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Abstract: Bacterial adhesion and biofilm formation on food processing surfaces pose major risks to 
human health. Non-efficient cleaning of equipment surfaces and piping can act as a conditioning 
layer that affects the development of a new biofilm post-disinfection. We have previously shown that 
surface conditioning with cell extracts could reduce biofilm formation. In the present work, we 
hypothesized that E. coli cell wall components could be implicated in this phenomena and therefore 
mannose, myristic acid and palmitic acid were tested as conditioning agents. To evaluate the effect 
of surface conditioning and flow topology on biofilm formation, assays were performed in agitated 
96-well microtiter plates and in a parallel plate flow chamber (PPFC), both operated at the same 
average wall shear stress (0.07 Pa) as determined by computational fluid dynamics (CFD). It was 
observed that when the 96-well microtiter plate and the PPFC were used to form biofilms at the same 
shear stress, similar results were obtained. This shows that the referred hydrodynamic feature may be 
a good scale-up parameter from high-throughput platforms to larger scale flow cell systems as the 
PPFC used in this study. Mannose did not have any effect on E. coli biofilm formation, but myristic 
and palmitic acid inhibited biofilm development by decreasing cell adhesion (in about 50%). These 
results support the idea that in food processing equipment where biofilm formation is not critical 
below a certain threshold, bacterial lysis and adsorption of cell components to the surface may 
reduce biofilm buildup and extend the operational time. 

Keywords: surface conditioning; Escherichia coli; mannose; myristic acid; palmitic acid; biofilm; 
parallel plate flow chamber; microtiter plate; computational fluid dynamics  
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1. Introduction 

Escherichia coli is an important bacterial pathogen commonly implicated in outbreaks of 
foodborne diseases since it is capable of adhering to and form biofilms on food processing  
surfaces [1], leading to persistence and resistance to disinfection treatments [2]. The first step in the 
biofilm formation process is surface conditioning by molecules originating from the surrounding 
liquid such as ingredients from the culture medium [3] and components from cell lysis [4]. Following 
surface conditioning, free-floating bacterial cells will become attached, adhered and then retained on 
the surface [5]. It is at this point that bacteria start to form microcolonies and secrete extracellular 
polymeric substances (EPS) that are required for the interactions of the cells with the surface, with 
other cells and with other matrix components to develop the complex architecture of the biofilm. 
Bacteria can detach from the original biofilm and dispersed individual cells or clumps may spread 
into a new environment. 

Removing biofilms in food processing plants is critical and it can be much more difficult than 
preventing their formation due to the high tolerance of sessile cells to cleaning agents [6,7]. 
Moreover, the cleaning and disinfection methods currently used in industrial plants increase the 
process downtime and the production costs. Thus, an integrated strategy focused in the use of 
antibiofilm agents and other approaches to inhibit or disperse biofilms is being considered [8,9,10]. 
Although one might think that adsorbed cell components and related molecules can automatically 
enhance cell retention and reduce surface hygiene, it is known from several studies that proteins such 
as bovine serum albumin (BSA), gelatin, fibrinogen and pepsin adsorbed to surfaces may inhibit 
bacterial attachment [11,12,13]. Recently, it has been shown that surface preconditioning has 
potential to prevent bacterial adhesion to processing surfaces [14–18]. In order to elucidate about the 
process of bacterial contamination in dairy industry, Dat et al. [16] investigated the influence of 
surface conditioning with dairy by-products such as skimmed milk, buttermilk and butter  
serum (which possess different compositions) on the bacterial attachment behavior. It was found that 
stainless steel surfaces treated with these dairy by-products reduced cell adherence [15], which might 
be related to the milk composition, especially milk proteins [19]. Almost all acidic proteins were 
reported to reduce bacterial adherence, but basic and non-polar proteins enhanced it [20]. 
Additionally, the adherence-reducing ability of buttermilk and butter serum was proved to be better 
than skimmed milk due to the presence of substances associated with the milk fat globule  
membrane [15]. Other authors also revealed that the treatment of stainless steel surfaces with three 
types of milk decreased the adhesion of Staphylococcus aureus [16]. Studies using E. coli 
exopolysaccharides as surface coatings have provided further evidence that polysaccharides inhibit 
bacterial adhesion, possibly by modifying the physical properties of surfaces [21,22]. Despite the 
knowledge on the effects of surface conditioning on bacterial adhesion, the impact of preconditioned 
surfaces on biofilm maturation is poorly understood. 

Since the conditioned materials are usually integrated in engineered systems with particular 
hydrodynamic conditions, bacterial adhesion and the subsequent biofilm formation may also be 
affected by the fluid flow [23]. The hydrodynamics defines the rate at which macromolecules and 
cells are transported to the surface, the time they reside in the surface proximity, the oxygen and 
nutrient transport, and the mechanical shear stresses at the surface-fluid and fluid-biofilm  
interfaces [24,25]. 
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In a previous work, we have shown that different E. coli cell extracts (total cell extract, 
cytoplasm with cellular debris and periplasmic extract) inhibited biofilm formation under dynamic 
flow conditions [4]. The present study aims to evaluate the effect of surface conditioning with 
representative components of cell wall (mannose, myristic acid and palmitic acid) on E. coli biofilm 
formation. A screening of the most important conditioning agents affecting biofilm formation was 
performed in agitated 96-well microtiter plates in order to take advantage of the high throughput of 
this platform. Then, the effect of the most relevant concentrations was evaluated on biofilm 
formation and bacterial adhesion assays performed in a parallel plate flow chamber (PPFC) under the 
same shear stress obtained in the 96-well microtiter plate. The scalability of the results produced in 
this small scale system (with a different flow topology from traditional flow systems) and the 
possibility of its application to study the biofilms developed in industrial settings are discussed.  

2. Materials and Methods 

2.1. Numerical simulations 

Numerical simulations were made in Ansys FLUENT CFD package (version 14.5; Ansys, Inc., 
USA) for two distinct cases: a cylindrical well of a 96-well microtiter plate (diameter (ܦሻ of 6.6 mm 
and height (ܪ) of 11.7 mm, maximum volume of 0.36 ml, Figure 1C) subjected to an orbital motion 
with amplitude of 50 mm and shaking frequency of 150 rpm [26]; a PPFC unit (with a cross section 
of 8 × 16 mm and a length of 254 mm) at different flow rates. The three-dimensional geometries of 
the domains were built in Design Modeller 14.5 (Ansys, Inc., USA) and discretized by Meshing  
14.5 (Ansys, Inc., USA) into grids of 18,876 hexahedral cells (in the case of microwell) and 
1,694,960 hexahedral cells (in the case of PPFC).  

In the simulation of the well, we were dealing with a two-phase flow scenario, so the volume of 
fluid (VOF) methodology was used to track the liquid-gas interface and the precise location of the 
interface was obtained by the Geo-Reconstruct method. The surface tension effects were modelled 
by the continuum surface force, and an accelerating reference frame and the circular orbital motion 
were implemented. The simulation was initialized with the well filled with 200 µl of liquid and the 
remaining volume consisting of air. The properties of water and air at 30 °C were used for the liquid 
and gas phases, respectively. The no slip boundary condition and a contact angle of 83° were fixed 
for all walls. The velocity-pressure coupled equations were solved by the PISO algorithm, the 
QUICK scheme was used for the discretization of the momentum equations and the PRESTO! 
scheme was applied for pressure discretization. A physical time of 5 s was simulated with a fixed 
time step of 2.5 × 10–4 s. 

In the case of the PPFC unit, several simulations were performed for the PPFC with the purpose 
of determining the liquid flow rate that yields an average wall shear stress (߬௪) in the visualization 
zone similar to the one obtained inside the wells at the shaking conditions used in this work [27]. The 
flow rate conditions of these simulations led to flow under turbulent regime (Reynolds number 
higher than 3500), therefore the SSL k-ω model with low Reynolds corrections was applied. The 
whole set of PPFC simulations was performed in transient mode due to the unsteadiness associated 
with the jet flow that forms at the inlet and to assure convergence. An initial condition of zero 
velocity was set for the whole domain and the boundary conditions comprehended a uniform velocity 
profile at the inlet, a zero relative pressure at the outlet and a no slip condition for all the walls. The 
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fluid was assumed to be water at 30 °C. Similarly to the simulation of the microwell, the solution 
methods used were PISO, QUICK and the PRESTO!. A physical time of 2 s was simulated and a 
fixed time step of 10–4 s was used. 

2.2. Conditioning agents 

Three components representative of the E. coli cell wall were tested as conditioning agents: 
mannose, myristic acid and palmitic acid. Mannose is a sugar monomer which is typically found on 
the walls of bacterial cells [28]. Furthermore, it is one of the predominant monosaccharide 
components detected on the cell surfaces of various enteropathogenic E. coli serotypes [29]. The two 
saturated fatty acids palmitic acid (C16:0) and myristic acid (C14:0) are the dominant ones in the E. 
coli cell wall [30,31], consisting of more than 50% of the fatty acid content in continuous  
cultures [31].  

D-(+)-mannose (Fluka Analytical, cat. no. 63580, USA) was prepared in sterile distilled water 
at concentrations of 0.5, 1, 5, 10 and 100 g l–1. Given the low solubility of the palmitic (Merck 
KGaA, cat. no. 800508, Germany) and myristic acid (Fluka Analytical, cat. no. 70082, USA) in 
water, concentrated solutions (25 g l–1) were prepared using absolute ethanol (PanReac AppliChem, 
Germany) from which working solutions of 2.5 × 10–4, 2.5 × 10–3, 0.025, 0.25 and 2.5 g l–1 (below 
the micellar concentration) were prepared in distilled water. The pH of myristic acid solutions  
was 6.58 ± 0.16, while the pH of palmitic acid solutions was 6.68 ± 0.12. 

2.3. Bacteria and culture conditions 

E. coli JM109 (DE3) from Promega (USA) was used in this study since it had already shown a 
good biofilm forming capacity in different platforms [32,33,34]. An overnight culture of this strain 
was prepared by adding 500 µl of a glycerol stock (kept at –80 °C) to 0.2 l of inoculation media (5.5 g l–1 
glucose, 2.5 g l–1 peptone, 1.25 g l–1 yeast extract in phosphate buffer (1.88 g l–1 KH2PO4 and 2.60 g l–1 
Na2HPO4, pH 7.0) and incubating at 30 °C with orbital agitation [33]. Cells were then harvested by 
centrifugation (3202 g, 10 min) and washed twice with citrate buffer 0.05 mol l–1, pH 5.0 [34]. The 
pellet was resuspended and diluted in the same buffer in order to reach an optical density (OD) of 0.1 
at 610 nm (corresponding to a cell concentration of 7.6 × 107 cell ml–1). This suspension was used 
for adhesion and biofilm formation assays in the PPFC and 96-well microtiter plates. 

2.4. Microtiter plate assay 

Six wells of sterile 96-well polystyrene, flat-bottomed microtiter plates (Orange Scientific, cat. 
no. 4430100N, USA) were filled with 200 µl of the conditioning agent at each desired concentration. 
The plates were incubated for 1 h at 30 °C with orbital agitation (50 mm of shaking diameter at 150 rpm). 
After surface conditioning, each well was washed [35,36] with 200 µl of citrate buffer and filled with 
200 µl of the cellular suspension previously prepared. Clean wells were also washed with citrate 
buffer and inoculated with the cellular suspension (reported as “control”). The plates were incubated 
at 30 °C with agitation (50 mm of shaking diameter at 150 rpm) for 24 h to promote biofilm formation. 
Biofilm amount was assessed by staining with crystal violet [26] and expressed as OD570 nm values. 
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2.5. Parallel plate flow chamber assay 

The conditioning agents which have shown some effect on biofilm formation in the microtiter 
plate assay were chosen at the most effective concentration to be tested in the PPFC with the aim of 
assessing their effect on adhesion (after 30 min) and biofilm formation (after 24 h). Adhesion assays 
were not performed in the microtiter plate due to the detection limit of the crystal violet method. 

To conduct the assays, the PPFC was connected to a tank and a centrifugal pump by a tubing 
system [37]. The PPFC has recesses in its bottom for the introduction of round polystyrene  
coupons (1 cm diameter) so they become flush with the surface. Before being introduced into the 
PPFC, the coupons were soaked for 5 min in a commercial detergent (Sonasol Pril; Henkel Ibérica, 
S.A., Spain), then immersed in a sodium hypochlorite solution (3%, v/v) for more 5 min and 
aseptically rinsed in distilled water for 20 min. The PPFC was conditioned for 1 h at a flow rate of  
11 ml s–1, which corresponds to the average ߬௪ operated in the microtiter plates (0.07 Pa). Then the 
flow cell was washed with citrate buffer and filled with the E. coli suspension (OD610 nm = 0.1) that 
circulated through the PPFC at a flow rate of 11 ml s–1. Unconditioned polystyrene coupons were 
used as control. After 30 min of bacterial adhesion and 24 h of biofilm formation, the coupons were 
retrieved from the PPFC and total bacterial counts were obtained by direct staining with 4’,6-
diamidino-2-phenylindole (DAPI; Sigma-Aldrich, Portugal) [38]. Cells were visualized under an 
epifluorescence microscope (Eclipse LV100; Nikon, Japan) equipped with a filter block sensitive to 
DAPI fluorescence (359-nm excitation filter in combination with a 461-nm emission filter). A 
minimum of 10 fields from each coupon were counted and used to estimate the number of cells  
per cm2 of coupon area. Since the biofilms formed were mainly composed of cells, the results 
obtained by the DAPI staining method are directly comparable to those obtained by the crystal violet 
assay. 

2.6. Surface hydrophobicity  

The hydrophobicity of bare polystyrene and polystyrene conditioned with myristic and palmitic 
acid was evaluated considering the Lifshitz-van der Waals acid base approach [39]. The contact 
angles were determined automatically by the sessile drop method in a contact angle meter (OCA 15 
Plus; Dataphysics, Germany) using water, formamide and α-bromonaphtalene (Sigma-Aldrich Co., 
Portugal) as reference liquids [40]. The surface tension components of the reference liquids were 
taken from literature [40]. For each surface, measurements with each liquid were performed at 25 ± 
2 °C. The model proposed by van Oss [39] indicates that the total surface energy (்ߛ௧) of a pure 
substance is the sum of the Lifshitz-van der Waals components of the surface free energy (ߛௐ) and 
Lewis acid-base components (ߛ): 

௧்ߛ ൌ ௐߛ             (1)ߛ

The polar AB component comprises the electron acceptor (ߛା ) and electron donor (ିߛ ) 
parameters, and is given by: 

ߛ ൌ 2ඥߛାିߛ		 	 	 	 	 	 	 	 	 	 (2)	

The surface energy components of a solid surface (ݏ) are obtained by measuring the contact 
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angles (ߠ) with the three different liquids (݈) with known surface tension components, followed by 
the simultaneous resolution of three equations of the type: 

ሺ1  ݏܿ ்௧ߛሻߠ ൌ 2ቆටߛ௦ௐߛ
ௐ  ඥߛ௦ାߛ

ି  ඥߛ௦ିߛ
ାቇ		 	 	 	 	 		(3)	

The degree of hydrophobicity of a given surface is expressed as the free energy of interaction (Δܩ) 
between two entities of that surface immersed in a polar liquid (such as water (ݓ) as a model 
solvent). Δܩ was calculated from the surface tension components of the interacting entities, using the 
equation: 

ܩ∆ ൌ െ2ቀඥߛ௦ௐ െ ඥߛ௪ௐቁ	ଶ  4 ቀඥߛ௦ାߛ௪ି  ඥߛ௦ିߛ௪ା െ ඥߛ௦ାߛ௦ି െ ඥߛ௪ାߛ௪ିቁ		 	 	 (4)	

If the interaction between the two entities is stronger than the interaction of each entity with 
water,	Δ0 > ܩ mJ m–2, the material is considered hydrophobic; if Δ0 < ܩ mJ m–2, the material is 
hydrophilic.  

2.7. Statistical analysis 

Bacterial adhesion and biofilm quantification results are averages from three independent 
experiments performed for each conditioning agent and concentration. Paired t-test analysis were 
performed based on a confidence level of 95% to determine whether or not there was a significant 
difference between the results and the control (differences reported as significant for P values < 0.05 
and marked with ). 

3. Results 

3.1. Numerical simulations 

The wall shear stress (߬௪) can strongly impact the biofilm formation [37], so the focus of the 
numerical data analysis was placed on the results obtained for this specific hydrodynamic feature. 
Simulation data of the ߬௪ field along the PPFC and in a well of a 96-well microtiter plate is collected 
in Figure 1. In Figure 1C, a front view of the time averaged ߬௪ distribution in the internal wall of the 
well (in an orbital shaker with 50 mm diameter at 150 rpm) is shown. The shear stress is unequally 
distributed throughout the wetted surface and higher values are found in the liquid side near the 
interface. Here there are spots with relative ߬௪  maxima that are associated with the presence of 
unstable vortices near the wall. Based on the data presented in Figure 1C, an average ߬௪ value of 
0.07 Pa was calculated for the agitated microwell.  

In the case of the PPFC, and for an inlet flow rate of 11 ml s–1, the entire ߬௪ field in the bottom 
surface of the channel (width of 16 mm and length of 254 mm) was plotted (Figure 1A). Due to the 
jet flow originated at the inlet expansion, the higher values of ߬௪ occur for 50 > ݔ mm. For ݔ around 
120 mm, the wall shear stress seems to stabilize, and in the visualization zone the flow is in fully 
developed state and the corresponding hydrodynamic features are stable. The representation in 
Figure 1B was obtained by zooming panel A to the dimensions of the visualization zone and 
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changing the color map to the one used in Figure 1C to facilitate comparison. In Figure 1B, it is 
observed that ߬௪ is constant in central regions of the surface, however it decreases substantially as 
the lateral edges are approached due to the reduction of the velocity gradient in corner  
regions (junction of two perpendicular walls). The average ߬௪ value calculated for the visualization 
zone of PPFC is 0.074 Pa, which is similar to the one determined in the simulation of the well. This 
indicates that these two different platforms induce a similar hydrodynamic influence on the biofilm, 
despite the volumetric scale-up of 100 fold. 

 

Figure 1. Time averaged wall shear stress (߬௪) in a PPFC (A and B) and in a well of a 
96-well microtiter plate (C). A flow rate of 11 ml s–1 was used for the simulation in the 
PPFC. (A) Wall shear stress on the bottom surface of the PPFC. (B) Detail of the wall 
shear stress in the visualization zone. (C) Wall shear stress in a well of a 96-well 
microtiter plate placed in an orbital shaker with 50 mm diameter at 150 rpm; the well 
dimensions (ܦ and ܪሻ and the liquid level at stationary condition (ܵ) are indicated. 

3.2. Biofilm formation 

A 96-well microtiter plate and a PPFC were used to investigate the effect of surface 
conditioning with cellular components on E. coli adhesion and biofilm formation. Microtiter plates 
were used for screening (Figure 2) in order to take advantage of the high-throughput of this platform. 
Since flow systems are typical of industrial settings, the most relevant conditions originated from the 
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screening were then tested in the PPFC (Figure 3). The two platforms were operated in conditions 
that promoted a similar average shear stress in the wetted surface of a well and in the visualization 
zone of the PPFC (0.07 Pa).  

Figure 2 presents the biofilm quantification results when mannose, myristic acid and palmitic acid 
were used as surface conditioning agents. While in the case of mannose (Figure 2A) the amount of 
biofilm formed in the conditioned wells was similar to the control for all tested concentrations (P > 0.05), 
for myristic and palmitic acid (Figure 2B and Figure 2C, respectively) a lower amount of biofilm 
was detected for most of the concentrations tested (P < 0.05 for 4 out of 5 cases). However, myristic 
and palmitic acid results do not show a concentration dependent behavior. Overall, concentrations of 
0.025 g l–1 of these conditioning agents were the most effective, with a biofilm reduction of 49% for 
myristic acid and 62% for palmitic acid. 
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Figure 2. Biofilm formation (OD570 nm) in 96-well microtiter plates preconditioned with (A) 
mannose, (B) myristic acid and (C) palmitic acid at different concentrations ( ). Biofilm 
formed on unconditioned surface was used as control (ctr,  ). The mean values ± 
standard deviation for three independent experiments are illustrated. Statistical analysis is 
represented with an asterisk ( ) for a confidence level greater than 95% (P < 0.05).  

After the microplate assays, myristic acid and palmitic acid, which were the conditioning agents 
with the greatest impact on biofilm formation (Figure 2), were tested in the PPFC to study their 
effect on cell adhesion and biofilm formation (Figure 3). Surfaces were preconditioned with myristic 
and palmitic acid at the most effective concentration (0.025 g l–1). One of the goals of the PPFC 
assay was to verify if the results obtained in 96-well microtiter plates were scalable to a flow cell 
system. Furthermore, we aimed to understand if the biofilm reduction was due to a lower initial 
adhesion or to other events occurring during biofilm growth. Results showed that 24-h biofilm 
formation under flow (Figure 3A) was reduced by both myristic acid (in about 19%, although not 
statistically significant compared to control) and palmitic acid (in about 55%, P < 0.05). They agreed 
with the results obtained in the microtiter plate assays, being the palmitic acid more effective in 
inhibiting biofilm growth than the myristic acid. With regard to adhesion (Figure 3B), a decrease of 
about 50% was observed on surfaces preconditioned with both cellular components when compared 
to the unconditioned surface. It is also important to note that, for palmitic acid, similar reduction 
values were obtained for initial adhesion and biofilm formation (Figure 3). 
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Figure 3. Number of adhered cells per cm2 in the PPFC after (A) 24 h and (B) 30 min on 
polystyrene surfaces preconditioned with myristic and palmitic acid at 0.025 g l–1 ( ). 
Cells adhered on unconditioned surface were used as control (ctr,  ). The mean values ± 
standard deviation for three independent experiments are illustrated. Statistical analysis is 
represented with an asterisk ( ) for a confidence level greater than 95% (P < 0.05).  

The physicochemical characterization of the polystyrene surface before and after conditioning 
was made by contact angle measurement (Table 1). From the free energy of interaction (∆ܩ), it is 
possible to observe that the bare polystyrene and the polystyrene conditioned with myristic and 
palmitic acid at the concentration with the greatest impact on biofilm formation (conditions used in 
the PPFC assay) are hydrophobic surfaces (∆0 > ܩ mJ m–2). However, the unconditioned surface is 
slightly more hydrophobic than the conditioned surfaces. Regarding the van der Waals forces apolar 
component (ߛௐ), it is possible to conclude that the three surfaces have a similar value. In what 
concerns to the polar surface components (ߛା and ିߛ), results show that the bare polystyrene is a 
monopolar surface, being an electron donor, while both conditioned surfaces are polar surfaces, 
being simultaneously electron donors and acceptors. 
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Table 1. Contact angles with water (ߠ௪), formamide (ߠி) and α-bromonaphthalene (ߠ), 
surface tension parameters (ߛௐ, ାߛ and ିߛሻ  and hydrophobicity (∆ܩ ) of the bare 
polystyrene and conditioned surfaces. Values are means ± SDs of three independent 
experiments. 

 Contact angle (°) Surface tension 

properties ሺmJ m–2) 

 Hydrophobicity 

(mJ m–2) 

ௐߛ ߠ ிߠ ௪ߠ  ܩ∆  ିߛ ାߛ

Bare 

polystyrene 

81.1 ± 0.682 64.3 ± 1.24 24.6 ± 1.11 40.5 0.000 7.95  –50.8 

Polystyrene + 

myristic acid 

74.5 ± 0.551 52.1 ± 1.27 29.3 ± 0.894 38.9 0.337 7.79  –45.3 

Polystyrene + 

palmitic acid 

72.2 ± 0.567 49.1 ± 0.918 31.0 ± 0.413 38.3 0.621 8.44  –41.2 

4. Discussion 

The first event that occurs when materials are placed in the food environment is the appearance 
of a so-called conditioning film, typically consisting of molecules from the surrounding medium and 
from cell lysis. The conditioning film can promote or inhibit the adhesion and proliferation of 
bacteria, depending on the process conditions. In this work, the influence of surface conditioning 
with components of cell wall on E. coli biofilm formation was assayed in two different platforms. 
The screening of conditioning agents was first conducted in agitated 96-well microtiter plates and 
two inhibiting components were identified. Then, the effect of the most relevant concentrations of 
these components was verified in a PPFC using the same adhesion material (polystyrene) and under 
the same average wall shear stress obtained in the microtiter plate (as determined by CFD). 

Similar reduction values were obtained in both biofilm forming platforms, demonstrating that 
the average ߬௪ is a suitable scale-up parameter from 96-well microtiter plates to larger scale flow 
cell systems as the PPFC used in the present study. Nevertheless, it is important to take into account 
that the flow topologies in the two platforms are very different and that this difference may affect 
biofilm formation [41] at high shear stresses. Our results show that when low shear stress conditions 
are considered, the average ߬௪  captures the biofilm formation behavior that is obtained in two 
different biofilm reactors, being a good scale-up factor from high-throughput devices like 96-well 
microtiter plates, which are extensively used for biofilm studies [26,42,43,44], to flow systems found 
in industry. We hypothesize that flow topology variations occur at a much larger scale than the 
dimensions of the bacterial cells, which renders them almost insensitive to these variations, 
particularly at low shear stress values. 

In this work, mannose did not have any effect on bacterial biofilm formation. In contrast, 
Trautner et al. [45] revealed that modifying silicone surfaces to present mannose ligands for the type 
1 fimbriae of E. coli promoted the formation of E. coli 83972 biofilms (4.4-fold more denser than on 
unmodified surfaces), thereby establishing a protective biofilm that reduced pathogenic 
Enterococcus faecalis colonization. Also, in previous work, Rodrigues and Elimelech [46] had 
already observed that type 1 fimbriae are critical on E. coli K12 biofilm development because these 
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appendages are able to recognize the mannose-rich EPS synthesized by the bacterium, which acts as 
a “conditioning film” for the anchorage of fimbriae. However, they indicate that mannose was not 
important for E. coli adhesion to glass surfaces since type 1 fimbriae were not required for initial 
adhesion under the tested conditions [46]. These authors also found that the concentration of D-
mannose influences biofilm density in microtiter plates. The optimum production of biofilm was 
achieved at 1% D-mannose concentration, but it was reduced at higher concentrations (5%) [46]. On 
the other hand, Pratt and Kolter [47] discovered that E. coli K12 attachment to polyvinyl chloride is 
hindered by the presence of mannose, although this compound did not inhibit biofilm growth. The 
results obtained in the present study and in other published works [45,46,47] suggest that the 
influence of mannose on E. coli adhesion and biofilm formation depends on the existing abiotic 
material. Although there are some reports about the interactions between E. coli and the mannose 
present on abiotic surfaces, the major part of the current knowledge was obtained from the E. coli 
colonization of host tissues [48–51]. Studies using E. coli K12 have shown that, from about a dozen 
sugars tested, only D-mannose and its derivatives inhibited (at low concentrations) the attachment of 
bacteria to human buccal epithelial cells [52] or displaced the pre-attached bacteria from the  
cells [50,51]. The simplest explanation of the inhibitory action of mannose is that it serves as an 
analogue of fixed D-mannose-like residues on the surface of eukaryotic cells, binding and blocking 
adhesive sites on the bacterial fimbriae. Other possible explanation is that mannose covers 
hydrophobic groups on the fimbriae, making the fimbriae more hydrophilic and thus repellent to 
other cells. On the other hand, fimbriae are allosteric proteins and binding of mannose induces a 
change from a hydrophobic and adhesive to a hydrophilic and non-adhesive form [53]. Although 
mannose has shown potential to prevent the attachment of E. coli strains to a very wide range of 
biotic surfaces (animal, plant and fungal cells) [54], the present study revealed that different results 
can be obtained for abiotic surfaces. 

It was found that surface conditioning with myristic and palmitic acid can inhibit biofilm 
formation, but a dosage dependent effect was not observed. Although this may suggest that a 
saturation level has been reached, it has also been shown that changing the concentration of 
conditioning agent may not affect the extent of cell attachment [55]. Contact angle analysis showed 
that polystyrene hydrophobicity was slightly reduced upon conditioning with myristic and palmitic 
acid. Additionally, since the assay was conducted at a pH of 5, which is above the pKa values for 
both acids, these compounds will be anionic and therefore a cell repulsion effect may occur. These 
effects may have contributed to a lower cell adhesion. Whitehead et al. [56] also demonstrated in a 
previous work that the addition of organic material resulted in changes to the substratum 
physicochemistries at the surface/bacterial interface. To the best of our knowledge, there are no 
published studies about the individual effect of membrane fatty acids (such as myristic and palmitic 
acid) on E. coli biofilm formation. However, it has been demonstrated that exogenously added fatty 
acids modulate various bacterial activities, including motility, virulence, cell growth, and 
differentiation [57]. Soni et al. [58] showed that a fatty acid mixture (containing palmitic acid) 
negatively influenced E. coli K-12 biofilm formation since the long-chain fatty acids had ability to 
inhibit AI-2 based cell signaling. Regarding palmitic acid, its antimicrobial activity against oral 
bacteria at a similar concentration to that used in this work (0.025 g l–1) has already been  
reported [59]. Palmitic acid is not only capable of inhibiting Pseudomonas aeruginosa biofilm 
formation [60], but also of disrupting biofilms of Candida albicans, P. aeruginosa and Bacillus 
pumilus from glass surfaces [61]. Thus, it is likely that in this work some antibiofilm activity from 
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the palmitic acid may have reduced E. coli adhesion and subsequent biofilm growth. Information 
about the action of myristic acid is even rarer and contradicts the results obtained in this work. This 
fatty acid repressed the swarming motility of Proteus mirabilis, however it slightly stimulated 
biofilm formation and EPS production in microtiter plates made of polyvinyl chloride [62].  

Our research group has recently shown that conditioning the surface with cellular  
compartments (total cell extract, cytoplasm with cellular debris and periplasmic extract) can prevent 
E. coli biofilm formation under dynamic flow conditions [4]. The results obtained in this work with 
specific cell wall constituents reinforce that in food processing equipment where biofilm formation is 
not critical below a certain threshold, bacterial lysis and following adsorption of cell components to 
surface materials may reduce biofilm buildup and extend the operational time by increasing cleaning 
intervals. 

5. Conclusion 

It was demonstrated that E. coli cells are reservoirs of molecular compounds that may be very 
useful as effective inhibitors of bacterial adhesion. Furthermore, it is possible that the formation of 
problematic biofilms in industrial environments could be reduced through surface treatment with 
innocuous compounds such as myristic and palmitic acid. A better understanding of the mechanisms 
of bacterial adhesion and biofilm formation on abiotic surfaces will undoubtedly be gained from 
investigations leading to the isolation and chemical characterization of cellular compounds. This 
work also suggests that 96-well microtiter plates can simulate biofilm formation in flow systems as 
long as the shear stress is maintained, showing that flow topology at low shear stress values is 
comparatively less important.  
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