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Interactions Between SNAP-25 and Synaptotagmin-1 Are
Involved in Vesicle Priming, Clamping Spontaneous and
Stimulating Evoked Neurotransmission
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Whether interactions between synaptotagmin-1 (syt-1) and the soluble NSF attachment protein receptors (SNAREs) are required during
neurotransmission is debated. We examined five SNAP-25 mutations designed to interfere with syt-1 interactions. One mutation, D51/
E52/E55A, targeted negative charges within region II of the primary interface (Zhou et al., 2015); two mutations targeted region I (D166A
and D166/E170A) and one mutation targeted both (D51/E52/E55/D166A). The final mutation (D186/D193A) targeted C-terminal residues
not expected to interact with syt-1. An in vitro assay showed that the region I, region II, and region I+1I (D51/E52/E55/D166A) mutants
markedly reduced the attachment between syt-1 and t-SNARE-carrying vesicles in the absence of phosphatidylinositol 4,5-bisphosphate
[PI(4,5)P,]. In the presence of PI(4,5)P,, vesicle attachment was unaffected by mutation. When expressed in Snap-25-null mouse autaptic
neurons, region I mutations reduced the size of the readily releasable pool of vesicles, whereas the region II mutation reduced vesicular
release probability. Combining both in the D51/E52/E55/D166A mutation abrogated evoked release. These data point to a division of
labor between region I (vesicle priming) and region II (evoked release). Spontaneous release was disinhibited by region I mutations and
found to correlate with defective complexin (Cpx) clamping in an in vitro fusion assay, pointing to an interdependent role of synaptotag-
min and Cpx in release clamping. Mutation in region II (D51/E52/E55A) also unclamped release, but this effect could be overcome by
synaptotagmin overexpression, arguing against an obligatory role in clamping. We conclude that three synaptic release functions of syt-1,
vesicle priming, spontaneous release clamping, and evoked release triggering, depend on direct SNARE complex interaction.
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The function of synaptotagmin-1 (syt-1):soluble NSF attachment protein receptor (SNARE) interactions during neurotransmis-
sion remains unclear. We mutated SNAP-25 within the recently identified region I and region II of the primary synaptotagmin:
SNARE interface. Using in vitro assays and rescue experiments in autaptic neurons, we show that interactions within region II of
the primary interface are necessary for synchronized calcium-triggered release, whereas region I is involved in vesicle priming.
Spontaneous release was disinhibited by region I mutation and found to correlate with defective complexin (Cpx) clamping in
vitro, pointing to an interdependent role of synaptotagmin and Cpx in release clamping. Therefore, vesicle priming, clamping
spontaneous release, and eliciting evoked release are three different functions of syt-1 that involve different interaction modes
with the SNARE complex. j
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Introduction
The machinery for synaptic release includes the soluble NSF at-
tachment protein receptor (SNARE) complex formed from
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release (Fernandez-Chacén et al., 2001). Multiple syt-1 interac-
tion partners were identified, among them phosphatidylinositol
4,5-bisphosphate (PI(4,5)P,) (Brose et al., 1992; Davletov and
Stidhof, 1993; Schiavo et al., 1996), phosphatidylserine (Fukuda
et al,, 1996; Zhang et al., 2010), AP-2 (Zhang et al., 1994), Ca?*
channels (Leveque et al., 1992; Kim and Catterall, 1997),
syntaxin-1 (Bennett et al., 1992; Chapman et al., 1995; Li et al.,
1995; Kee and Scheller, 1996), SNAP-25 (Gerona et al., 2000;
Zhang et al., 2002), and the SNARE complex (Séllner et al., 1993
Davis et al., 1999; Bai et al., 2004; Pang et al., 2006b; Lynch et al.,
2008; Choi et al., 2010; Brewer et al., 2015). A recent crystallo-
graphic study revealed three separate syt-1:SNARE interfaces:
primary, secondary, and tertiary (Zhou et al., 2015). The primary
interface includes the C2B domain (the second C2 domain) of
syt-1 and is subdivided into two regions dominated by polar
interactions. Region I includes several charges in SNAP-25,
among them D166, which interacts with Y338 in syt-1 C2B,
whereas region II includes the D51/E52/E55-patch in SNAP-25
(Rickman et al., 2006), which interacts with R398 and R399 at the
“bottom” (i.e., opposite to the Ca**-binding top loops) of the
C2B domain. R398 and R399 had been identified previously as
being critical for release (Gaffaney et al., 2008; Xue et al., 2008a;
Kedar et al., 2015). The secondary interface includes interactions
between the C2B bottom domain and syntaxin-1 and the tertiary
interface is formed between C2A and syntaxin-1/VAMP2. Mu-
tagenesis of syt-1 implicated the primary and secondary inter-
faces in evoked release (Zhou et al., 2015). However, the syt-1:
SNARE interaction has been questioned and it was suggested that
syt-1 binds to PI(4,5)P, at physiological ionic strength (Park et
al,, 2015).

Physiologically, the deletion of syt-1 or syt-2 eliminates syn-
chronous release (Nonet et al., 1993; DiAntonio and Schwarz,
1994; Geppert et al., 1994; Fernandez-Chacon et al., 2001; Sun et
al., 2007). In most cases, syt-1 or syt-2 deletion causes a simulta-
neous increase in spontaneous release rates (Broadie et al., 1994;
Geppert et al., 1994; Pang et al., 2006a; Kerr et al., 2008; Liu et al.,
2009; Kochubey and Schneggenburger, 2011; Wierda and Se-
rensen, 2014). Mutagenesis studies have shown that clamping
spontaneous release involves a separate syt function (Kochubey
and Schneggenburger, 2011; Lee et al., 2013; Liu et al., 2014),
which might include an association with the SNAREs in a differ-
ent configuration than during evoked release (Bai et al., 2016).
The inhibitory effects of syt-1 on release after train stimulation
(Maximov and Siidhof, 2005) has been attributed to the clamping
of a secondary calcium sensor (Stidhof, 2013), presumably syt-7
(Bacaj et al., 2013), but the origin of syt-1 clamping of unstimu-
lated spontaneous release remains unclear. Complexin (Cpx) is
another SNARE-interacting fusion clamp, which exerts species
specific positive and negative effects on synaptic release (Xue et
al., 2009). The negative effects are induced by the “accessory he-
lix,” which extends along the C terminus of the SNARE complex
and might inhibit exocytosis electrostatically (Trimbuch et al.,
2014). Recently, a redundant function for syt-1 and syt-7 in
maintaining the size of the readily releasable vesicle pool (RRP)
was identified, which correlated with the ability of syt-1 to drive
the formation of SNARE complexes (Bacaj et al., 2015).

Most mutagenesis studies exploring the syt:SNARE interac-
tion have used syt-1 mutations. Because syt-1 binds to many
effectors, it is important to examine the syt:SNARE interaction
from the SNARE complex side. This is also necessary to under-
stand how syt-1:SNARE-interaction is involved in clamping
spontaneous release: if competition with another sensor associ-
ating to the same site underlies the increase in spontaneous re-
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lease in the syt-1 knock-out, then this increase would not be
expected when mutating the SNAREs to eliminate the interaction
surface.

Materials and Methods

Reconstituted small unilamellar vesicle (SUV)-giant unilamellar vesicle
(GUV) attachment and membrane fusion (lipid-mixing) assays. The DNA
construct (pTW34) encoding both untagged syntaxin 1A and His6-
tagged SNAP-25B was described previously (Weber et al., 1998). pTW34
was used as template DNA to introduce mutations into SNAP-25 by
QuikChange DNA mutagenesis (Qiagen). The v-SNARE constructs were
GST-tagged mouse VAMP2 (pSK28; Kedar et al., 2015) and His,-tagged
rat syt-1 lacking the lumenal domain (pLM6; Mahal et al., 2002). For
Cpx, a DNA construct (pMDL80) encoding Hise-tagged human Cpx II
was used (Malsam et al., 2012). All constructs were expressed and puri-
fied as described previously (Weber et al., 1998; Malsam et al., 2012;
Kedar et al., 2015). The concentration of purified proteins was deter-
mined using Coomassie blue-stained SDS-PAGE using bovine serum
albumin as the standard protein and Image] software for quantification.

Unlabeled lipids were from Avanti Polar Lipids. *H-DPPC (’H-1,2-
dipalmitoyl phosphatidylcholine) was from GE Healthcare/Pharmacia
Biotech. Atto448-DPPE (Atto448-1,2-dipalmitoyl phosphatidylethano-
lamine) and Atto550-DPPE were from Atto-Tec. The v-SNARE/syt-1
lipid mixture contained the following: 28.5 mol% POPC (1-palmitoyl-
2-oleoyl-SN-glycero-3-phosphocholine), 15 mol% DOPS (1,2-dioleoyl-
SN-glycero-3-phosphoserine), 25 mol% POPE (1-hexadecanoyl-2-
octadecenoyl-SN-glycero-3-phosphoethanolamine), 5 mol% liver PI
(L-a-phosphatidylinositol), 25 mol% cholesterol (from ovine wool), 0.5
mol% Atto488-DPPE, 0.5 mol% Atto550-DPPE and trace amounts of
*H-DPPC, 3 umol of total lipid. Syntaxin1/SNAP-25 lipid mix: 35 mol%
POPC (1-palmitoyl-2-oleoyl-SN-glycero-3-phosphocholine), 15 mol%
DOPS, 20 mol% POPE, 3 mol% liver P, 2 mol% brain PI(4,5)P, (L-a-
phosphatidylinositol-4,5-bisphosphate), 25 mol% cholesterol (from
ovine wool), and 5 wmol of total lipid. Proteoliposomes and GUVs were
prepared as described previously (Kedar et al., 2015) except that 1 mm
EDTA was added to the reconstitution buffer. GUV sedimentation and
quantitation were performed as described previously (Malsam et al.,
2012). The protein:lipid ratios were as follows: VAMP2, 1:350; syt-1,
1:800; and t-SNARE, 1:1000. The vesicle—vesicle fusion assay and data
analysis were performed as described previously (Malsam et al., 2012);
the assay as performed here monitors lipid mixing.

Temperature-dependent dissociation of the SNARE complex in SDS.
Full-length t-SNARE complex (pTW34; 15 uMm final concentration) was
combined with the cytoplasmic domain of VAMP2 (pSK74, aal-94; 50 um
final concentration) after desalting into 25 mm MOPS (3-(N-
morpholino)propanesulfonic acid)-KOH, pH 7.4, 135 mm KCl,1% Octyl
B-p-glucopyranoside, 1 mm Dithiothreitol, 10 mm TECEP (Tris(2-
carboxyethyl)phosphine hydrochloride)-KOH, pH 7.4, 1 mm EDTA-
NaOH, pH 7.4, and incubated overnight at 0°C. The incubation was
continued for 1 h at 37°C to complete complex formation. 25 ul of reaction
mixture (50 ug of total protein) was diluted with 225 ul of 1X Laemmli
buffer (62.5 mm Tris-HCl, pH 6.8, 10% glycerol, 2% SDS, 50 mm
B-mercaptoethanol, 0.1% bromphenol blue) and aliquots (15 ul) were in-
cubated at the indicated temperature for 5 min. Quantification of syntaxin 1
was performed using Image] version 1.43u after separation of samples on
15% SDS-PAGE gels, followed by Coomassie brilliant blue staining. Data
were normalized to the maximum value of a measurement set.

Cell culture and lentiviral constructs. For electrophysiology and immu-
nocytochemistry, isolated hippocampal neurons were plated on astro-
cyte microislands (Bekkers and Stevens, 1991) to generate autaptic
hippocampal cultures. Snap-25 heterozygote mice (Washbourne et al.,
2002) were crossed to generate Snap-25-null embryos. Females carrying
embryonic day 18 (E18) pups were cervically dislocated and embryos
were obtained via caesarean section. Embryos of either sex were killed by
decapitation and the hippocampi were dissected and collected in HBSS
(Sigma-Aldrich), buffered with 7 mm HEPES, pH 7.35. The hippocampi
were then incubated for 15 min in HBSS/HEPES containing 0.25% tryp-
sin in a shaking water bath at 37°C. After washing with HBSS/HEPES, the
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neurons were triturated, counted, and plated in Neurobasal medium
(Invitrogen) supplemented with 2% B-27 (Invitrogen), 1.8% HEPES, 1%
Glutamax (Invitrogen), 1% penicillin/streptomycin (Invitrogen), and
0.2% B-mercaptoethanol. Neurons were plated at a density of 1000/cm >
on microislands of mouse glia. To obtain glial islands, cleaned glass cov-
erslips were first coated with 0.15% agarose. After drying and UV steril-
ization, custom-made rubber stamps were used to print dots with a
diameter of 200—-250 wm using a substrate mixture containing 0.4 mg/ml
poly-p-lysine and 0.25 mg/ml rat tail collagen dissolved in 17 mm acetic
acid. Mouse glial cells isolated from CD1 mice were plated at 4900/cm .
The lentiviral GFP-SNAP-25 WT construct has been described previ-
ously (Delgado-Martinez et al., 2007). GFP-SNAP-25B mutants were
generated by site-directed mutagenesis using overlapping primers or by
the QuikChange II XL Site-directed mutagenesis kit (Agilent Technolo-
gies) and subcloned into the pLenti vector under control of a CMV
promotor. Viral particles were produced as described previously (Nal-
dini et al., 1996). For syt-1 knock-down experiments, a lentiviral
m-Cherry-tagged shRNA construct was kindly provided by the Stidhof
laboratory (Xu et al., 2012). Neurons were transduced at 0 d in vitro
(DIVO).

Electrophysiological recordings. Isolated hippocampal neurons were re-
corded between DIV10 and DIV14. Glial islands containing one single
neuron were first identified by visual inspection under the microscope.
Upon successful whole-cell patch-clamp of a cell, the presence of addi-
tional connected neurons on the same or neighboring island was ruled
out based on the absence of postsynaptic currents containing multiple
peaks upon stimulation of action potentials in the patched cells. Excita-
tion of a neighboring, unclamped neuron results in a recurrent postsyn-
aptic response, visible as a multicomponent postsynaptic current at the
clamped cell. The intracellular pipette solution contained the following
(in mm): 136 KCI, 18 HEPES, 15 creatine phosphate, 4 Na-ATP, 4.6
MgCl,, 1 EGTA, and 50 U/ml phospocreatine kinase (300 mOsm), pH
7.3. The external medium used for recordings contained the following
(in mm): 140 NaCl, 2.4 KCl, 2 CaCl,, 2 MgCl,, 10 HEPES, 14 glucose (300
mOsm), pH 7.4. For the calcium gradient recordings in Figure 5, the
medium contained the following (in mm): 127 NaCl, 2.4 KCl, 4 MgCl,, 10
HEPES, 12 glucose, and supplementary 1-12 CaCl,. For sucrose mea-
surements, the external medium was supplemented with an additional
500 mOsm sucrose.

Cells were patch clamped at room temperature in whole-cell voltage-
clamp mode with a holding potential of —70 mV by an EPC 10 amplifier
(HEKA Elektronik), supplied with Patchmaster version version 2x53
software (HEKA Elektronik). Recorded currents were low-pass filtered at
2.9 kHz and sampled at 20 kHz. Patch pipettes had a resistance between
2 and 5 M{) and only cells with a series resistance <10 M{) were included
in the analysis. The compensation of the series resistance was set to 70%.
Action potentials and resulting EPSCs were evoked using a brief 2 ms
depolarization of the soma to 0 mV. Sucrose and different calcium
concentrations were applied via a custom-made barrel system digitally
controlled by the trigger interface TIB 14S (HEKA Elektronik) and the
SE-77B Perfusion Fast-Step (Warner Instrument). The mean EPSC am-
plitudes for the different calcium concentrations in each condition were
fitted with the Hill function, I = (I, X [Ca**])/(K}, + [Ca®"]),
where I is the recorded EPSC amplitude, I,,,, the maximal current mea-
sured at the individual condition, K|, the apparent calcium affinity, c the
apparent cooperativity, and [Ca®"] the calcium concentration.

The identity of recorded glutamatergic neurons was determined by
visual analysis of decay time kinetics in spontaneous and evoked release
(Wierda and Serensen, 2014). Spontaneous events were detected and
analyzed using the Mini Analysis program (Synaptosoft). Igor Pro ver-
sion 6.21 was used for the analysis of evoked recordings and sucrose
stimulation responses. All autaptic cells that displayed either spontane-
ous or evoked release were included in the analysis.

Immunocytochemistry. Autaptic cultures were fixed in 4% PFA at
DIV10-14 for 20 min. After washing with PBS, neurons were blocked for
1 hin 0.25% Tween 20 (Sigma-Aldrich) in PBS containing 4% normal
goat serum (NGS). Cells were incubated overnight at 4°C with primary
antibodies a-GFP (1:2000, mouse, 132011; Synaptic Systems), a-MAP2
(1:1000, chicken, AB15452; Millipore), and a-VGLUT1 (1:4000, rabbit,
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135303; Synaptic Systems) in 4% NGS/0.02% Tween 20/PBS. After wash-
ing with 0.02% Tween 20/PBS, the secondary antibodies goat c-mouse-
Alexa Fluor 488 (A11029; Invitrogen), goat a-rabbit-Dylight 650
(ab96950; Abcam), and goat a-chicken-Alexa Fluor 546 (A-11010;
Thermo Fisher) each at 1:1000 were applied for 2 h at room temperature.
After the washing steps, the coverslips were mounted onto glass slides
using FluorSave (345789; Calbiochem). Z-stack images were acquired at
a Zeiss LSM 710 confocal microscope with a Plan-Apochromat 20X air
objective, numerical aperture 0.8 (420650-9901-000; Zeiss) using ZEN
imaging software (black edition). Maximum intensity projection was
performed in Image].

Synapses were detected using the automated synapse recognition soft-
ware SynD (Schmitz et al., 2011). First, the dendritic arborization of an
isolated neuron was manually traced by MAP2 staining. Second, the
threshold for synapse detection was set to 0.6 wm? to exclude dots rep-
resenting smaller intracellular compartments or noise. Last, only dots
appearing on the dendritic mask or in a maximal distance of 1 um were
included.

Western blot. High density cortical cultures were harvested on DIV
10-13 with RIPA (Sigma-Aldrich)/proteinase inhibitor (1 mg/ml) and a
plastic cell scraper and then centrifuged for 10 min at 17,000 X g (4°C).
The supernatant’s protein concentration was visualized with a Pierce
BCA protein assay kit and read by a POLARstar Omega (BMG Labtech).
A constant amount of reduced and denatured protein (supplied with
LDS sample buffer, LDS sample reducing agent; Thermo Fisher) was run
on a Novex Bolt 4-12% Bis-Tris Plus Gel at 120 mV along with SeeBlue
Plus2 Prestained Standard (Thermo Fisher). Proteins were afterward
transferred to a Hybond LFP PVDF membrane (GE Healthcare) at 16 V
via an SD semidry transfer cell (Bio-Rad) and the membrane was blocked
in 5% milk in TBS-Tween 20 (TBST) 0.1% for 1 h at room temperature.
Incubation in primary antibodies (a-SNAP-25: rabbit, 1:1000, ab5666,
Abcam; a-Syt-1: mouse, 105011; Synaptic Systems) was performed over-
night with 50 rpm shaking at 4°C, followed by washing in TBST (0.1%)
and a 1 h incubation in secondary antibody (goat a-rabbit-HRP:
1:10,000, P0448, Dako; goat a-mouse-HRP: 1:10,000, P0447, Dako). Af-
ter washing, Pierce ECL Western blotting substrate was added and
chemiluminescence was visualized with FluorChem E (Proteinsimple).
Actin was detected with a-B actin-HRP (mouse, 1:25000, A3854; Sigma-
Aldrich).

Statistics. Values shown are the mean = SEM, with n referring to the
number of recorded neurons for each condition or the number of repe-
titions (for the biochemical experiments). The reconstituted SUV-GUV
fusion and vesicle attachment assays were analyzed with a one-way
ANOVA, followed by Dunnett’s post test with the WT complex as the
control group. All other datasets were tested using the Kruskal-Wallis
test. If a statistical difference was found within the population of these
groups, then the differences between individual group medians were
calculated using Dunn’s method. Statistical significance was assumed
when the two-tailed p < 0.05. Statistical testing was performed using
GraphPad Prism version 5.01 software. In figures, the significance levels
are indicated by asterisks as follows: *p < 0.05, **p < 0.01, ***p < 0.001.

Results

Eliminating negative surface charges in SNAP-25 leads to
impaired calcium-triggered membrane fusion in vitro

Here, we used five different SNAP-25 mutations to investigate the
proposed interaction interface between the SNARE protein
SNAP-25 and syt-1. One mutation (D51/E52/E55A; Rickman et
al., 2006) targeted negative charges within region II of the pri-
mary interface (Zhou et al., 2015); two mutations targeted region
I (D166A and D166/E170A; Mohrmann et al., 2013), and one
mutation targeted both (D51/E52/E55/D166A). The final muta-
tion (D186/D193A) targeted charges in the C-terminal end of the
SNARE complex, which did not interact with syt-1 in recent
structures (Brewer et al., 2015; Zhou et al., 2015). Our previous
studies in adrenal chromaffin cells showed that D51/E52/E55A
and DI166/E170A interfered with calcium-triggered release
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(Mohrmann et al., 2013). However, be-
cause there are important differences be-
tween synaptic transmission in central
neurons and chromaffin cell adrenaline
release (Neher, 2006), it is important to
test synaptic release. In addition, the ques-
tion of how syt-1:SNARE interactions
affect spontaneous release is open. Finally,
it is desirable to test the functionality of
these mutants in an in vitro setting to
understand which parts of their physio-
logical function are understandable in a
minimal system, where confounding
factors (for instance alternative calcium
sensors) are absent.

We first created three mutants in
SNAP-25B based on our previous work
(Mohrmann et al., 2013): D51/E52/E55A,
D166/E170A, and D186/D193A, as shown
in Figure 1A. We used GUVs containing
the t-SNAREs syntaxin-1 and SNAP-25
(WT or mutant) and *H-labeled SUVs
containing the v-SNARE VAMP2 and
syt-1 to study vesicle attachment and in
vitro lipid mixing indicative of vesicle fu-
sion (Parisotto et al., 2012). For vesicle at-
tachment, the SUVs (50 uM lipid, 143 nm
VAMP?2, 62 nM syt-1) were mixed with the
GUVs (280 um lipid, 280 nM syntaxin-1/
SNAP-25) and incubated for 5 min on ice,
followed by centrifugation at 5000 X g to
reisolate the GUVs. GUV pellets were an-
alyzed for the fraction of bound SUVs in
the presence or absence of 2% P1(4,5)P,.
In the presence of PI(4,5)P,, all mutants
had a similar number of SUVs attached to
GUVs as the WT (Fig. 1B). Including
Cpx II into the mixture did not further
stimulate attachment (Parisotto et al.,
2012). Without PI1(4,5)P, in the GUVs,
vesicle attachment in the presence of the
WT SNARE complex was reduced from
71.6 = 2.2% to 48.7 £ 0.7% (Fig. 1C).
Under these circumstances, D51/E52/
E55A and D166/E170A mutants showed a
strong decrease in vesicle attachment; the
D186/D193A mutant was less severe, but
still resulted in significantly reduced vesi-
cle attachment (Fig. 1C). Again, vesicle at-
tachment was unaffected by the presence
of Cpx II. These data are consistent with
the notion that, in this in vitro setting,
syt-1 drives vesicle attachment of SUVs
to GUVs by binding alternatively to
PI(4,5)P, and to the SNAREs (Kim et al.,
2012; Parisotto et al., 2012). It is also
possible that, when both species are pres-
ent, syt-1 binds simultaneously to both
(Brewer et al., 2015; Zhou et al., 2015).

Because vesicle attachment through a syt-1:SNARE interac-
tion was strongly perturbed by our SNAP-25 mutations, whereas
by nature the syt-1:PI(4,5)P, interaction remained intact, we
used these mutants to study specifically the role of the syt-1:
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Figure 1.  Vesicle—vesicle attachment and fusion in vitro are inhibited by the SNAP-25B mutations D166/E170A and D51/E52/

E55A. A, Schematic representation of the mutants SNAP-25B D51/E52/E55A (orange), which is located around the hydrophilic zero
layer of the SNARE helix 1 (S1), SNAP-25B D166A/E170A (red), and SNAP-25B D186/D193A (green), both located on the SNARE
helix 2 (S2). B, €, t-SNARE-GUVs were mixed with *H-labeled v-SNARE/syt-1-SUVs with and without Cpx Il in the presence (B) or
absence (C) of PI(4,5)P,. Samples were incubated for 5 min on ice to allow SUV:GUV attachment, followed by centrifugation to
reisolate GUV. *H-labeled SUVs that were attached to GUVs were quantified and normalized to total input. D, E, t-SNARE-GUVs
containing SNAP-25 WT (black), SNAP-25B D186/D193A (green), SNAP-25B D51/E52/E55A (orange), or SNAP-25B D166/E170A
(red) were mixed with v-SNARE-SUVs in the presence (D) or absence (E) of Cpx II. The increase of Atto488 fluorescence due to lipid
mixing was monitored. After 2 min at 37°C, Ca™ was added to a final concentration of 100 um and the measurement continued
for another 2 min. Values were normalized to the maximum fluorescence signal after detergent lysis. F, Direct comparison of lipid
mixing for WT SNAP-25 in the absence (gray) and in the presence (black) of Cpx II. Cpx Il clamps most of the prestimulation
membrane fusion. G, Fractional clamping effect of Cpx |1 for the different constructs. Note that D166/E170A inhibits Cpx Il clamping.
All graphs display mean == SEM (n = 3). *p << 0.05, **p < 0.01; ***p << 0.001 (one-way ANOVA, significance was calculated
using Dunnett’s post test).

SNARE-interaction. We first performed membrane fusion in an
in vitro assay. “H-labeled v-SNARE-SUVs (25 uMm lipid, 71 nm
VAMP2, 31 nMm syt-1) contained 0.5 mol% Atto488- and
0.5%mol Atto550-labeled lipids, resulting in fluorescence reso-
nance energy transfer (FRET) upon Atto488 excitation. The
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SUVs were mixed with t-SNARE-GUVs (140 um lipid, 140 nm
syntaxin-1/SNAP-25) containing either SNAP-25 WT or the
SNAP-25 mutants in the presence and absence of 6 uM Cpx II to
control fusion (see below). As a result of lipid mixing during
vesicle—vesicle fusion, FRET efficiency is decreased and can be
registered by increased donor (Atto488) fluorescence intensity.
Fluorescence was measured at 37°C and, after 2 min, Ca’" was
added to a final concentration of 100 uMm; the measurement con-
tinued for another 2 min. The intensity of fluorescence was nor-
malized to the maximum fluorescent signal obtained after
detergent lysis. The assays showed a severe impairment in
calcium-dependent fusion for the D51/E52/E55A and the D166/
E170A mutant (Fig. 1D), whereas the D186/D193A mutant
displayed very similar fusion to that of the SNAP-25 WT experi-
ments performed in parallel experiments (Fig. 1D). Strikingly,
the D166/E170A and, to a lesser degree, the D186/D193A mutant
also displayed increased fusion before the Ca** stimulus.

In Figure 1D, Cpx II was included in the lipid-mixing assay.
Cpx II, together with Cpx I, is highly abundant in neurons and
binds to the SNARE complex in the groove between VAMP2 and
syntaxin-1 (Chen et al., 2002). Cpx reduces the frequency of
spontaneous release in in vitro membrane fusion systems (Mal-
sam et al., 2012; Lai et al., 2014); that is, it acts as a fusion clamp.
As observed previously (Malsam et al., 2012), there was a high
rate of fusion in the Cpx II-free environment even without the
calcium trigger (Fig. 1E). Spontaneous lipid mixing was similar
for the D166/E170A and D186/D193A mutants, but reduced for
the D51/E52/E55A mutant. Ca*"-dependent membrane fusion
was almost completely absent in the D166/E170A mutant with-
out Cpx II (Fig. 1E).

For each construct, we compared fusion with and without
Cpx II and determined the fractional reduction in lipid mixing
rate by Cpx II before the Ca*™ trigger (Fig. 1F). In the WT case,
Cpx II clamped 88.0 + 1.3% of the Ca**-independent fusion
(Fig. 1 F,G). This fraction was significantly reduced for the D186/
D193A and even more for the D166/E170A mutant (Fig. 1G),
whereas the D51/E52/E55A mutant displayed indistinguishable
Cpx clamping from WT. The latter mutant had reduced calcium
independent fusion both with and without Cpx (Fig. 1 D, E), but
the degree of Cpx clamping was intact. These data surprisingly
show that some mutations in SNAP-25 affect clamping by Cpx,
although Cpx does not itself interact with SNAP-25 when bound
to the SNARE complex (Chen et al., 2002).

Mutating the binding site for syt-1 in SNAP-25 does not alter
cell survival, morphology, and synapse density

In low-density hippocampal Snap-25-null cultures most cells die
after several days (Washbourne et al., 2002; Delgado-Martinez et
al., 2007). Introducing the aforementioned SNAP-25 mutants
fused to the C terminus of EGFP by lentiviral transduction in a
Snap-25-null background led to rescue of the neuronal survival
rate to the same extent as with WT EGFP-SNAP-25B (Fig. 2A).
Western blotting was used to assess the expression level of all
SNAP-25 mutants and it was found that their levels were similar
to the WT (EGFP-SNAP-25) rescue construct (Fig. 2B). Com-
pared with endogenous SNAP-25 expression, the virally intro-
duced SNAP-25 was expressed in an approximately double
amount (Fig. 2B). To test for normal synapse formation in au-
taptic hippocampal cultures, cells were fixed and stained against
EGFP (a marker for SNAP-25), MAP2 (a dendritic marker), and
VGLUT1 (a marker for glutamatergic vesicles) at DIV10-14 (Fig.
2C) and analyzed with SynD software (Schmitz et al., 2011),
which allows automatic synapse detection. The number of syn-
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apses was determined by quantification of the presynaptic
VGLUT1 puncta (red) within 1 um distance of the dendritic
mask (blue) and this number did not differ between the SNAP-25
WT rescue construct and the SNAP-25 mutants (Fig. 2D), indi-
cating normal morphological synapse formation in all three
mutants.

Evoked vesicle release and its kinetics depend on functional
syt-1/SNAP-25 interaction

We performed whole-cell voltage-clamp recordings on Snap-25-
null autaptic cultures of hippocampal cells rescued with each of
the mutant constructs or the WT SNAP-25 protein to examine
synaptic release (Bekkers and Stevens, 1991). Brief depolariza-
tions from the —70 mV holding potential to 0 mV resulted in
action potential generation and subsequently in a recurrent au-
taptic response, which was comparable between the WT rescue
and the D186/D193A mutant (Fig. 3 A, B). The EPSC amplitude
was reduced to 14.4 = 5.8% in the D51/E52/E55A mutant and
3.5 = 1.5% in the D166/E170A mutant (Fig. 3A, B). In the D51/
E52/E55A mutant, 12 of 59 cells did not show detectable evoked
release, whereas for the D166/E170A mutant, 20 of 48 were silent
(these cells were included into the statistics in Fig. 3). In contrast,
0 of 100 cells in the WT and 1 of 54 cells in the D186/D193A
mutant lacked an EPSC. The kinetics were analyzed using the
cumulative evoked charge (Fig. 3C,D). The evoked charge was
fitted by a sum of two exponentials, representing the synchro-
nous and the asynchronous component, respectively (Fig. 3E-G).
Synchronous release represented the majority of the release for
the WT and D186/D193A mutation (~80% of the total evoked
charge; Fig. 3G). In contrast, in the D51/E52/E55A and D166/
E170A mutants, synchronous release was abrogated (Fig. 3E),
whereas the asynchronous component (i.e., the slower exponen-
tial) was reduced in amplitude, but still substantial (Fig. 3F).
Therefore, the total evoked charge of the D51/E52/E55A and
D166/E170A mutants consisted to a larger degree of asynchro-
nous release compared with the WT and D186/D193A mutant
(Fig. 3G).

Lack of syt-1/SNAP-25 interaction unclamps spontaneous
vesicle release and decreases the probability of evoked release
At a constantly held voltage of —70 mV, which effectively blocks
action potential generation in the autaptic configuration, all ex-
amined mutants displayed a strong unclamping effect on the
frequency of spontaneous release, rising from 1.3 = 0.2 Hz (WT,
n=62)t08.0 = 1.5Hz (D186/D193A mutant, n = 41),5.3 = 0.9
Hz (D51/E52/E55A mutant, n = 48), or 12.5 * 1.8 Hz (D166/
E170A mutant, n = 40; Fig. 4A,B). Spontaneous release
amplitudes remained constant (Fig. 4C), indicating no large
postsynaptic effect of the mutants. To determine whether a
change in the pool of releasable vesicles underlies the observed
decrease in evoked response (Fig. 3A), we determined the RRP
size with hyperosmotic sucrose applications. For this, cells were
held at —70 mV while a hypertonic solution (extracellular solu-
tion including 500 mOsm sucrose) was applied locally to the
neuron using a gravity-driven perfusion and a stepper motor
system. Upon sucrose application, the vesicles corresponding to
the RRP size are released (Rosenmund and Stevens, 1996; Schot-
ten et al., 2015). Interestingly, the RRP charge was reduced only
in the D166/E170A mutant, whereas the pool size was unaffected
in the D186/D193A and D51/E52/E55A mutants (Fig. 4 D, E). By
dividing the sucrose pool with the mean charge of a single mEPSC
from the same cell, the number of vesicles in the RRP could be
calculated (Fig. 4F); this analysis resulted in the same conclusion.
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D51/E52/E55A mutant, the reduction in
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there was no further significant increase in

Xk EPSC size for any condition (Fig. 5A). The
Hill function was fitted to the data points
of each condition (Fig. 5B). The apparent
calcium affinity was slightly higher for the
D186/D193A mutant (K, = 1.3 = 0.2
mM) than for the WT rescue (K, = 1.7 =
0.2 mMm); both showed a higher calcium
apparent affinity than the D51/E52/E55A
and D166/E170A mutant (K, = 3.1 = 2.1
vs K, = 3.0 £ 0.6 mM, respectively). In
ok contrast, the Hill coefficient ¢, reflecting
the apparent cooperativity, was compara-

ble for the WT (2.9 = 0.8), D186/D193A

mutant (3.1 = 1.2), and D51/E52/E55A

mutant (3.4 £ 1.7), whereas its value was

decreased in the D166/E170A mutant

2 @0 (1.3 = 0.7). In short, the calcium experi-
ments exposed a lower apparent calcium
affinity in the D51/E52/E55A. Increasing
calcium concentrations resulted in a par-

ekl tial rescue of release for the D51/E52/
— E55A mutant.

Titration of spontaneous release with
external calcium showed that the higher
spontaneous release rate of the three mu-
tants persisted at calcium concentrations
between 1 and 12 mM (Fig. 5C). The spon-
taneous release rate in the WT had a

& & & h%gher slope, Which is ind.icative of a
S higher cooperativity for calcium than the
0 three mutants. A decreased cooperativity

& & &

A B
5.
44
vy E’ 3]
3 2
2 21
1nA 14
50 ms o
_ 304
o
=
& 201
o
10 pC 2
%]
T 10.
02s $
o
I
I 0
5 50- o o8 *kk 1.0
= T * Kk 2 E
Q . —r [} d
g o £ o 8,08
g 2 s
2 30 5 o 8061
! 24 83
5 1 5 25
2 2, ] £ 9
5 104 52 2 %02
3 (7)) (22) § &
@ ol <0 .
;‘&‘ & égov' & xé‘ & eg;‘? &
& N & & & &
NI N NP,
xo & xo x xo
L had 1 L had 1
SNAP-25 null SNAP-25 null

Figure3.

The extentand synchronicity of evoked release s affected by D166/E170A and D51/E52/ES5A mutations in SNAP-25B.
A, A2 msdepolarization to 0 mV of the autaptic hippocampal neuron (indicated by arrow) leads to an EPSC (representative traces).
B, Peak EPSCamplitudes were strongly reduced in the D166/E170A and D51/E52/E55A mutants. €, Cumulative charge of EPSCs. D,
Total evoked charge (1 s integration) after a single depolarization. E, Synchronous release component of EPSCs. F, Asynchronous

of spontaneous release has also been
found when mutating syt-1 (Xu et al.,
2009). However, because the mEPSC rate
did not saturate even at 12 mm [Ca® "], we
could not fit the Hill equation to these
data.

SNAP-25 null

release component of EPSCs. G, Fractional contribution of the synchronous release component to overall release. Bar graphs display

mean = SEM. **p << 0.01; ***p << 0.001 (Kruskal-Wallis test followed by Dunn’s post test).

evoked release is due to a reduction in Py, whereas for the D166/
E170A mutant, both the RRP and P, were reduced.

Phenotype of the D51/E52/E55A mutant is partially rescued
upon high extracellular Ca®* concentrations

The Ca** influx into the presynapse during an action potential
correlates directly with the EPSC size until 10 mm extracellular
[Ca®"], where saturation sets in (Ikeda et al., 2008). The observed
difference in EPSC amplitude between the syt-1-binding defi-
cient SNAP-25 mutants and the WT protein could be due to a
change in calcium affinity of the release machinery. To test this
possibility, we investigated the effect of different extracellular
calcium concentrations on the EPSC amplitude, bracketed by
control measurements at 2 mm Ca>". At I mMm extracellular cal-
cium, nearly all cells in the D166/E170A and D51/E52/E55A mu-
tant condition failed to generate a postsynaptic response, whereas
most WT or D186/D193A mutant cells displayed a decrease in
EPSC amplitude (Fig. 5A, B; 1 mMm). Increasing the [Ca?*] up to
8 mM increased the EPSC amplitude in all mutants (Fig. 5A, B; 8
mM). Remarkably, for the D51/E52/E55A mutant, evoked release
was restored to 39 £ 15% of the WT amplitude at 8 mm (com-
pared with 11 = 4% at 2 mMm extracellular calcium). At 12 mm,

Knock-down of syt-1 occludes the
phenotypes of SNAP-25 mutants

If the mutations tested here work primarily by reducing the in-
teraction between SNAP-25 and syt-1, then the effect of the mu-
tations should be occluded by removal of syt-1. To test this, we
knocked down syt-1 in Snap-25-null neurons expressing the mu-
tants. The knock-down construct led to undetectable expression
of syt-1 (Fig. 6A). In previous studies, knock-out of syt-1 led to
increased spontaneous release frequency in mixed cortical cul-
tures and slices (Kerr et al., 2008; Xu et al., 2009). In contrast,
autaptic cultures of Syf-1 knock-out cells did not display an in-
crease in spontaneous release frequency (Geppert et al., 1994; Liu
et al., 2009; Wierda and Serensen, 2014). Here, we observed that
lentiviral knock-down of syt-1 in autaptic neurons increased
spontaneous release frequency (syt-1 knock-down: 5.0 = 0.9 Hz,
n = 38; control: 1.3 £ 0.2 Hz, n = 62, p <0.0001, unpaired ¢ test).
Surprisingly, it also reduced RRP size by ~50%, which is also seen
in syt-1 knock-out networks, but not in autapses (Liu et al., 2009).
Therefore, syt-1 knock-down seems to better reproduce the net-
work condition.

After knock-down of syt-1, spontaneous release frequencies
were similar between constructs (Fig. 6 B, C), although the D51/
E52/E55A mutation had on average higher rates. The amplitude
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Figure 4. Spontaneous release is unclamped by SNAP-25B mutants not binding syt-1. A, Example traces of spontaneous vesicle release at a holding potential of —70 mV.
B, Spontaneous release frequencies were increased in all three SNAP-25 mutants. €, Amplitudes of spontaneous release events. D, Representative responses upon 5 s perfusion with
hyperosmotic sucrose solution (0.5 m). E, Overall RRP charge in mutant conditions, derived from the sucrose response. F, Number of vesicles in the RRP, calculated by the ratio of the RRP
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The P\ was strongly reduced by D51/E52/E55A and D166/E170A mutations. H, Example traces of 100 depolarizations (40 Hz) preceded and followed by 1 Hz stimulations. /, Train
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Dunn’s post test).
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of miniature events was 38.1 = 1.2 pA for the WT construct with
syt-1 knock-down and did not differ significantly from the other
conditions (Fig. 6D). We observed strongly decreased and very
asynchronous EPSC amplitudes upon stimulation (Fig. 6E,F)
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compared with the evoked stimulation responses of autaptic hip-
pocampal cultures in the presence of syt-1 (Fig. 6G). However, all
mutants and the WT had indistinguishable EPSC amplitudes
(Fig. 6F). The size of the RRP also did not display significant
differences between the SNAP-25 constructs (Fig. 6 H,T).

We conclude that the knock-down of syt-1 in autaptic neu-
rons occluded all differences between the SNAP-25 mutants
when they were compared side by side (Fig. 6). Conversely, com-
paring the data with and without syt-1 makes it clear that syt-1
still has consequences in the presence of the D51/E52/E55A mu-
tation, in which there is markedly more synchronized release in
the presence of syt-1 than in its absence (cf. Figs. 3B, 6F). There-
fore, this mutation does not entirely abolish the function of syt-1,
which is expected due to the large primary interaction surface
(Zhou et al., 2015). Strikingly, the D166/E170A mutation, which
is located within the “region I” of the primary interaction surface
(Zhou et al., 2015), appears to eliminate any effect of syt-1 on
evoked release or on the RRP size (cf. Figs. 3B, 6F, 4E, 6I). The
only effect of removing syt-1 in the presence of the D166/E170A
mutant was a reduction in mEPSC frequency (cf. Figs. 4B, 6C; p =
0.0039, two-tailed ¢ test). In contrast, for the D51/E52/E55A mu-
tant, there was a tendency to a further increased mEPSC fre-
quency upon syt-1 removal (cf. Figs. 4B, 6C; p = 0.069, two-tailed
t test). Therefore, the phenotype of the D166/E170A mutant is
distinct from that of the D51/E52/E55A mutant and overall more
severe.

Overexpression of syt-1 clamps spontaneous release, but not
evoked release, in the D51/E52/E55A mutant

In complementary experiments, we tested whether increasing the
amount of syt-1 would be able to rescue the phenotypes observed
in the SNAP-25 mutants. We produced a lentiviral syt-1 overex-
pression (OE) construct, which rescued the evoked response in
six of six Syt-1 knock-out cells measured, indicating correct ex-
pression of syt-1 (Fig. 7A). The amount of expressed syt-1 was
approximately three times as high upon OE compared with WT
cells without the construct (Fig. 7B). In Snap-25-null neurons
rescued by WT EGFP-SNAP-25, additional OE of syt-1 did not
change the frequency of mEPSCs significantly [WT: 1.3 = 0.2 Hz
(Fig. 4B) vs WT+syt-1 OE: 1.2 = 0.7 Hz (Fig. 7C), two-tailed ¢
test, p = 0.9] or their amplitude (data not shown). In contrast,
with the D51/E52/E55A mutant, the mEPSC frequency was
reduced to a similar frequency as the WT by syt-1 OE
(WT+syt-1 OE: 1.2 = 0.7 Hz vs D51/E52/E55A +syt-1 OE:
1.9 = 0.7 Hz). The decrease of frequency in the D51/E52/E55A
mutant was significant when directly comparing the mutant
with and without syt-1 overexpression (two-tailed ¢ test, p =
0.0282). In contrast, for the D186/D193A and D166/E170A
mutants, mEPSC frequencies remained significantly elevated
even after syt-1 OE (Fig. 7C,D). No rescue of the evoked EPSC
amplitude was found after syt-1 OF for any of the mutations
(cf. Figs. 7E, F, 3A,B). The application of sucrose resulted in a
similar RRP charge and release probability (Fig. 7G-I) as
without syt-1 OF (cf. Fig. 4).

Overall, syt-1 OE clamped spontaneous release frequency
of the D51/E52/E55A mutant to WT values, whereas it did not
affect evoked release. This indicates that the site around D51/
E52/E55 is not obligatorily coupled to limiting spontaneous
release, presumably because other charges can take over this
function.
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knock-down (KD) construct (B) Example traces of spontaneous vesicle release at a holding potential of —70 mV. Neurons were cultured from Snap-25-null embryos and simultaneously transduced
with a lentiviral vector encoding a SNAP-25 construct and the syt-1 KD construct. ¢, Spontaneous release frequencies in the SNAP-25 mutants. D, Amplitudes of mEPSCs. E, Single stimulations
(indicated by arrows) led to very small EPSCs (representative traces), where miniature events were visible. F, Averaged peak EPSC amplitudes. G, Example traces of EPSCs in the presence of syt-1
(same data as in Fig. 34 and rescaled as in E) for comparison. H, Representative responses upon 5 s perfusion with 500 mOsm hyperosmolar sucrose solution. I, RRP charges. Bar graphs display
mean = SEM. *p < 0.05, **p << 0.01, ***p << 0.001 (Kruskal—Wallis test followed by Dunn’s post test).

Position D166 is necessary for Cpx clamping of spontaneous
fusion and vesicle priming

In the above experiments, we used the D166/E170A mutant based
on our previous work showing that this mutant eliminates binding
to syt-1 (Mohrmann et al., 2013). However, the crystal structure
published in the meantime identified only D166 as part of the region
I of the primary interface (Zhou et al., 2015). We therefore tested
whether mutating D166 alone might suffice to change fusion in vitro
and ex vivo. At the same time, we created the D51/E52/E55/D166A
quadruple mutant, which compromises both region I and II of the
primary interface (Zhou et al., 2015; Fig. 8A).

Determination of vesicle association in vitro showed that both
the D166A and the D51/E52/E55/D166A reduced vesicle associ-
ation significantly in the absence of PI(4,5)P, (Fig. 8C), but not in
its presence (Fig. 8B). As before, the inclusion of Cpx II did not
change vesicle attachment under any condition (Fig. 8 B,C). Fu-
sion (lipid mixing) in the presence of Cpx I, but in the absence of
Ca**, was strongly disinhibited by the D166A mutation (Fig.
8D). The D51/E52/E55/D166A displayed strongly reduced fusion

both in the presence and absence of Cpx II (Fig. 8 D,E). Both
mutations resulted in a strongly reduced clamping by Cpx II (Fig.
8F), just as with the D166/E170A mutant (Fig. 1G). Therefore,
the D166A mutant in any of those combinations (or alone) inter-
feres with Cpx II clamping. However, D166 is located at the op-
posite side of Cpx on the Cpx-bound SNARE complex and does
not interact with Cpx (Chen et al., 2002). Finally, we evaluated
the stability of the ternary (cis-) SNARE complex and found a
small but clear destabilization of the complex by the D166A/
E170A mutation, whereas D166A did not compromise SNARE
complex stability (Fig. 8G). This difference is likely caused by an
interaction (H-bond) of the E170 side chain with the zero-layer
Q-174 in SNAP-25 (Sutton et al., 1998).

In autaptic neurons expressing the D166A mutant, spontaneous
release was strongly unclamped, reaching mean frequencies >50 Hz
(Fig. 9 A, B). Due to the high rates, we used unsupervised detection of
mEPSC frequencies in this set of experiments, which leads to differ-
ent absolute numbers than the supervised detection used before, but
should not compromise the detection of differences. The D51/E52/
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Figure7.

Overexpression of syt-1clamps spontaneous release frequency in the D51/E52/E55A mutant. 4, EPSCamplitudes without (blue) and with (black) lentiviral syt-1 OE construct in autaptic

hippocampal neurons isolated from syt-7-null mice. B, Western blot of control (ctrl) neurons without (left) and with (right) syt-1 overexpression. €, Example traces of spontaneous vesicle release at
aholding potential of —70 mV. Neurons were cultured from Snap-25-null embryos and simultaneously transduced with a lentiviral vector encoding a SNAP-25 construct and the syt-10E construct.
D, Spontaneous release frequencies in the SNAP-25 mutants with syt-1 OE. £, Single stimulation (indicated by arrow) led to a postsynaptic current (representative traces). F, Peak EPSCamplitudes.
G, Representative responses upon 5 s perfusion with 500 mOsm sucrose. H, RRP charges. I, P, calculated as the ratio of the single evoked charge and the RRP charge of the same cell. Bar graphs
display mean == SEM. *p << 0.05, ***p << 0.001 (Kruskal-Wallis test followed by Dunn’s post test).

E55/D166A did not further increase mEPSC frequencies (Fig. 9B).
mEPSC amplitudes were unchanged by the mutations (Fig. 9C).
Upon stimulation to fire an action potential, the D166A supported
only small EPSCs (Fig. 9 D, E), which were slightly less synchronous
than in WT transduced cells recorded in parallel (Fig. 9F-TI). Strik-
ingly, the D51/E52/E55/D166A did not respond to stimulation with
a detectable EPSC (Fig. 9D). Hypertonic stimulation showed that
both mutations had strongly reduced RRPs (Fig. 9],K), but the
D166A displayed normal Py (Fig. 9L). This was also reflected in the
depression during a 20 Hz stimulation train, which was indistin-
guishable between WT and D166A neurons (Fig. IM).

Together with the results above, these data show that D166A,
either alone or in combination with E170A or D51/E52/E55A,

results in unclamping of spontaneous release and a reduction in
RRP. The reduced Py found in the D166/E170A might be related
to the destabilization of the SNARE complex induced by the
E170A mutation, not to the lack of syt-1 interaction.

Discussion

Here, we examined five SNAP-25 mutations designed to interfere
with syt-1 interactions. Our in vitro vesicle attachment assay showed
that the D51/E52/E55A, D166/E170A, D166A, and D51/E52/E55/
D166A mutants markedly reduced the attachment between syt-1-
and t-SNARE-carrying vesicles in the absence of PI(4,5)P whereas
D186/D193A had only a small but significant effect. In the presence
of PI(4,5)P,, vesicle attachment was unaffected by SNAP-25 muta-
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tion. Therefore, syt-1 can attach vesicles via
interactions with PI(4,5)P, or the SNARE
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SNAP-25 D51/E52/E55/D166A
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complex (Kim et al., 2012; Parisotto et al., S1I

2012; Kedar et al., 2015). Our physiological
data showing profound effects of D51/E52/
E55A, D166/E170A, D166A, and D51/E52/
E55/D166A on evoked release, and no effect
of D186/193A, are complementary to those
obtained previously by mutation of syt-1
(Brewer et al., 2015; Zhou et al., 2015) and
overall support the physiological relevance
of syt-1:SNARE interactions (Pang et al.,
2006b).

-
0 o
S °

1

5 O
o o

1

N
o

1

Evoked release requires SNAP-25
negative charges within the region II of
the primary interface

The SNAP-25 D51/E52/E55 interaction in-
terface (Rickman et al., 2006) was found
previously to mediate syt-1-mediated vesi-
cle attachment in vitro (Kim et al., 2012) and
vesicle docking and fast vesicle fusion in ad-
renal chromaffin cells (Mohrmann et al.,
2013). Here, we found that D51/E52/E55A
reduced vesicular release probability pro-
foundly without affecting vesicle priming.
It also unclamped spontaneous release,
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not further increase spontaneous release.
Overall, the region II of the primary inter-
face is not essential for clamping release, but
it might facilitate a collision-limited interac-
tion of syt-1 with the SNARE complex.

Opverexpression of syt-1 did not recover
evoked release in the D51/E52/E55A mu-
tant, consistent with the notion that this step
is not collision limited, but rather involves a
structural change in a preformed complex.
In the presence of the D166A mutation, the
D51/E52/E55A completely eliminated trig-
gered release, attesting to the essential na-
ture of these charges (Fig. 9). This aligns well
with similar findings for the interacting
syt-1 residues R398 and R399 (Gaffaney et
al., 2008; Xue etal., 2008a; Kedar et al., 2015;
Zhou et al., 2015).

Fast synchronous release driven by
syt-1 was not entirely abolished upon
mutation of the D51/E52/E55-site and
calcium titration succeeded in partially
restoring the evoked release amplitude,
revealing that the calcium dependence of
release is shifted, whereas the cooperativ-
ity is intact (Fig. 5). The shift in the cal-
cium dependence of release has also been
noted when mutating the interaction site within syt-1 (Borden et
al., 2005; Li et al., 2006; Brewer et al., 2015). PI(4,5)P, binding to
syt-1 increases its calcium affinity in vitro (van den Bogaart et al.,
2012) and it appears likely that binding to negative charges on the
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Vesicle—vesicle attachment is impaired and spontaneous fusion in vitro disinhibited by the D166A mutation. 4,
Schematic representation of the mutants: SNAP-25B D166A (dark red) and D51/E52/E55/D166A (violet). B, C, Attachment of SUVs
to GUVs with and without Cpx I1in the presence (B) or absence (C) of PI(4,5)P,. SUVs that were bound to GUVs were quantified and
normalized to total input (see legend to Fig. 1). D, E, t-SNARE-GUVs containing SNAP-25 WT (black), D166A (dark red), or D51/
E52/E55/D166A (violet) were mixed with v-SNARE-SUVs in the presence (D) or absence (E) of Cpx II. Lipid mixing during vesicle
fusion was monitored as the increase of Atto488 fluorescence as explained in the legend to Figure 1. Values were normalized to the
maximum fluorescence signal after detergent lysis. F, Fractional clamping effect of Cpx II. Note that the D166A mutation removes
Cpx clamping either alone or in combination with the E170A (Fig. 1) or the D51/E52/E55A mutation. G, Unfolding of SNARE
complexes formed with WT (black), D166A (dark red), or D166/E170A (red) SNAP-25B as measured by the appearance of uncom-
plexed syntaxin-1 at higher temperatures. Most error bars are too small to be plotted (n = 3). The D166/E170A mutation slightly
destabilizes the complex, whereas D166A does not. Note that the data for WT SNAP-25B in B—F are the same asin Figure T because
all experiments shown in Figures 1 and 8 were performed using the same vesicle preparations. All graphs display mean = SEM
(n=3).%p < 0.05,**p < 0.01; ***p < 0.001 (one-way ANOVA, significance was calculated using Dunnett’s post test).

SNARE complex could do the same. It is an intriguing possibility
that a major function of primary interface syt:SNARE-binding is
to bring the Ca** affinity of syt-1 within a physiological feasible
range upon the detection of a properly formed SNARE complex.
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Figure 9.  The D166A mutant unclamps spontaneous release and inhibits vesicle priming. 4, Example traces of spontaneous
vesicle release ata holding potential of —70 mV. B, Spontaneous release frequencies were strongly increased by SNAP-258 D166A
or SNAP-25B D51/E52/E55/D166A. €, Amplitudes of spontaneous events were not significantly changed. D, Representative traces
of single stimulations (indicated by arrows). Five examples are shown for the D51/E52/E55/D166A mutant, which did not
have detectable evoked release. E, Peak EPSC amplitudes were reduced in the D166A mutant and absent in the D51/E52/E55/
D166A mutant. Note that, in this set of experiments, EPSC amplitudes were higher than in previous experiments (Fig. 3), but the
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D166A within region I of the primary
interface is required for vesicle priming
and for clamping of spontaneous
release

All three mutants including the D166A mu-
tation, D166A, D166/E170A, and D51/E52/
E55/D166A, were characterized by a redu-
ced RRP and strongly increased spontane-
ous release rates. The lower Py in the D166/
E170A mutant might have been caused by
the destabilization of the SNARE complex
by the E170A mutation (Fig. 8G) because
it was not found for the D166A mutant
(Fig. 9).

The effect of D166A on vesicle priming
was not expected as a consequence of re-
duced syt-1 interaction because previous
studies did not identify changes in RRP
size in syt-1 KO autaptic cultures (Xue et
al., 2008a; Liu et al., 2009). However, it
was found recently that syt-1 and syt-7 to-
gether are necessary for maintaining the
RRP in mass cultures of hippocampal
neurons and that syt-1 is involved in RRP
formation by promoting the formation or
stabilization of SNARE complexes (Bacaj
et al., 2015). Another study showed that
KO of syt-1 alone can decrease the RRP
size in small neuronal networks (Liu et al.,
2009) and we showed here that a knock-
down construct of syt-1 profoundly re-
duced RRP size in autaptic SNAP-25 KO
neurons simultaneously rescued with
SNAP-25 (cf. Figs. 6, 4). Therefore, the
RRP-promoting effect of syt-1 might be-
come manifest under some experimental
conditions, but not others, possibly de-
pendent on the expression of other synap-
totagmins.

The profound reduction in RRP by the
D166A mutation without a change in Py
and the elimination of evoked release in
the D51/E52/E55/D166A point toward a
separation of function between region I
(D166) and region II (D51/E52/E55) of
the primary interface in vesicle priming
and fusion, respectively. We cannot rule

<«

release probability was similar (L and cf. Fig. 4G). F, Cumula-
tive charge of EPSCs used for kinetic analysis. The D51/E52/
E55/D166A mutant could not be analyzed. G, H, D166A
mutation reduced the synchronous release, but did not affect
asynchronous release. /, Therefore, the ratio of synchronous
release was decreased. J, Representative traces of hypertonic
shock (500 mOsm sucrose) to measure the readily releasable
pool. K, RRPs were decreased in both mutants. L, Release prob-
ability was not affected by the D166A mutation. M, Train of
stimulations at 20 Hz gave similar short-term plasticity for WT
and the D166A mutant. Bar and line graphs display mean =
SEM. *p << 0.05, **p << 0.01, ***p << 0.001 (Kruskal-Wallis
test, followed by Dunn’s post test for B, , E, and K; unpaired
test for G-/ and L). n.d., Not determined.
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out that the D166A mutation could have a priming effect inde-
pendent of syt-1, but several observations support a specific role
for D166 in syt-1 binding. First, D166 was identified as interact-
ing with syt-1 Y338 in the crystal structure (Zhou et al., 2015).
Second, the D166A mutation perturbed syt-1-dependent vesicle
attachment in vitro (Figs. 1, 8). Third, the D166/E170A mutation
was shown to reduce syt-1 C2AB-domain pull-down (Mohrmann et
al., 2013). Fourth, the SNARE complex remains stable in the pres-
ence of the D166A mutation (Fig. 8G). Finally, knock-down of syt-1
occludes the effect of D166/E170A on priming (Fig. 6I). Therefore,
we propose that D166 is part of a SNARE interface that is necessary
for syt-1-dependent vesicle priming, presumably by promoting
SNARE complex formation or stabilization (Bacaj et al., 2015). The
location of D166 to the N-terminal half of the SNARE complex
(outside of layer 2) makes it a good candidate to mediate vesicle
priming, which depends on N-terminal SNARE assembly (Sorensen
et al., 2006; Weber et al., 2010).

A puzzling finding is that the D166A mutation, either alone or
together with E170A or D51/E52/E55A, led to strong unclamping
of spontaneous release (Figs. 4,9). In D166/E170A, this unclamp-
ing was occluded by syt-1 knock-down (Fig. 6), indicating that it
is a consequence of syt-1 interaction. Spontaneous release rates
were not higher in the quadruple D51/E52/E55/D166A mutation
than in the D166A single mutation (Fig. 9B), clearly pointing
toward D166 as being causative. The unclamping of spontaneous
release was also seen in our minimal in vitro fusion assay (Figs.
1D, 8D) and, indeed, the unclamping effect in the cell correlated
with a lack of Cpx clamping in vitro (Figs. 1G, 8F). This correla-
tion extends to the D186/193A mutation, which supported intact
evoked release, but also unclamped spontaneous release (Fig. 4B)
and reduced Cpx clamping in vitro (Fig. 1G).

In our in vitro system, syt-1 drives vesicle attachment up-
stream of SNARE complex formation (Parisotto et al., 2012),
whereas Cpx acts as a downstream clamp, which builds up a pool
of vesicles for syt-1-dependent fusion (Malsam et al., 2012).
When taken together with our observation that D166 is necessary
for normal vesicle priming, it is tempting to suggest that syt-1-
dependent formation of SNARE complexes (Bacaj et al., 2015)
might be required for the downstream association of the Cpx
clamp. Syt-1 might arrest the SNARE complex in a partially as-
sembled state (Chicka et al., 2008) for long enough that Cpx can
bind and stabilize clamping. In the absence of syt-1, SNARE com-
plexes might finalize their formation spontaneously, leading to
fusion before Cpx has time to interact. If this model is correct,
then Cpx deletion should have no effect on spontaneous release
in the absence of syt-1, which was indeed observed in Drosophila
(Jorquera et al., 2012). Evaluating this model for mammalian
synapses will be more complicated because the stimulatory func-
tions of Cpx dominate (Xue et al., 2008b; Xue et al., 2009). Fur-
thermore, from double/triple knock-out experiments in both
systems, it is clear that Cpx exerts positive effects on evoked re-
lease in the absence of syt-1 (Xue et al., 2010; Jorquera et al.,
2012). More investigations will be required to reveal the interde-
pendence between Cpx function and syt-1-dependent SNARE
complex formation.

In any case, our results argue against the notion that increased
spontaneous release rates upon deletion of syt-1 originate from
interaction with an alternative sensor/trigger (see also Pang et al.,
2011). First, our findings in the cell mirror findings in a minimal
in vitro system in which no alternative sensors/triggers are pres-
ent. Second, we investigated five mutants neutralizing surface
charges on the SNARE complex, which would not be expected to
increase association with another sensor, although the possibility
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remains open that, by inhibiting interaction with syt-1, they
might facilitate the interaction indirectly with a sensor binding to
a different site.

Conclusion: the triple life of Syt-1 depends on

SNARE interactions

The triple life of syt-1 in suppressing spontaneous release, stim-
ulating vesicle priming, and eliciting evoked release (Bacaj et al.,
2015) was reproduced here by knock-down of syt-1 in autaptic
neurons (Fig. 6). Moreover, our examination of five mutants of
negative surface charges of the SNARE complex indicates that
syt:SNARE interactions are required for all three aspects of syt-1
function. Early attachment of syt-1 to SNARE complexes as they
form might set the stage for later interactions with Cpx to prevent
spontaneous release and shape evoked release.
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