: WT, 140 	 15 fF;
n 
 25; �324 –339, 49 	 6 fF; n 
 30; L348R, 74 	 8 fF; n 
 23;
P335A, 259 	 25 fF; n 
 28; ANOVA, p � 0.001; all groups but
�324 –339 and L348R were significantly different from each oth-
er; Fig. 5B, results of Tukey’s HSD test). Total release was affected
similarly (WT, 336 	 34 fF; n 
 25; �324 –339, 98 	 10 fF; n 

30; L348R, 154 	 17 fF; n 
 23; P335A, 547 	 52 fF; n 
 27;
ANOVA, p � 0.001; Fig. 5B, results of Tukey’s HSD test). Finally,
the sustained release (release between 0.5 and 5.5 s after uncag-
ing) was affected, once again P335A increased release and 324 –
339� and L348R decreased release (WT, 147 	 20 fF; n 
 25;
�324 –339, 37 	 4 fF; n 
 30; L348R, 57 	 11 fF; n 
 23; P335A,
219 	 22 fF; n 
 27; ANOVA, p � 0.001; Fig. 5B, results of
Tukey’s HSD test). Sustained release is assumed to originate from
ongoing vesicle priming, followed immediately by fusion as long
as the [Ca 2�]i remains high. The preflash [Ca 2�]i was not signif-
icantly different between the groups (WT, 647 	 37 nM, n 
 25;
�324 –339, 769 	 45 nM, n 
 30; L348R, 879 	 90 nM, n 
 23;
P335A, 849 	 127 nM, n 
 28; ANOVA, p 
 0.23). This is im-
portant, because vesicle priming—and therefore the size of the
secretory burst—is Ca 2� dependent (Voets, 2000).

We compared the release kinetics of the burst phase between
groups by fitting a sum of two exponentials (plus a slower expo-
nential to correct for the sustained component) to each trace, as
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documented previously (Sørensen et al., 2003a; Mohrmann et al.,
2013). This revealed that the amplitudes of both the fast and the
slow burst components were significantly reduced in the �324 –
339 mutant (Fig. 5C,D), and were significantly increased by the
P335A, whereas the L348R did not reach statistical significance.
The release kinetics (time constants) of the fast and slow bursts
were not significantly different between groups (�fast: M18-WT,
15.7 	 2.2 ms, n 
 21; M18-�324 –339, 19.7 	 4.2 ms, n 
 20;
M18-L348R mean 
 13.5 	 2.2 ms, n 
 21; M18 –1-P335A,
16.2 	 1.6 ms, n 
 23; ANOVA, p 
 0.44; �slow: M18-WT, 195 	
32 ms, n 
 16; M18-�324 –339, 330 	 71 ms, n 
 22; M18-
L348R, 235 	 43 ms, n 
 19; M18 –1-P335A, 175 	 22 ms, n 

20; ANOVA, p 
 0.11; Fig. 5E,F). The different n values for fast
and slow bursts appear because not all cells have both a fast and a
slow burst. The fast-burst phase originates from release from the
readily releasable pool (RRP) of vesicles, whereas the slow-burst
phase originates from a vesicle pool just upstream of the RRP
(Walter et al., 2013), often referred to as the slowly releasable pool
(SRP). The near-proportional change in sustained release and the
size of the burst, including SRP and RRP, indicate that the muta-
tions affect a recruitment/priming step leading into the SRP from
an upstream pool.

To investigate whether the Ca 2� sensitivity of release is
changed by the mutations, we performed Ca 2� ramp experi-
ments, where the [Ca 2�]i was increased slowly by photo releasing
Ca 2� from the cage using constant illumination oscillating be-
tween 350 and 380 nm, allowing simultaneous measurement of
[Ca 2�]i using the fura dyes (Sørensen et al., 2002). The secretion
threshold was identified as the maximum of the second derivative
of the capacitance trace. This threshold is increased by mutating
synaptotagmin-1 to reduce the Ca 2� affinity (Sørensen et al.,

2003a) or by mutating the synaptotagmin-1 binding sites of
SNAP-25 (Mohrmann et al., 2013). Testing the �324 –339 and
the P335A mutations, we did not find differences in the release
threshold (Fig. 6A,B), which was approximately the same as in
Munc18-1-null cells or after the overexpression of Munc18-1 WT
(null, 1.30 	 0.42 �M, n 
 20; WT, 1.41 	 0.26 �M, n 
 21;
P335A, 1.17 	 0.13 �M, n 
 27; �324 –339, 1.48 	 0.25 �M, n 

24; ANOVA, p 
 0.85). Thus, the helix 12 of Munc18-1 does not
play a dominant role in setting the Ca 2� dependence of release,
but rather acts to prime vesicles for release.

Munc18-1 Y337A mutation enhances neurosecretion
In the crystal structure of Munc18-1 bound to closed syntaxin-1
(Misura et al., 2000; Burkhardt et al., 2008), Y337 in the domain
3a of Munc18-1 is close to and expected to form a hydrogen bond
with N135 of syntaxin-1 (Fig. 1B,C). A Munc18-1 Y337L mutant
has previously been reported to modulate the release of single
vesicles in bovine chromaffin cells (Boyd et al., 2008). We here
created a Munc18-1 Y337A mutant.

To determine the functional effect of the Munc18-1 Y337A
point mutation in a reconstituted membrane fusion assay, we
compared this mutant with WT Munc18-1 and the gain-of-
function mutant Munc18-1 P335A in an in vitro assay (Fig. 7A).
All three constructs showed similar thermal unfolding tempera-
tures, demonstrating correct protein folding (Fig. 7B). GUVs
containing reconstituted syntaxin-1 and PI(4,5)P2 were preincu-
bated with the Munc18-1 constructs, soluble SNAP-25, and
SUVs containing Syt1 and syb-2, and lipid mixing was measured
by a fluorescence dequenching assay (Malsam et al., 2012). In this
assay, vesicle docking is mediated by Syt1–PI(4,5)P2/SNARE in-
teractions, and SNARE complex assembly becomes a rate-
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limiting step (de Wit et al., 2009; Parisotto et al., 2012; Kedar et
al., 2015). Munc18-1 mutants that further stabilize a closed con-
formation of syntaxin-1 would result in fusion inhibition. In con-
trast, Munc18-1 mutants that favor an open conformation of
syntaxin-1 and SNARE complex assembly would increase lipid
mixing. In the case of Munc18-1 WT and under the conditions
chosen in this assay, the inhibitory and stimulatory functions
cancel each other, and fusion kinetics are similar with and with-
out Munc18-1 (Fig. 7C). As expected, Munc18-1 P335A, which
contains an open helical hairpin conformation of domain 3a,
profoundly stimulated SNARE complex assembly and lipid mix-
ing (Fig. 7C). Munc18-1 Y337A consistently showed a weak stim-
ulatory effect, which, however, was less pronounced than that of
the P335A. Similar results were obtained at higher Munc18 con-
centrations (data not shown).

When overexpressed in Munc18-1-null chromaffin cells, we
found a significant increase in total release and sustained release
for the Y337A mutant compared with Munc18-1 WT overexpres-
sion, while the burst size displayed a trend toward larger ampli-
tude (Fig. 8A,C–E; total release: null, 28.6 	 6.3 fF, n 
 25; WT,
330 	 29 fF, n 
 24; Y337A, 472 	 49 fF, n 
 26, ANOVA, p �

0.001; Tukey’s HSD test, M18OE vs Y337A, p � 0.05; burst se-
cretion; null, 16.6 	 3.3 fF, n 
 25; WT, 196 	 23 fF, n 
 24;
Y337A, 259 	 27 fF, n 
 26; ANOVA, p � 0.001; Tukey’s HSD
test, M18OE vs Y337A, p 
 0.07; sustained secretion: null, 12.1 	
6.6 fF, n 
 25; WT, 101 	 10 fF, n 
 24; Y337A, 160 	 22 fF, n 

26; ANOVA, p � 0.001; Tukey’s HSD test, M18OE vs Y337A, p �
0.05). We did not detect any change in the release kinetics in cells
expressing the Y337A mutant (�fast: WT, 18.5 	 2.4 ms, n 
 22;
Y337A, 17.3 	 2.4 ms, n 
 25; two-tailed t test, p 
 0.73; �slow:
WT, 331 	 95 ms, n 
 19; Y337A, 196 	 52 ms, n 
 20; two-
tailed t test, p 
 0.197), but we found that the RRP was signifi-
cantly larger in the Y337A (WT, 91 	 10 fF, n 
 22; Y337A, 157 	
19, n 
 22; two-tailed t test, p 
 0.006), whereas the SRP was
unchanged (WT, 114 	 12 fF, n 
 19; Y337A, 93 	 11 fF, n 
 23;
two-tailed t test, p 
 0.213).

These data show that a mutation (Y337A) designed to desta-
bilize the Munc18-1:closed-syntaxin complex increases mem-
brane fusion both in vitro and in vivo, indicating that
destabilization of the binary complex and extension of the helix
12 are both linked to vesicle priming.
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Discussion
For years, a mechanistic understanding of the stimulating role of
Munc18-1 in neurotransmitter release has been lacking. With the
identification of domain 3a as central for the postdocking role of
Munc18-1, and with the reconstitution of Munc18-1 functions in
vitro (Shen et al., 2007; Parisotto et al., 2012; Ma et al., 2013), this
is finally starting to change. Here, we have tested a specific hy-
pothesis regarding the function of the helix 12 of Munc18-1 in
secretion. Using rescue experiments in Munc18-1-null adrenal
chromaffin cells, we found that the Munc18-1 mutant P335A,
which promotes the extended state of helix 12, increased neuro-
secretion, whereas the mutations �324 –339 and L348R— de-
signed to remove the helical hairpin of helix 12 or to disrupt
Munc18-1:syb-2 binding—reduced fusion dramatically. The ef-
fects of the mutations were comparable with regard to the size of
the standing primed vesicle pools and the sustained component
of secretion (Fig. 5B), which indicates that the forward priming
rate was mainly affected. The mutations that were deleterious to
secretion (L348R, �324 –339) nevertheless rescued syntaxin-1 to
levels comparable to those of Munc18-1 WT, whereas the gain-

of-function P335A mutant resulted in suboptimal syntaxin-1 tar-
geting. Thus, the effects on exocytosis upon domain 3a mutations
are not secondary to syntaxin-1 targeting, which is in agreement
with previous data (Martin et al., 2013); on the contrary, the true
effect of P335A on vesicle fusion might be underestimated be-
cause of the partial syntaxin-1 mistargeting. This might explain
why the P335A mutant supports much more fusion in vitro than
Y337A (Fig. 7), whereas the augmentation of cellular secretion is
more similar (Figs. 5, 8). None of the mutations affected the
kinetics of fusion from the primed vesicle pools, or the calcium
dependence of fusion, arguing against direct effects of helix 12
downstream of priming (Zhang et al., 2015). Furthermore, vesi-
cle docking, which can be upstream of or parallel to priming
(Verhage and Sørensen, 2008), was rescued by the mutations.
Overall, our data pinpoint the effect of the mutations on the
forward priming rate, rather than on steps further upstream, or
the unpriming rate. This adds in vivo support to the idea that
structuring and extension of the helix 12 is important for vesicle
fusion and further localizes this reaction to the vesicle priming
step upstream of the slowly releasable pool. This same step is
supported by ubMunc13–2 in chromaffin cells (Man et al., 2015),
and it is inhibited by mutations designed to interfere with
N-terminal assembly of the SNARE complex (Sørensen et al.,
2006; Walter et al., 2010). Overall, these data are consistent with
the idea that Munc13-assisted opening of closed syntaxin-1 still
bound within Munc18-1 (Ma et al., 2013) leads to SNARE com-
plex assembly at this particular point in the exocytotic cascade.

Previous data from PC12 cells showed that deletions/inser-
tions/mutations in helix 12 inhibited Ca 2�-triggered release
(Han et al., 2013, 2014; Martin et al., 2013), which is in agreement
with our data. In contrast to PC12 cells (Martin et al., 2013; Han
et al., 2014), the P335A mutation produced a substantial en-
hancement of secretion in adrenal chromaffin cells. The clearer
effect of this mutation in our work might originate from the fact
that we induced maximal priming by increasing preflash [Ca 2�]
(Voets, 2000) to obtain a larger primed pool. Furthermore, as-
sessment of the primed vesicle pool requires stimulation and
measurements to be much faster than replenishment, which is
most easily achieved using Ca 2� uncaging as a stimulus and ca-
pacitance measurements as a readout, whereas biochemical re-
lease assays are too slow to clearly distinguish the primed pool.

Previous studies indicated that an N-terminal assembly step
drives vesicle priming, whereas vesicle fusion is driven by assem-
bly of the C-terminal end of the SNARE bundle (Sørensen et al.,
2006; Walter et al., 2010; Gao et al., 2012), followed by zippering
up of the juxtamembrane and transmembrane domains, eventu-
ally forming the postfusion SNARE complex (Stein et al., 2009).
Using cross-linking and nuclear magnetic resonance (NMR), an
interaction site between Munc18-1 and syb-2 was mapped to the
C-terminal end of the SNARE motif and the juxtamembrane
linker region of syb-2 (amino acids 87–91 or 75–95, respectively;
Xu et al., 2010). In the same area, NMR studies using a lipid
environment identified the second of two transiently forming
helixes (amino acids 77– 88; Ellena et al., 2009). If helix 12 of
Munc18-1 participated in a rate-limiting step during final zipper-
ing, for instance by structuring the C-terminal syb2 helix during
fusion itself, or by transducing mechanical force from the
SNAREs to the lipid bilayer (Xu et al., 2010), we would have
expected to identify the kinetic changes of our mutations. How-
ever, this was not observed. Instead, we propose that Munc18-1
dislodges synaptobrevin-2 from the membrane, thereby making
it available for initial N-terminal contacts with its partner
SNAREs (Parisotto et al., 2014). Previous mutagenesis studies in
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(�Cm at 5 s � �Cm at 0.5 s; E). Total and sustained release was significantly higher in the Y337A than in the Munc18-1 WT. #p 
 0.07, *p � 0.05, **p � 0.01, ***p � 0.001, Tukey’s
HSD test following ANOVA.
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synaptobrevin-2 have revealed a large effect on vesicle priming by
the insertion of additional linkers between the SNARE motif
and the transmembrane domain (Kesavan et al., 2007), identify-
ing this area as important for priming. The suggested model is
further supported by the observation that the SNARE–SNARE
interactions and Munc18-1 binding synergize to stimulate vesicle
docking in the SUV:GUV assay (Parisotto et al., 2012). In addi-
tion, Munc18-1 might help structuring the N-terminal transient
helix in syb-2, which serves as a trigger site for SNARE complex
assembly (Ellena et al., 2009; Walter et al., 2010), as well as the
t-SNARE complex (Ma et al., 2015). This idea is supported by two
recent structures of the SM protein Vps33 bound to the native
Qa- and R-SNAREs Vam3p and Nyv1, respectively (Baker et al.,
2015). When combined, the two structures show the domain 3a
helical hairpin extending along the N-terminal half of both
SNARE domains, possibly forming a template for N-terminal
SNARE complex formation.

Another mutation in the helix 12 of the 3a domain, Y337A,
also led to a gain-of-function phenotype in chromaffin cells (Fig.
8). The rationale for the mutation was to probe the assumed
H-bond to N137 in syntaxin-1, which might counteract the abil-
ity of the helix 12 to undergo extension and stabilize the Munc18-
1:syntaxin dimer. The gain-of-function phenotype seen is in
agreement with this notion. Even though the increase in secretion
was numerically small, it correlated with a slight, but significant,
increase in the stimulatory function of Munc18-1 in the in vitro
assay. Thus, helix extension and the opening up of syntaxin-1
might be inseparable events. This is also indicated by the reduced
rescue of syntaxin-1 targeting by the P335A mutation, where the
helix is permanently extended and the closed syntaxin-1:
Munc18-1 complex is therefore destabilized. When comparing
the P335A and Y337A mutants, the former stimulated the burst
phase more than the sustained phase (ratio between the factor
increase of the burst and sustained phases, 1.77), whereas the
opposite was the case for Y337A (ratio, 0.55). Although we should
proceed with caution when mutants were not compared experi-
mentally side by side, this is consistent with an increase in the
unpriming rate in the Y337A mutant relative to the P335A. In
both cases, the priming rate is increased even more, leading to
more net priming at steady state. This difference between the
mutations makes sense if we assume that the extension of the
helical hairpin coincides with priming and the retraction of
the helix represents unpriming. In the P335A, the helix might no
longer retract as easily, leading to lower unpriming rates, whereas
in the Y337A, due to the impaired interaction with closed
syntaxin-1, both retraction and extension are still possible, and
might be facilitated.

Overall, our data are consistent with the hypothesis out-
lined in the Introduction implying that Munc18-1 can extend
its helix 12 as a template for SNARE complex assembly. For
successful vesicle priming, we therefore need the 3a domain of
Munc18-1, N-terminal SNARE assembly (Walter et al., 2010),
the very N-terminal end of syntaxin-1 (Shen et al., 2010; Zhou
et al., 2013), a Munc13 protein (Ma et al., 2015), which in the
case of chromaffin cells is ubMunc13–2 (Man et al., 2015).
Finally, synaptotagmin-1 (Nagy et al., 2006) and calcium ac-
tivator protein for secretion (CAPS) are required for the tran-
sition between the SRP and RRP state (Liu et al., 2010),
although the relative importance of CAPS binding to
PI(4,5)P2 and SNAREs is currently under discussion (Khod-
thong et al., 2011; Nguyen Truong et al., 2014). Overall, the
opening of syntaxin-1 within Munc18-1 by the extension of
helix 12 appears to be the central event, which is regulated by

other factors, including Munc13 proteins, in a fashion, which
has yet to be unraveled.
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independent stimulation of membrane fusion and SNAREpin formation
by synaptotagmin I. J Cell Biol 158:273–282. CrossRef Medline

Malsam J, Parisotto D, Bharat TA, Scheutzow A, Krause JM, Briggs JA, Söllner
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