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SUMMARY

The hippocampus constructs a map of the environment. How this “cognitive map” is utilized by 

other brain regions to guide behavior remains unexplored. To examine how neuronal firing 

patterns in the hippocampus are transmitted and transformed, we recorded neurons in its principal 

subcortical target, the lateral septum (LS). We observed that LS neurons carry reliable spatial 

information in the phase of action potentials, relative to hippocampal theta oscillations, while the 

firing rates of LS neurons remained uninformative. Furthermore, this spatial phase code had an 

anatomical microstructure within the LS and was bound to the hippocampal spatial code by 

synchronous gamma frequency cell assemblies. Using a data-driven model, we show that rate-

independent spatial tuning arises through the dynamic weighting of CA1 and CA3 cell assemblies. 

Our findings demonstrate that transformation of the hippocampal spatial map depends on higher-

order theta-dependent neuronal sequences.

In Brief

How abstract representations are translated into action is unknown. Tingley and Buzsá ki describe 

how the hippocampal cognitive map is “read out” by a target region. The transformation relies on 

population coordination referenced to theta oscillations rather than the tuning of individual 

neurons.
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INTRODUCTION

Computation performed by machines or the brain is, in general, referred to as “information 

processing.” However, the informative content of any computation is not inherent but 

requires interpretation by an observer/actuator mechanism (Chiel and Beer, 1997; Buzsáki, 

2010). Accordingly, the utility of a correlation between the outside world and neuronal 

activity observed by an experimenter must be tested against the impact of that activity on 

downstream targets. While environmental-neuronal correlations have been extensively 

studied through the history of neuroscience (Adrian and Zotterman, 1926; Hubel and Wiesel, 

1962), the internal effect of environmentally correlated neuronal activity on other brain 

regions remains largely unexplored. Thus, we set out to investigate how a well-studied 

neuronal activity pattern, the hippocampal spatial code, is transformed at the hippocampal-

lateral septal interface.

A prominent computation attributed to the hippocampus (HPC) and its partner structures is 

the evaluation of the animal’s position relative to environmental landmarks, known as the 

cognitive map (O’Keefe and Nadel, 1978). Individual hippocampal neurons, known as place 

cells (O’Keefe and Dostrovsky, 1971), fire selectively at particular positions of the animal’s 

path. While the animal traverses through space, the firing rate of a given place cell waxes 

and wanes, forming its place field. This correlation between position and firing rate is often 

referred to as “rate coding.” The activity of place cell populations is coordinated by the 

hippocampal theta oscillation such that assemblies of place cells representing the past, 

present, and upcoming positions form ordered sequences of spiking within each theta cycle 

(Skaggs et al., 1996; Dragoi and Buzsáki, 2006; Foster and Wilson, 2007; Gupta et al., 

2012). Progressive movement through an environment results in a systematic phase shift of 

spikes from single place cells across successive theta cycles. This spike-phase precession 

phenomenon (O’Keefe and Recce, 1993) is referred to as “phase or temporal coding.”

How these hypothesized rate or phase-coding mechanisms of the abstract cognitive map are 

read out by downstream partners and help the animal to choose appropriate paths have 

remained unexplored. One possibility is that place cells in the CA1 and subicular regions of 

the HPC transfer the map content to the neocortex via entorhinal or retrosplenial cortical 

outputs where further processing takes place to eventually influence locomotion (Alexander 

and Nitz, 2015; Rothschild et al., 2017). Another option is the lateral septum (LS), the main 

subcortical target of CA3, CA1, and subicular pyramidal neurons (Swanson and Cowan, 

1979; Risold and Swanson, 1997). Convergence of hippocampal efferents onto LS neurons 

is orders of magnitude more dense (20–800 times; Figure S3) than any of its cortical targets. 

Optogenetic activation or silencing of hippocampal efferents in the LS effectively biases 

ambulatory patterns of the animal (Bender et al., 2015), possibly mediated by its 

hypothalamic, thalamic, mammillary body, and brainstem targets (Swanson and Cowan, 

1979; Risold and Swanson, 1997). These structures are known to be involved in translating 

motivational values into motor outputs (Grastyán et al., 1965; Valenstein et al., 1970; 

Sheehan et al., 2004).

Using large-scale simultaneous recording of neuronal activity in the HPC and LS, we found 

a reliable correlation between the animal’s position in the maze and the spike timing of LS 
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neurons in relation to the hippocampal theta oscillation phase. In contrast, firing rates of LS 

neurons contained little spatial information. These rate-independent theta “phase fields” of 

LS neurons covered virtually the entire length of the maze. Using a data-driven model of the 

HPC-LS circuit, we were able to account for this conversion of spatial encoding formats. 

The dynamic weighting of convergent synaptic inputs from CA1 and CA3 place cell 

assemblies, combined with the spatiotemporal theta oscillation phase map across 

hippocampal subregions, results in a rate-independent encoding of spatial position in LS 

neurons. These findings suggest that the HPC-LS pathway is a potential route for the 

transformation of the cognitive map into action.

RESULTS

To explore how hippocampal spiking output affects neuronal firing in the LS during spatial 

traversal, we simultaneously recorded neurons from the HPC and its target LS (N = 5 

animals). First, we examined the firing patterns of 1,587 place fields of 2,297 isolated CA1 

units and 224 place fields of 654 CA3 units, while rats traversed one of three different linear 

tracks (Figure S1). Place cells reliably fired at specific locations on the track, and their 

spikes displayed systematic advancement relative to the phase of theta oscillation while the 

animal ran though the place field (O’Keefe and Dovstrovsky, 1971; O’Keefe and Recce, 

1993; Figures 1A–1C). Using an information theoretic approach that quantifies the 

uniqueness and reliability of a signal (Olypher et al., 2003), we quantified the maximum 

information rate for individual hippocampal place fields at spatial smoothing scales ranging 

from ~3 to ~100 cm. We found that peak information rates occurred at stereotyped spatial 

scales across the population (Figures 1D–1F). The mean peak information rate occurred at 

consistently smaller spatial scales for phase “coding” compared to discharge frequency 

coding (Figure 1E; N = 1,820; two-sample t test; p < 10−40). For smoothing windows less 

than 6 cm, corresponding to approximately one theta cycle at average running speed, the 

phase code carried significantly (two sample t test; p < 0.00001; N = 1,820 place fields) 

more spatial information than the firing rate code (Figure 1G), whereas at spatial scales 

larger than 10 cm the firing rate code was more informative.

To directly compare and cross-validate these two forms of tuning, we followed a predictive 

modeling approach where the spike-rate or spike-phase relationships of single neurons was 

used to predict the current position of the animal (20 bin smoothing; ~30 cm; Figure 1H). 

Across the population of recorded hippocampal place fields, we found that the distributions 

of mean squared errors for these two forms of encoding were statistically equivalent at a 

spatial smoothing scale that incorporated both peak information rates (Figure 1I; two-way 

Kolmogorov-Smirnov [KS] test; N = 1,820 place fields comparison p = 0.19; N = 45 

sessions; p = 0.61). While peak information rates (Figures 1D–1G) demonstrate that the 

spatial smoothing scale largely determines which coding regime confers more spatial 

information per individual position bin (~1.5 cm), the predictive modeling approach (Figures 

1H and 1I) quantifies how much predictive power overall spatial bins a single neuron carries. 

Taken together, these analyses demonstrate that from the perspective of an ideal observer, 

such as the experimenter, prediction of the animal’s position is equivalent whether using 

rate-position or theta phase-position correlations at slower timescales (30 cm, ~500 ms). Yet, 
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at the scale of single theta cycles (corresponding to ~6 cm), phase coding offers more 

information than firing rates.

However, the significant encoding of an external variable from the perspective of the 

experimenter does not demonstrate that the brain utilizes this information (Buzsáki, 2010; 

Brette, 2018). To explore whether and how downstream “readers” may interpret these 

potential coding regimes, we examined firing patterns of neurons in the LS, the major 

subcortical target of CA3 and CA1 hippocampal regions (Risold and Swanson, 1997; Witter, 

2007; Figures S1A, S1C, and S3).

We recorded a total of 1,647 LS neurons from five animals, of which 840 surpassed a 

minimum threshold of at least 1.5 action potentials per trial on average (~.33 Hz). In 

agreement with previous studies, we found that LS neurons carry a degraded firing rate code 

for position when compared with the HPC (Leutgeb and Mizumori, 2002; Takamura et al., 

2006; Figures 2B and 3C). LS action potential ratemaps had significantly lower peak 

information rates than hippocampal place field maps (average of 0.4 bits/cm versus 1.7 

bits/cm; two-sample t test p < 10−100), and only 5.3% (232/4,393) of LS ratemaps showed 

place fields, using the same criteria we applied to hippocampal units where 31.7% 

(1,820/5,735) of ratemaps displayed a place field. Those few LS ratemaps that did qualify as 

having a “place field” were significantly less stable across trials than CA1/CA3 place fields 

(median coefficient of variance = 41.5 for LS versus 10 for CA1/CA3 place fields; two 

sample t test; p < 10−20). In contrast, the majority of LS neurons showed a form of position 

encoding in their spike timing relative to the phase of theta oscillations recorded from the 

CA1 pyramidal layer (751/840,89%; two sample t test; p < 0.01) when compared to shuffled 

data, in at least one of the behavioral conditions (Figure 2C). Importantly, theta phase coding 

was often independent from any significant correlation between the animal’s position and 

firing rates (Figure 2D). Across the population of LS neurons, we observed significantly 

stronger spike-phase coding when compared with models that utilized spike rate information 

(Figure 2E; two sample t tests; N = 4,393 conditions, p < 10−100; N = 62 sessions, p < 

10−10). Spike-phase-based decoding outperformed firing rate-based decoding of the rat’s 

position on the tracks (Figures 2F and 2G) whether we made the comparison at the level of 

LS neurons (N = 786/840; two-sample t test; p < 0.01), conditions (N = 3,046/4,393), or 

recording sessions (N = 62/62). Thus, the precise timing of action potentials relative to 

hippocampal theta oscillations is the dominant form of allocentric spatial encoding for single 

LS neurons, rather than the rate at which action potentials occur at any given location 

(Figures 3, S4, and S6). Notably, when there is no preselection for subpopulations of 

neurons (i.e., place fields), the lateral septal phase encoding of position is more reliable than 

either the rate or phase codes of the HPC (Figures 3A and 3C). Furthermore, the firing 

phases of ensembles of simultaneously recorded LS neurons (range: 1–53) provided a better 

readout of spatial position than either the firing phases or rates of an equivalent number of 

HPC neurons (Figure S7; two-sample t test; p < 0.001 at ensemble sizes of 15–25 neurons).

We also examined the effect of running speed on LS phase coding. Only 125 of 4,393 LS 

conditions (2.8%) had significant correlations between running speed and the rate of phase 

precession (two sample t test; p < 0.01) compared to a trial shuffled control distribution. 

Furthermore, only 10.7% of firing rate maps in LS were significantly modulated by running 
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speed, a value similar to the ~15% reported in HPC and entorhinal cortex (McNaughton et 

al., 1983; Kropff et al., 2015). In contrast, 89% of LS neurons displayed significant phase 

precession. Thus, phase coding of LS neurons seems to be independent from the running 

speed of the animal.

The different electrode locations across animals covered a large volume of the LS, allowing 

us to examine the anatomical microstructure of this phase code. The multiple site silicon 

probes and the systematic mapping of LS across days by moving the probe shanks revealed a 

precise topography for the magnitude of theta phase coding within the LS. Within single 

recording sessions in individual rats (Figures 4A and 4B) and across all animals (Figures 4C 

and 4D) the strength of phase coding, relative to rate coding, reliably increased as a function 

of recording depth within LS. Furthermore, the starting phase for these “phase fields” varied 

systematically along the medial-lateral axis across animals (Figure 4E). In three of the 

animals where at least 1 mm of the dorsoventral axis of LS was recorded across multiple 

sessions, the phase onset for precession varied systematically and significantly with 

recording depth (DT5 r = 0.38, DT9 r = 0.25, DT2 r = 0.27; circular/linear correlation; p < 

0.001). Considering the known anatomical mapping of hippocampal projection patterns 

(Risold and Swanson, 1997), these data provide evidence that the hippocampal theta 

oscillation, which is a traveling wave along both the septotemporal and transverse axes of 

the HPC (Lubenov and Siapas, 2009; Patel et al., 2012), entrains the spiking output of the 

LS in a manner that is also a traveling wave of spiking activity that propagates in both the 

medial-to-lateral and dorsal-to-ventral directions.

Next, we addressed the potential mechanisms by which the hippocampal population output 

is transformed into firing patterns of LS neurons. We reasoned that such a transformation 

should involve quantifiable functional coupling between these regions that may be captured 

at the level of cross-region neuron pairs. To test this hypothesis, we examined cross-

correlograms between spikes of hippocampal neurons and simultaneously recorded LS 

neurons (Figures 5A–5C). Synchronous peaks in the cross-correlograms were often 

observed within ±25 ms (Figure 5C). To quantify this, we utilized a peer prediction method 

that has been used to identify cell assemblies within single brain structures (Harris et al., 

2003; Tingley et al., 2015; Figure S5). By using simultaneously recorded spike trains to 

predict the firing of a single neuron, the temporal scale at which a neuron’s peers best 

predict its firing can be assessed. Across 18.5% (2,087/11,264) of hippocampal-LS cell pairs 

examined, spike trains of hippocampal neurons reliably predicted the firing of action 

potentials in LS neurons with a strongly skewed distribution of assembly strengths (Figures 

5D and 5E). Across all predictive cell pairs, the median optimal timescale for peer prediction 

was 25 ms (Figure 5F), corresponding to the slow gamma oscillation generated mainly by 

the hippocampal CA3 region (Csicsvari et al., 2003; Colgin et al., 2009; Fernández-Ruiz et 

al., 2017). Notably, theta phase locking magnitudes did not significantly correlate with either 

the strength or timescale of cell assemblies (Figures S5B–S5E). Furthermore, LS neurons 

that participated in at least one predictive cell assembly were found to carry a more robust 

spatial phase code compared to neurons that were not part of a predictive assembly (Figure 

5G; two sample t test; p < 10−20).
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Unfortunately, the presence of a reliable phase-position correlation in LS neurons (Figures 2, 

3, and S4) and their temporal coupling, via gamma assemblies, with hippocampal neurons 

(Figure 5) does not give mechanistic insight into how LS neurons read out spatial 

information from the HPC. Possibilities include reading out rate, phase, or population 

synchrony patterns from upstream hippocampal neurons. Because CA1 and CA3 place cells 

tend to fire on the opposite phases of the theta cycle (Dragoi and Buzsáki, 2006), we 

hypothesized that differential coupling to these hippocampal regions could be involved in 

the phase precession of LS neurons.

To examine whether such a potential mechanism was supported by the data, we split the 

hippocampal recordings into those in which LS neurons were recorded simultaneously with 

either CA1 neurons (N = 63 sessions; black) or CA3 neurons (N = 19 sessions; red; Figure 

6A). A subset of recordings had electrodes positioned in both CA1 and CA3 regions, 

allowing for simultaneous local field potential (LFP) recording from all three structures (N = 

14 sessions; Figure 6B). LFP theta phase coherence between LS and CA1 pyramidal layer 

sites was relatively flat during the entire span of the tracks. In contrast, theta phase 

coherence between LS and CA3 pyramidal layer increased significantly from the beginning 

to the end of run (Figure 6C). A similar relationship was observed when cross-frequency 

coupling strength (Bragin et al., 1995) between CA1 or CA3 theta phase and LS gamma 

oscillation amplitudes were examined. Although the strength of coupling increased in both 

cases, it was significantly stronger for CA3-LS than for CA1-LS comparisons (Figure 6D). 

To exclude the potential contribution of volume-conduction for the LFP signals, we also 

examined assembly strength changes as a function of position. The functional coupling 

between CA1 place cells and LS neurons decreased somewhat (r = −0.11; p = 0.079; N = 

260 pairs), while coupling between CA3 place cells and LS neurons significantly increased 

(r = 0.34; p = 0.006; N = 72 pairs) as the animal progressed from the start toward the goal 

location (Figure 6E). The functional coupling of CA1-LS pairs was significantly anti-

correlated with CA3-LS pairs (r = − 0.88; p = 2.6e-64; N = 200 spatial bins). Thus, all 

functional coupling metrics examined −LFP/LFP and spike/spike– provide support for a 

dynamic weighting model.

These results suggest that the ratio of input strengths from the hippocampal CA1 and CA3 

regions to LS dynamically shift over the course of the track (Figure 6F). When combined 

with the theta phase shift between these regions, the relative strength of the momentarily 

active CA1 and CA3 ensembles may determine the phase of spiking output in the LS reader 

neuron (Figure 6G), causing it to precess relative to the phase of the LFP theta recorded in 

either upstream region (Figure 6H). Thus, the target LS neuron encodes position along the 

entire track with the phase of spiking.

To test the feasibility of the dynamic weighting model, we created a spiking neural network 

of Hodgkin-Huxley model neurons (Carnevale and Hines, 2006) that mimicked the output 

properties of a single lamella of pyramidal neurons in the hippocampal formation and its 

projections to a single LS neuron (Figure 7A). The modeled network was designed to 

recapitulate the following observed phenomena: (1) populations of CA1 and CA3 neurons 

send convergent projections to the LS (Figures 7A and S3; Risold and Swanson, 1997), (2) 

place fields uniformly tile a space (Figure 6E, inset; Figure 7B; O’Keefe and Dovstrovsky, 
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1971), (3) place cells phase-precess relative to an 8-Hz theta oscillation (Figure 7C; O’Keefe 

and Recce, 1993), (4) theta (H) Spiking output from a LS “reader” neuron demonstrates 

phase precession relative to theta recorded at a fixed hippocampal site, in the CA3–CA1 

axis, across three different spatial positions sequences occur within single trials (Figure 7D; 

Dragoi and Buzsáki, 2006; Foster and Wilson, 2007; Gupta et al., 2012), and (5) CA3 theta 

is phase offset from CA1 by 180 degrees (Figures 7C and 7D; Buzsáki et al., 1983; Dragoi 

and Buzsáki, 2006).

Having created this model of hippocampal activity and its output to LS, we asked how 

different synaptic weight matrices influence the transmission, or transformation, of spatial 

information through this simulated circuit (Figures 7E–7H). Using a static weighting regime, 

where all synaptic connections have equal strength, we observed no or highly variable 

spatial information in the downstream neuron (Figure 7E). This is due to the interference of 

spatial and temporal offsets of CA1 and CA3 cell firing. Using random weight matrices, 

where each synaptic weight is drawn from a normal distribution, we observed weak 

predictions of spatial position that rarely exceeded chance for both firing rates and firing 

phases (Figure 7F). The next synaptic weight matrix we examined was one derived from the 

data examining assembly strengths between HPC and LS (Figure 6E). Using a connectivity 

matrix that matched the experimentally measured negative correlation between CA1 and 

CA3 populations (r = − 0.88; Figure 7G, left column), we observed that the downstream LS 

neuron carried a highly reliable phase code, in a manner that is independent of firing rate 

information (Figure 7G). By injecting uncoordinated theta oscillations into individual CA1 

and CA3 neurons, we obtained identical place fields and phase precession clouds but 

without the presence of coordinated theta sequences within single trials. As a result of this 

manipulation, the reliability of the phase-position relationship in the model LS neuron was 

severely degraded (Figure 7H). Thus, by dynamically weighting the outputs of CA3 and 

CA1 place fields at different positions, the assembly firing of the hippocampal output is 

transformed into a rate-independent phase code of that space in the LS, consistent with our 

experimental observations (Figures 2, 3, and S4).

DISCUSSION

We examined the encoding of space in neuronal activity of the HPC and its major 

subcortical output region, the LS. While firing rate and theta phase of spiking of single place 

cells correlated similarly with the rat’s spatial position in the HPC, the correlation between 

firing rate and position was exceptionally rare for LS neurons. Instead, the timing of spikes 

within the hippocampal theta cycle (i.e., phase) carried a high level of spatial information. 

Unlike the spatially restricted spike-phase precession of hippocampal place cells, LS phase 

fields could cover virtually the entire length of the maze (~3.2 m). The strength of this phase 

coding had an anatomical microstructure within the LS, increasing along the dorsoventral 

axis. By examining theta coherence, theta-gamma cross-frequency coupling, and cell pair 

correlations between the HPC and LS, we found that LS neurons compare the relative 

strengths of the activity of their upstream CA1 and CA3 partner place cell assemblies. The 

dynamically changing ratio of these strengths within the theta cycle may be responsible for 

the timing of action potentials in LS neurons. The biophysical model we implemented to 

examine this hypothesis demonstrates that rate-independent spatial encoding in LS can arise 
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through the hypothesized dynamic weighting of CA1 and CA3 synaptic inputs, which 

converge on target reader neurons in the LS. Our findings define a transformation rule 

between the cognitive map of the HPC and its action-executing target, the LS.

Spatial Correlates of Firing Patterns in the Hippocampus and Lateral Septum

Numerous experiments have described that both firing rates and theta phase of place cell 

spikes in the HPC correlate with the spatial position of the animal (O’Keefe and Nadel, 

1978; O’Keefe and Recce, 1993; Jensen and Lisman, 2000; Dragoi and Buzsáki, 2006). Our 

findings confirm that rate coding of the animal’s position is reliable when long time 

windows are used for calculating rate (>10 cm, Figure 1). Yet, firing rate is an inherently 

ambiguous code for spatial position because it waxes and wanes within the place field, and, 

thus, the same instantaneous rate may refer to two distinct positions. Firing rate also varies 

as a function of speed of the animal (McNaughton et al., 1983) so at different speeds the 

same instantaneous rate may refer to different positions. In agreement with the above 

reasoning, we found that when rate coding of single place cells is examined at high spatial 

resolution, e.g., at 6 cm or less, which corresponds to approximately a single theta cycle at 

average running speed, spike-theta phase more reliably correlates with position than spike 

rate (Figure 1). Therefore, the hippocampal phase code operates at a speed that may be more 

amenable to the timescales for synaptic integration (Losonczy and Magee, 2006), synaptic 

plasticity (Bi and Poo, 1998), and perception (Thorpe et al., 1996).

In the LS, bona fide place fields, determined by classical firing rate criteria, were rare and 

reflected only a degraded and unstable version of hippocampal place fields (Zhou et al., 

1999; Leutgeb and Mizumori, 2002; Takamura et al., 2006). In contrast, the magnitude of 

correlation between spike theta phase and position was comparable between neuronal 

populations recorded from the LS and HPC (Figures 3 and S7). Thus, theta phase precession 

appears to be the predominant coding mechanism for position in LS neurons, anchored to 

either local or distal cues (Figure S6; Knierim, 2002)

Theta phase precession has also been reported in the prefrontal cortex (Jones and Wilson, 

2005), ventral striatum (van der Meer and Redish, 2011), and basal forebrain (Tingley et al., 

2017). However, in the ventral striatum, neurons show an anticipatory ramping of spiking 

activity up to the reward sites, while in the prefrontal cortex and basal forebrain firing rates 

are tuned to specific behavioral task phases, dissociated from spatial cues (van der Meer and 

Redish, 2011; Tingley et al., 2014). In contrast, LS firing rates lacked reliable tuning to 

spatial features of the task.

Phase-coding bias for position systematically increased from dorsal-to-ventral regions of the 

LS (Figure 4), demonstrating a topographical microstructure for spatial encoding within the 

LS. Additionally, the starting phase for precession (i.e., “onset”) varied along both dorsal-to-

ventral and medial-to-lateral axes (Figure 4). Together, this would suggest that a similar 

computation is being carried out across subregions of the LS, whose spiking output is 

organized as a “traveling wave,” which reflects theta phase shifted inputs from different 

regions and septotemporal positions of the HPC (Lubenov and Siapas, 2009; Patel et al., 

2012). In addition, we were able to demonstrate that hippocampal-LS spike-spike coupling, 

coherence of theta oscillations, and theta-gamma cross-frequency coupling could explain 

Tingley and Buzsáki Page 8

Neuron. Author manuscript; available in PMC 2019 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



several aspects of LS neuron phase precession. Overall, these findings demonstrate that 

position information can be as reliably “decoded” from the lateral septum as from the HPC, 

although the format of neuronal signaling that provides such information is different in these 

structures. We would like to add a cautionary note though that hitherto unexplored multi-

synaptic, multi-structure mechanisms may allow for an alternative mechanism of spike-

phase coding of position in the LS.

Transmission and Utilization of the Hippocampal Spatial Map by LS Neurons

Ample evidence supports the view that the HPC and its partner structures generate a map of 

the environment, but less is known about the mechanisms by which this abstract code is read 

out by downstream partners and utilized for action. Our findings suggest that the LS is a 

potential decoder of hippocampal output by comparing the ratio of inputs from CA1 and 

CA3 pyramidal cells within each cycle of the theta oscillation and transforming this ratio 

into precise spike times.

The correlation between position and theta phase spiking in LS has several potential 

explanations. First, an argument can be made that the phase shift refects running speed 

variation. However, only a small fraction of LS neurons were modulated by locomotion 

speed, and we observed no relationship between the magnitude of speed-rate correlation and 

the magnitude of phase precession. A second potential explanation of spike theta phase shift 

is due to reward goals, as in the ventral striatum (van der Meer and Redish, 2011) or path 

length traveled. These options are less likely because theta phase precession of many LS 

neurons retained their relation to distant room cues after the rotation of the maze, suggesting 

that the spike-phase shift is a spatial “code” (Figure S6). A third explanation is that LS 

neurons inherited their spiking activity directly from ventral hippocampal place cells with 

large place fields (Kjelstrup et al., 2008; Royer et al., 2010). While we cannot reject this 

hypothesis, it seems unlikely given several aspects of the currently available data.

If phase precession is simply inherited directly from single hippocampal neurons or coherent 

place field assemblies, one should expect that concomitant firing rate changes of the 

upstream neurons should also be transferred to LS neurons. Specifically, we should have 

also found copies of small place fields with firing rates and phase precession reminiscent of 

dorsal hippocampal place cells. Because we surveyed a large extent of the LS, it is unlikely 

that we systematically missed the target zone of dorsal CA1 and CA3 pyramidal neurons. 

Moreover, previous anatomical mapping studies (Risold and Swanson, 1997; Oh et al., 

2014), our own tracing experiments (Figure S3), and the shifting phase “onsets” of 

precession (Figure 4) show that our LS recordings spanned areas that receive both dorsal and 

ventral CA1 and CA3 outputs. For an inheritance model of LS phase precession, we would 

also expect the spatial scaling of hippocampal inputs (Kjelstrup etal., 2008; Royer et al., 

2010) to be refected in the firing patterns of LS neurons, yet we observed comparable spatial 

scaling between the dorsal hippocampal and LS populations (Figures 3B and 3C).

A recently proposed set of “dual-input” models explains phase precession of CA1 pyramidal 

neurons by the varying strengths of CA3 and layer 3 entorhinal cortical neuron inputs 

(Hasselmo et al., 2002; Colgin et al., 2009; Chance, 2012; Lasztóczi and Klausberger, 2016; 

Fernández-Ruiz et al., 2017). Entorhinal drive initiates place cell activity but short-term 
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depression of these afferents reduces the efficacy of this input, while, in the outgoing part of 

the place field, the CA3 input is the major source of excitation of CA1 place cells 

(Fernández-Ruiz et al., 2017). In all these experiments and models, firing rates determine the 

place field, associated with theta phase precession. In contrast, the form of theta phase 

advancement we observed in LS occurred without the presence of discrete place fields or 

reliable changes in firing rate (Figures 2 and S2), and at a temporal scale (~6 s) slower than 

that observed for short-term synaptic plasticity (Stevens and Wang, 1995; Fernández-Ruiz et 

al., 2017). Importantly, phase precession of LS neurons extended to virtually the entire path 

length, suggesting that the spike phase relates to the current position, whereas the slope of 

the phase precession simultaneously predicts a large part or the entire length of the journey.

Our findings allowed for the formulation of an alternative mechanism for theta phase 

precession in LS neurons. We hypothesize that the changing relative strength of the CA3 and 

CA1 assemblies (i.e., the ratio of CA1 versus CA3 inputs) is responsible for the spike rate-

independent slow phase precession of LS neurons. The computational model we built, using 

the measured spike data from the HPC, demonstrated that the dynamic weighting of inputs 

in the model LS neurons can replicate our experimental findings. Using static or random 

weight matrices, the hippocampal inputs failed to replicate the experimental observations. 

Selectively removing population “theta sequences” also rendered the circuit incapable of 

transforming spatial information. Thus, information transference through the hippocampal-

LS circuit does not rely on the firing rate or spike-phase codes of single hippocampal 

neurons. Rather, it requires theta phase coordination across CA1 and CA3 populations, in 

addition to spatial encoding in single neurons. Theta oscillations gradually shift their phase 

from the septal to the ventral pole of the HPC (Lubenov and Siapas, 2009; Patel et al., 

2012), which was reflected by the mediolateral phase shift of the starting phase of LS 

neurons. Thus, our model can be generalized to any two anatomical locations in the 

septotemporal axis of the HPC to provide the necessary theta phase offset inputs for such a 

ratio-weighing model.

An obvious task for the future is to examine whether and how targets of LS utilize this phase 

code. One possibility is that the LS phase code that we have shown is a simple byproduct not 

used for any computation. Intuition would suggest that any decoder of phase-locked spiking 

requires input from the HPC in order to determine theta phase. However, this information is 

simultaneously encoded across the LS in lock step with the hippocampal traveling theta 

wave (Figure 4). This would allow for a similar dynamic weighting decoder mechanism 

downstream of only convergent LS input. Such a phase code may be useful in selectively 

addressing only those downstream neurons of LS that receive convergent input or 

simultaneous hippocampal theta signals. This may explain why neurons in lateral 

hypothalamic and several brain stem nuclei display theta oscillations (Sławińska and 

Kasicki, 1995; Vertes and Kocsis, 1997). This hypothetical mechanism, perhaps using the 

same decoding strategy as LS neurons, would allow for the isolation of single channels 

within multiplexed signals across distributed and highly interconnected brain networks.
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Implications

As external observers, we often make simplifying assumptions as to the nature of neural 

encoding. However, the lack of “tuning” in a given experiment may simply mean we failed 

to identify the right coding scheme. The current findings demonstrate a firing rate-

independent encoding of positional information, which critically depends upon the 

spatiotemporal structure across input populations (theta sequences) rather than on the first-

order dynamics of single-input neurons (place tuning of rate and phase precession). Our 

model supports the perspective that the hippocampal cognitive map is embedded within a 

spatiotemporal phase map across its anatomical subregions, and that LS rate-independent 

spatial encoding is undetectable to the outside observer, without reference to these inputs. 

Selective manipulations of this spatiotemporal organization (Robbe et al., 2006; Lenck-

Santini and Holmes, 2008; Wang et al., 2015; Newman et al., 2017; Kao et al., 2017), along 

with our current observations, demonstrate that spatial information in the HPC can only be 

properly read out when the spatiotemporal phase map is intact and the downstream neural 

observers have the necessary synaptic architecture with which to decipher upstream 

information.

STAR★METHODS
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Resource Source Identifier/Location Description

Antibodies

Red retrobeads IX Lumafluor https://lumafluor.com

DAPI antibody Sigma-Aldrich Cat#: D8417 SIGMA

Experimental Models: Organisms/Strains

Rat: Long-Evans Charles River Cat#: Crl:LE 006 2 female, 3 
male; adults

Software and Algorithms

Analysis tools Buzsáki Lab https://github.com/buzsakilab/buzcode Analysis 
tools used 
throughout 
the paper

Data visualization scripts David Tingley https://github.com/DavidTingley/papers Example 
MATLAB 
scripts that 
recreate 
each main 
figure

HPC/LS recording data David Tingley CRCNS (will be uploaded upon publication)

Projection density data Allen Brain Institute http://connectivity.brain-map.org/

Klustaviewa Rossant et al., 2016 https://github.com/klusta-team/klustaviewa

Spikedetekt2 Cortical Processing 
Laboratory (UCL)

https://github.com/klusta-team/spikedetekt2

Klustakwik2 Kadir et al., 2014 https://github.com/klusta-team/klustakwik/

Position decoder Meyers, 2013 http://www.readout.info/
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Resource Source Identifier/Location Description

MATLAB MathWorks https://www.mathworks.com/

pyNN Davison et al., 2008 http://neuralensemble.org/PyNN/

Other

Silicon probe (5×12, 
6×10, 8×8, and 4×8)

Neuronexus https://neuronexus.com/

Silicon probe (1×64) Cambridge Neurotech https://www.cambridgeneurotech.com/

Intan RHD2000 Intan technologies http://intantech.com/RHD2000_evaluation_system.html

Motive tracking system Optitrack http://optitrack.com/ 6 Flex3 
camera 
system

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and datasets should be directed to and will be 

fulfilled by Gyorgy Buzsáki (gyorgy.buzsaki@nyumc.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal handling and behavioral training—Five adult Long-Evans rats, 3 male and 2 

female, were used in this study. Each animal was handled for 2–3 weeks daily prior to 

experimental training. After handling, animals were exposed to each maze for several days 

and trained to alternate, without stopping, between paths through the maze. Because the 

circular maze was symmetric along the 0 and 90 degree axes, animals were shaped such that 

alternation took place relative to a cued (tapping prior to trial blocks) start/stop location (one 

of four possible). Dynamic re-cueing during the behavioral session could then be used to 

change the animal’s trajectory through space, without changing the allocentric cues in the 

room or rotating the maze. On the linear maze, animals were trained to continuously 

alternate between the two ends. All stop locations were rewarded with 1/3 piece of Honey 

Nut Cheerio if animals completed a successful trial without stopping or alternating the 

incorrect direction. All experiments were approved by the Institutional Animal Care and Use 

Committee at New York University Medical Center.

METHOD DETAILS

Surgical procedures—Rats were anesthetized with isofurane and implanted with silicon 

probes (NeuroNexus and Cambridge NeuroTech) mounted on custom built microdrives. 

Each animal was implanted with two probes in the right hemisphere, one targeting LS and 

one targeting dorsal CA1 (Paxinos and Watson, 2013). Coordinates and probe specifications 

for each animal can be found in Figure S1A. During surgery implants were placed dorsal to 

target regions, allowing for movement into target regions after recovery from surgery. 

Craniotomies were sealed with sterile wax. To provide electrical shielding and mechanical 

protection, copper mesh was shaped around the probes and filled with dental cement. Two 

stainless steel screws implanted above the cerebellum were used for grounding.
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Retrobead injections—Rats were anesthetized with isofurane and injected with 20–150 

μL of red retrobeads into the LS at one to three depths, spaced 200 μm apart. After waiting 

two weeks, hippocampal slices were prepared and examined for localization of beads. In all 

cases where LS injections were correctly targeted, and no leakage into the ventricle was 

observed, CA1 and CA3 neurons could reliably be found that were filled retrogradely.

Analysis of Allen Brain Institute connectivity data—55 experiments were 

downloaded from the Allen Brian Atlas (http://connectivity.brain-map.org/) where CA1 

and/or CA3 of the HPC had been injected (AAV-EGFP) without virus leakage into cortex 

orsubiculum. For each injection, 9 target regions were selected (LS, subiculum, entorhinal, 

retrosplenial, orbitofrontal, prelimbic, infralimbic, posterior parietal, and primary visual 

cortices). For each target region, the normalized fluorescence intensity was calculated as the 

summed fluorescence intensity divided by the injection volume and number of voxels per 

target region (Isum/(Volinject*Voxsum).

Recording/Data processing—Recordings were conducted using the Intan RHD2000 

interface board, sampled at 20 kHz. Amplification and digitization were done on the head 

stage. Waveform extraction and initial clustering was conducted using SpikeDetekt and 

Klustakwik. Example parameters for these algorithms can be found in the GitHub repository 

(https://github.com/DavidTingley/papers). Manual waveform discrimination was then 

conducted using the Klustaviewa software suite. Waveform amplitude was utilized during 

this stage to assess unit stability. Any waveforms that changed significantly throughout the 

duration of the recording were discarded. Waveform isolation quality was quantified using 

the isolation distance metric (https://github.com/buzsakilab/buzcode) and the waveform 

amplitude (Figures S1B–S1E).

For one animal, position within the environment was tracked with two head mounted LED’s 

(1 blue, 1 red) and an overhead camera (Basler, 30 Hz). For the other four animals, position 

was tracked with the OptiTrack camera system. IR reflective markers were mounted in 

unique positions on each animals’ head stage and imaged simultaneously by six cameras 

(Flex 3) placed above the behavioral apparatus. Calibration across cameras allowed for the 

three dimensional reconstruction of the animals’ head position, and head orientation, to 

within 1 mm (avg. displacement error = 0.70 mm ± 1.5 mm) at 120 Hz.

Position data was analyzed and segmented using a custom MATLAB software suite. Only 

ballistic trials, without stopping or deviation from the trained trajectory, were extracted for 

further analysis. These trials made up ~90%–95% of all trials attempted for any given 

recording. Quantification of the different behavioral paradigms and their dynamics can be 

found in Figures S1F–S1I.

Histology—Animals were placed under anesthesia and electrolytic marker lesions were 

conducted (4 μA for 4 s). Animals were perfused with 4% paraformaldehyde under deep 

anesthesia. Brains were removed and sliced in 80 μm slices using a vibratome (Leica 

VT1000S). For implanted animals, a DAPI stain was used to localize probe tracks. The 

deepest point of lesion, combined with the record of turn depths, was used to estimate the 

location of each recording. Initial recordings in more dorsal structures (anterior cingulate, 
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corpus callosum, or the ventricle) were also used to verify depth coordinates in the LS for 

each animal.

QUANTIFICATION AND STATISTICAL ANALYSIS

Spatial information analysis—To compare phase and rate variables, data was 

discretized to an equal number of bins (N = 7 phase or rate bins). The metric chosen 

(Olypheret al., 2003) assigns positional bins information scores that refect the uniqueness of 

the data at that position relative to other positions, and the reliability of the data across trials 

at that position. Pk is the probability of observing spike rate (or phase) k . Pk | xi
 is the 

conditional probability of observing spike rate (or phase) k in position xi.

I pos xi = ∑
K ≥ 0

P
k xi

log
P

k xi
Pk

Spiking rates (or phases) were smoothed using a box filter over progressively larger sets of 

position bins (1–50 bins which corresponds to ~1.5–80 cm). The box filter implemented for 

neural data returned the mean value for a set of bins surrounding each position bin. To apply 

this to the spike phase data, the circular mean was taken.

Instantaneous firing rate and firing phase independence—When examining the 

correlation between two signals, it is important to account for inherent structure in both of 

the individual signals. For two time series, the appropriate null distribution is to circularly 

shift one time series, relative to the other, by random offsets; thus preserving the 

autocorrelation structure of both signals while removing any cross-correlation structure. For 

two rhythmic signals this is especially important, as randomly permuting one time series 

(thus removing autocorrelation structure) often leads to an inadequate null distribution.

To examine the relationship between instantaneous firing rate and instantaneous firing phase, 

this circular shifting approach was used to generate a satisfactory null distribution. The 

instantaneous firing rate (IFR) for each action potential was calculated as one divided by the 

mean of the previous and following inter-spike intervals (Harris et al., 2003). The 

instantaneous firing phase was taken as the phase of CA1 theta at which each action 

potential occurred. As both of these signals (IFR and LFP theta) are rhythmic around ~8Hz, 

is it very common to find spuriously high circular/linear correlations (.4 – 0.8) that do not 

differ significantly from those expected after circular shifting Figure S2.

LFP theta phase coherence—A 3rd order Butterworth bandpass filter (4–12 Hz) was 

applied to the raw LFP, after which the angle of the Hilbert transform was taken to extract 

just the phase component of the signal. Theta phase coherence was then measured across 

150 ms windows that were moved through time at 50 ms steps using multi-taper estimation.

LFP cross-frequency coupling—Theta-gamma cross frequency coupling was assessed 

as the circular-linear correlation between CA1 LFP theta phase and LS LFP gamma power. 
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CA1 LFP was bandpass filtered (Butterworth; 4–12 Hz; order = 3), and the angle of the 

Hilbert transform was taken as the phase angle. LS LFP gamma power was assessed as the 

root-mean squared (window = 50 ms) power of the bandpass filtered signal (Butterworth; 

40–200 Hz; order = 3).

Position prediction analysis—Action potential times were extracted for each successful 

trial and mapped onto at linearized position vector such that firing rates and firing phases 

were associated with particular positions, rather than times. Estimates of firing rate or firing 

phase (relative to dCA1 theta) were calculated for each position bin and smoothed across 20 

bins using a box filter (~30 cm). All results were qualitatively similar when smoothing over 

smaller or larger scales (10–50 cm). A maximum correlation coefficient classifier was then 

produced where the estimated firing rate, or firing phase, was used as a predictor; and the 

animals’ position as the response variable. 60% of the data (entire block of trials in the same 

condition) was randomly selected to train the model, and the remaining 40% of the data was 

used to test the model, generating a mean squared error (MSE). The classifier operates by 

building a template from the training data by averaging across different observations at each 

position. For each test sample it then selects a prediction based on which position bin from 

the template correlates most strongly with the test sample. When using this method with 

single features (i.e., neurons), it is equivalent to taking the minimum squared deviation 

between the training template and test sample. XTr is the template created from training 

data (average firing rate or phase for all positions). XTei is the test sample for position i.

Pos (i)pred = argmin
i

XTri − XTei
2

10-fold cross validation was performed with different 60/40 randomly selected splits, 

generating a distribution of mean squared errors for each model type (rate, phase, and 

shuffle). The iterations did not serve to obtain ten independent tests but to achieve a more 

reliable estimate of predictive strength (or mean squared error) than could be obtained with 

just one cross-validation. Data was shuffled by randomly permuting the vector of phases or 

rates associated with the vector of positions. Significance was then determined by a two 

sample t test when comparing these distributions of MSE values. Neurons were required to 

fire a minimum of 1.5 spikes per trial on average to be considered for this analysis (Ex. > = 

30 spikes across 20 trials). All results were qualitatively similar using Bayesian decoding 

(see Figure S7) and generalized linear modeling approaches.

Ensemble position prediction analysis—The method for predicting animal position 

from ensemble activity was a naive Bayes decoding method. Populations of simultaneously 

recorded hippocampal (range: 1–83) or lateral septal (range: 1–53) neuron firing rates, or 

firing phases, were discretized into 20 bins. Prior to binning, these data were smoothed using 

the same method as all single neuron decoding (box filter, 20 bins). The data were then split 

into 60% training and 40% testing partitions. 10-fold cross validation of this splitting 

procedure was used and mean squared error values were averaged across all iterations. 

Training data was used to calculate the mean values for each neuron and position. To 

quantify the relationship between rate (or phase) and position, the log likelihood function is 
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calculated using these discretized mean rates (or phases) as parameters for Poisson 

distributions for each neuron. The probability of observing a given discretized firing rate (or 

firing phase) for each neuron is then calculated for each position. These probabilities are 

then multiplied across all neurons (assuming independence) to give an overall likelihood 

value for each position. The position with the highest likelihood value is chosen as the 

predicted position.

Peer prediction analysis—The method for detecting and quantifying gamma cell 

assemblies between LS and HPC builds off of methods previously developed to assess 

within region assemblies (Harris et al., 2003; Tingley et al., 2015). The approach uses a 

generalized linear model with the spike train of one neuron as a ‘predictor’ and a 

simultaneously recorded peer as a ‘response’. By temporally smoothing the predictor spike 

train with different windows (1–150 ms), each model will have a different goodness of fit 

with the response spike train. The model with the best fit, and accompanying temporal 

smoothing window, are then assessed for significance by comparing the deviation of fit with 

that expected from shuffled versions of the same data. For shuffling, the trial order between 

predictor and response variables is shuffled such that two spike trains from different trials 

are used as the predictor/response variables, rather than two spike trains from the same trial. 

This shuffling is carried out 10 times to create a distribution of deviation of fits. The 

‘assembly strength’ value quantifies the ratio between the actual deviance and the best 

possible deviance taken from the null distribution. Thus, an assembly strength score of 8 

reflects a reduction in ‘deviance of fit’ that is 8 times larger than the best observed reduction 

taken from the shuffled dataset. The decision for what is, or is not, an assembly (threshold is 

4 throughout the paper) was chosen to reflect when cross correlograms clearly showed a 

visible peak at the expected timescale. When examining the data with assembly strength 

thresholds ranging from 1.5–8, all results were qualitatively similar.

Each neuron pair has a single assembly strength value, determined by all spikes that occur 

during a single block of trials. For Figure 6E (position dependence of assembly strengths), 

these values were then cross-referenced with cells that had significant place fields, thus only 

firing in a restricted set of positions. The center of mass for each place field was taken as the 

‘position’ for these LS-HPC (place cell) pairs. HPC cells that participated in an assembly but 

did not have a place field were not included in this analysis.

To ensure that co-tuning to theta phase or behavioral correlates did not spuriously lead to 

assembly detection, the CA1 theta phase (sin, cosine and raw phase angles), the animal’s 

position, and the animal’s velocity were provided to all GLM’s as additional predictors to 

regress out such co-variation (Figure S5).

Reference frame analysis—To assess which frame of reference LS phase precessing 

neurons were locked to, maze rotations were conducted within single recording sessions. 

This allowed for the dissociation of different frames of reference (egocentric, maze/reward-

centric, and allocentric). A multivariate modeling approach was taken using the same 

maximum correlation decoder as for the position prediction analysis. Egocentric, maze-

centric, and allocentric information were provided as predictors to the model, and the firing 

phase of LS neurons was provided as the response variable. A total of 23 variables were 
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examined, 6 allocentric (x, y, z, pitch, yaw, and roll), 4 route-centric (maze orientation and 

direction of motion), 1 reward/goal-centric (distance to current reward location), and 12 

egocentric (1st and 2nd derivatives of position variables for velocity and acceleration). Null 

distributions were created by circularly shuffling each variable by a random amount and re-

running the decoder. Models were trained on a random subset of available data (60%) and 

evaluated on the remaining data (mean squared error; 40%).

Place field definition—The set of heuristics used to identify a ‘place field’ were the 

following 1) Minimum peak firing rate of 2 Hz, 2) Minimum field width of 8 cm, 3) 

Maximum field width of 120 cm, 4) Minimum of 1.5 spikes per trial on average, and 5) at 

least 10 trials with consistent behavior. Given these criteria, 711 of 1,425 HPC neurons had 

at least one place field with a mean of 1.27 ± 1.76 fields per neuron. There was no limit set 

on the number of place fields single neurons could have. The median peak in-field firing rate 

was 8.5 ± 12 Hz, and the median field width was 38 ± 16 spatial bins (~57 cm). The start 

and stop position for each field were taken as the spatial bins where the firing rate drops 

below 20% of the peak firing rate. The center of mass for each field was calculated only for 

bins between the start/stop bins. As this definition excludes potentially informative spikes 

outside of the place field of a cell, it was only used to identify and cross reference with other 

analyses. All rate/phase correlations, peer prediction, and position prediction modeling was 

carried out using all action potentials recorded during the behavioral trials.

Spiking model—The spiking model was developed in the python programming language 

with pyNN serving as the frontend and the NEURON simulator as the backend (Davison et 

al., 2008; Carnevale and Hines 2006). The model consists of 50 CA1, and 50 CA3, ‘place 

cells’ which all send convergent input to a single LS neuron. Each hippocampal neuron is a 

Hodgkin-Huxley spiking model that receives two inputs, a subthreshold theta oscillation and 

a ramp current at a particular time as the model runs. The combination of these two inputs 

creates a firing output that is localized in time and shifted in theta phase. CA3 neurons 

receive a 180-degree phase delayed theta oscillation.

When the population of hippocampal neurons receive a single theta input, the population of 

neurons is coordinated into ‘theta sequences’. Injecting different (phase offset) theta rhythms 

into individual neurons creates the same firing field and phase precession clouds for single 

neurons across trials, but without the presence of ‘theta sequences’ on single trials. For all 

synaptic weight matrices (dynamic, static, random), the weight matrix is scaled such that 

that LS target neuron receives the same net excitation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

We thank Margot Elmaleh, Antonio Fernández-Ruiz, Robert Froemke, Kalman Katlowitz, Daniel Levenstein, 
Kathryn McClain, Sam McKenzie, Sarah Montgomery, Douglas Nitz, Luke Sjulson, Rachel Swanson, and Viktor 
Varga for insightful comments on the manuscript. This work was supported by NIH MH54671, MH107396, and NS 
090583, NSF PIRE grant (#1545858), and the Simons Foundation (351109).

Tingley and Buzsáki Page 17

Neuron. Author manuscript; available in PMC 2019 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



REFERENCES

Adrian ED, and Zotterman Y (1926).The impulses produced by sensory nerve-endings: Part II. The 
response of a single end-organ. J. Physiol. 61,151–171. [PubMed: 16993780] 

Alexander AS, and Nitz DA (2015). Retrosplenial cortex maps the conjunction of internal and external 
spaces. Nat. Neurosci. 18, 1143–1151. [PubMed: 26147532] 

Bender F, Gorbati M, Cadavieco MC, Denisova N, Gao X, Holman C, Korotkova T, and Ponomarenko 
A (2015). Theta oscillations regulate the speed of locomotion via a hippocampus to lateral septum 
pathway. Nat. Commun. 6, 8521. [PubMed: 26455912] 

Bi GQ, and Poo MM (1998). Synaptic modifications in cultured hippocampal neurons: Dependence on 
spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472. [PubMed: 
9852584] 

Bragin A, Jandó G, Nádasdy Z, Hetke J, Wise K, and Buzsáki G (1995). Gamma (40–100 Hz) 
oscillation in the hippocampus of the behaving rat. J. Neurosci. 15, 47–60. [PubMed: 7823151] 

Brette R (2018). Is coding a relevant metaphor for the brain? bioRxiv. 10.1101/168237.

Buzsáki G (2010). Neural syntax: Cell assemblies, synapsembles, and readers. Neuron 68, 362–385. 
[PubMed: 21040841] 

Buzsáki G, Leung LW, and Vanderwolf CH (1983). Cellular bases of hippocampal EEG in the 
behaving rat. Brain Res. 287, 139–171. [PubMed: 6357356] 

Carnevale NT, and Hines ML (2006). The NEURON Book (Cambridge University Press).

Chance FS (2012). Hippocampal phase precession from dual input components. J. Neurosci. 32, 
16693–16703a. [PubMed: 23175823] 

Chiel HJ, and Beer RD (1997). The brain has a body: Adaptive behavior emerges from interactions of 
nervous system, body and environment. Trends Neurosci. 20, 553–557. [PubMed: 9416664] 

Colgin LL, Denninger T, Fyhn M, Hafting T, Bonnevie T, Jensen O, Moser MB, and Moser EI (2009). 
Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462, 353–
357. [PubMed: 19924214] 

Csicsvari J, Jamieson B,Wise KD, and Buzsáki G (2003). Mechanisms of gamma oscillations in the 
hippocampus of the behaving rat. Neuron 37, 311–322. [PubMed: 12546825] 

Davison AP, Brüderle D, Eppler J, Kremkow J, Muller E, Pecevski D, Perrinet L, and Yger P (2008). 
PyNN: a common interface for neuronal network simulators. Front. Neuroinformatics 2, 11.

Dragoi G, and Buzsáki G (2006). Temporal encoding of place sequences by hippocampal cell 
assemblies. Neuron 50, 145–157. [PubMed: 16600862] 

Fernández-Ruiz A, Oliva A, Nagy GA, Maurer AP, Berényi A, and Buzsáki G (2017). Entorhinal-CA3 
Dual-input control of spike timing in the hippocampus by theta-gamma coupling. Neuron 93, 
1213–1226.e5.

Foster DJ, and Wilson MA (2007). Hippocampal theta sequences. Hippocampus 17, 1093–1099. 
[PubMed: 17663452] 

Grastyan E, Karmos G, Vereczkey L, Martin J, and Kellenyi L (1965). Hypothalamic motivational 
processes as reflected by their hippocampal electrical correlates. Science 149, 91–93. [PubMed: 
17737804] 

Gupta AS, van der Meer MA, Touretzky DS, and Redish AD (2012). Segmentation of spatial 
experience by hippocampal θ sequences. Nat. Neurosci. 15, 1032–1039. [PubMed: 22706269] 

Harris KD, Csicsvari J, Hirase H, Dragoi G, and Buzsáki G (2003). Organization of cell assemblies in 
the hippocampus. Nature 424, 552–556. [PubMed: 12891358] 

Hasselmo ME, Bodelón C, and Wyble BP (2002). A proposed function for hippocampal theta rhythm: 
Separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput. 14, 
793–817. [PubMed: 11936962] 

Hubel DH, and Wiesel TN (1962). Receptive fields, binocular interaction and functional architecture in 
the cat’s visual cortex. J. Physiol. 160, 106–154. [PubMed: 14449617] 

Jensen O, and Lisman JE (2000). Position reconstruction from an ensemble of hippocampal place 
cells: contribution of theta phase coding. J. Neurophysiol. 83, 2602–2609. [PubMed: 10805660] 

Tingley and Buzsáki Page 18

Neuron. Author manuscript; available in PMC 2019 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Jones MW, and Wilson MA (2005). Phase precession of medial prefrontal cortical activity relative to 
the hippocampal theta rhythm. Hippocampus 15, 867–873. [PubMed: 16149084] 

Kadir SN, Goodman DF, and Harris KD (2014). High-dimensional cluster analysis with the masked 
EM algorithm. Neural Comput. 26, 2379–2394. [PubMed: 25149694] 

Kao HY, Dvořák D, Park E, Kenney J, Kelemen E, and Fenton AA (2017). Phencyclidine 
discoordinates hippocampal network activity but not place fields. J. Neurosci. 37, 12031–12049. 
[PubMed: 29118102] 

Kjelstrup KB, Solstad T, Brun VH, Hafting T, Leutgeb S, Witter MP, Moser EI, and Moser MB (2008). 
Finite scale of spatial representation in the hippocampus. Science 321, 140–143. [PubMed: 
18599792] 

Knierim JJ (2002). Dynamic interactions between local surface cues, distal landmarks, and intrinsic 
circuitry in hippocampal place cells. J. Neurosci. 22, 6254–6264. [PubMed: 12122084] 

Kropff E, Carmichael JE, Moser MB, and Moser EI (2015). Speed cells in the medial entorhinal 
cortex. Nature 523, 419–424. [PubMed: 26176924] 

Lasztóczi B, and Klausberger T (2016). Hippocampal place cells couple to three different gamma 
oscillations during Place Field Traversal. Neuron 91, 34–40. [PubMed: 27387648] 

Lenck-Santini PP, and Holmes GL (2008). Altered phase precession and compression of temporal 
sequences by place cells in epileptic rats. J. Neurosci. 28, 5053–5062. [PubMed: 18463258] 

Leutgeb S, and Mizumori SJ (2002). Context-specific spatial representations by lateral septal cells. 
Neuroscience 112, 655–663. [PubMed: 12074907] 

Losonczy A, and Magee JC (2006). Integrative properties of radial oblique dendrites in hippocampal 
CA1 pyramidal neurons. Neuron 50, 291–307. [PubMed: 16630839] 

Lubenov EV, and Siapas AG (2009). Hippocampal theta oscillations are travelling waves. Nature 459, 
534–539. [PubMed: 19489117] 

Meyers EM (2013). The neural decoding toolbox. Front. Neuroinform. Published online May 22, 
2013. 10.3389/fninf.2013.00008.

McNaughton BL, Barnes CA, and O’Keefe J (1983). The contributions of position, direction, and 
velocity to single unit activity in the hippocampus of freely-moving rats. Exp. Brain Res. 52, 41–
49. [PubMed: 6628596] 

Newman EL, Venditto SJC, Climer JR, Petter EA, Gillet SN, and Levy S (2017). Precise spike timing 
dynamics of hippocampal place cell activity sensitive to cholinergic disruption. Hippocampus 27, 
1069–1082. [PubMed: 28628945] 

O’Keefe J, and Dostrovsky J (1971). The hippocampus as a spatial map. Preliminary evidence from 
unit activity in the freely-moving rat. Brain Res. 34, 171–175. [PubMed: 5124915] 

O’Keefe J, and Nadel L (1978). The Hippocampus as a Cognitive Map (Oxford University Press).

O’Keefe J, and Recce ML (1993). Phase relationship between hippocampal place units and the EEG 
theta rhythm. Hippocampus 3, 317–330. [PubMed: 8353611] 

Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM, et al. 
(2014). A mesoscale connectome of the mouse brain. Nature 508, 207–214. [PubMed: 24695228] 

Olypher AV, Lánský P, Muller RU, and Fenton AA (2003). Quantifying location-specific information 
in the discharge of rat hippocampal place cells. J. Neurosci. Methods 127, 123–135. [PubMed: 
12906942] 

Patel J, Fujisawa S, Berényi A, Royer S, and Buzsáki G (2012). Traveling theta waves along the entire 
septotemporal axis of the hippocampus. Neuron 75, 410–417. [PubMed: 22884325] 

Paxinos G, and Watson C (2013). The Rat Brain in Stereotaxic Coordinates (Academic Press).

Risold PY, and Swanson LW (1997). Connections of the rat lateral septal complex. Brain Res. Brain 
Res. Rev. 24, 115–195. [PubMed: 9385454] 

Robbe D, Montgomery SM, Thome A, Rueda-Orozco PE, McNaughton BL, and Buzsaki G (2006). 
Cannabinoids reveal importance of spike timing coordination in hippocampal function. Nat. 
Neurosci. 9, 1526–1533. [PubMed: 17115043] 

Rossant C, Kadir SN, Goodman DFM, Schulman J, Hunter MLD, Saleem AB, Grosmark A, Belluscio 
M, Denfield GH, Ecker AS, et al. (2016). Spike sorting for large, dense electrode arrays. Nat. 
Neurosci. 19, 634–641. [PubMed: 26974951] 

Tingley and Buzsáki Page 19

Neuron. Author manuscript; available in PMC 2019 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Rothschild G, Eban E, and Frank LM (2017). A cortical-hippocampal-cortical loop of information 
processing during memory consolidation. Nat. Neurosci. 20, 251–259. [PubMed: 27941790] 

Royer S, Sirota A, Patel J, and Buzsáki G (2010). Distinct representations and theta dynamics in dorsal 
and ventral hippocampus. J. Neurosci. 30, 1777–1787. [PubMed: 20130187] 

Sheehan TP, Chambers RA, and Russell DS (2004). Regulation of affect by the lateral septum: 
Implications for neuropsychiatry. Brain Res. Brain Res. Rev. 46,71–117. [PubMed: 15297155] 

Skaggs WE, McNaughton BL, Wilson MA, and Barnes CA (1996). Theta phase precession in 
hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6, 
149–172. [PubMed: 8797016] 

Stawińska U, and Kasicki S (1995). Theta-like rhythm in depth EEG activity of hypothalamic areas 
during spontaneous or electrically induced locomotion in the rat. Brain Res. 678, 117–126. 
[PubMed: 7620881] 

Stevens CF, and Wang Y (1995). Facilitation and depression at single central synapses. Neuron 14, 
795–802. [PubMed: 7718241] 

Swanson LW, and Cowan WM (1979). The connections of the septal region in the rat. J. Comp. 
Neurol. 186, 621–655. [PubMed: 15116692] 

Takamura Y, Tamura R, Zhou TL, Kobayashi T, Tran AH, Eifuku S, and Ono T (2006). Spatial firing 
properties of lateral septal neurons. Hippocampus 16, 635–644. [PubMed: 16786557] 

Thorpe S, Fize D, and Marlot C (1996). Speed of processing in the human visual system. Nature 381, 
520–522. [PubMed: 8632824] 

Tingley D, Alexander AS, Kolbu S, de Sa VR, Chiba AA, and Nitz DA (2014). Task-phase-specific 
dynamics of basal forebrain neuronal ensembles. Front. Syst. Neurosci. 8, 174. [PubMed: 
25309352] 

Tingley D, Alexander AS, Quinn LK, Chiba AA, and Nitz DA (2015). Cell assemblies of the basal 
forebrain. J. Neurosci. 35, 2992–3000. [PubMed: 25698736] 

Tingley D, Alexander AS, Quinn LK, Chiba AA, and Nitz DA (2017). Transformation of Independent 
oscillatory inputs into temporally precise rate codes. bioRxiv. 10.1101/054163.

Valenstein ES, Cox VC, and Kakolewski JW (1970). Reexamination of the role of the hypothalamus in 
motivation. Psychol. Rev. 77, 16–31. [PubMed: 4908030] 

van der Meer MA, and Redish AD (2011). Theta phase precession in rat ventral striatum links place 
and reward information. J. Neurosci. 31, 2843–2854. [PubMed: 21414906] 

Vertes RP, and Kocsis B (1997). Brainstem-diencephalo-septohippocampal systems controlling the 
theta rhythm of the hippocampus. Neuroscience 81, 893–926. [PubMed: 9330355] 

Wang Y, Romani S, Lustig B, Leonardo A, and Pastalkova E (2015). Theta sequences are essential for 
internally generated hippocampal firing fields. Nat. Neurosci. 18, 282–288. [PubMed: 25531571] 

Witter MP (2007). Intrinsic and extrinsic wiring of CA3: Indications for connectional heterogeneity. 
Learn. Mem. 14, 705–713. [PubMed: 18007015] 

Zhou TL, Tamura R, Kuriwaki J, and Ono T (1999). Comparison of medial and lateral septal neuron 
activity during performance of spatial tasks in rats. Hippocampus 9, 220–234. [PubMed: 
10401638] 

Tingley and Buzsáki Page 20

Neuron. Author manuscript; available in PMC 2019 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• LS neurons carry a rate-independent phase code for position

• The LS spatial phase code is as reliable as the hippocampal rate or phase 

codes

• LS phase code is a transformation of the distributed CA1/CA3 cognitive map

• The Hippocampus-LS circuit may be the conduit for translating 

representation to action

Tingley and Buzsáki Page 21

Neuron. Author manuscript; available in PMC 2019 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Hippocampal Place Cells Carry Precise Rate and Phase Codes for Position
(A) Gray dots indicate the animals head position through out each maze traversal. Green and 

red dots indicate the starts and stops, respectively (N = 21 trials). Black dots reflect the 

animals’ position when action potentials were emitted by a single CA1 pyramidal neuron. 

Insets: black waveform shows the average action potential shape for that neuron (1 Hz to 20 

kHz), and the grayed area indicates the third SD in mean voltage throughout the recording. 

Histogram is the auto-correlogram of spikes for the same neuron.

(B) Linearized firing rate maps. The y axis represents the number of trials (N = 21), and the 

x axis represents the linearized position of the animal on the maze.

(C) Linearized firing phase maps. Each dot corresponds to a single action potential, with 

reference to the CA1 pyramidal layer theta phase(y axis; shown twice for visibility) and the 

linearized position of the animal on the maze (x axis).

(D) Peak spatial information rates for the example neuron in (A)–(C) with different 

smoothing kernel widths. Red indicates the information rate obtained by using spike rate 

(1B), and blue indicates the information rate using spike phase (1C).

(E) Histograms represent the smoothing kernels with the maximum peak information rate 

(peaks of red/blue lines in (D) for phase (blue) and rate (red) codes for a total of 1,820 CA1 

and CA3 place fields. Median phase peak information rate was 15 spatial bins, and median 

discharge frequency peak information rate was 29 spatial bins (two-sample t test p < 10−40). 

Inset histogram shows the distribution when smoothing kernel widths with peak information 

rates are subtracted for phase and rate.
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(F) Average peak information rates for 1,820 place fields for all smoothing kernel sizes. 

Bounds are ±3 SEM.

(G) Average of subtraction of phase and rate information scores for all 1,820 place fields and 

smoothing kernel sizes. Bounds are ±3 SEM. Red dots indicate bins with significantly 

different rate and phase information (two sample KS test; p < 0.01).

(H) Mean squared error (MSE) values when using the example cell in (A)–(C) to predict the 

animal’s position. Blue dots are models that used the neurons firing phase as a predictor, red 

dots are models that used the firing rate as a predictor, and black dots are MSE values for 

shuffled data (N = 10 iterations; Monte Carlo cross-validation).

(I) Histogram of mean squared error (MSE) values for all place fields using firing rates (red) 

or firing phase (blue) to predict the animal’s position.

See also Figures S1 and S2.
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Figure 2. Lateral Septum Neurons Display a Rate-Independent Spatial Phase Code
(A) Behavioral tracking data for five different sessions. Same layout as in Figure 1A.

(B) Linearized firing rate maps for each of the five example neurons. For each heatmap, they 

axis represents the number of trials recorded in the condition for that recording (N = 28, 34, 

13, 28, and 32), and the x axis represents the linearized position of the animal on the maze 

(meters).

(C) Spike theta phase-position scatterplots for each of the five example neurons.

(D) Mean squared error (MSE) values for models using shuffled data (black), firing rates 

(red), or firing phase (blue) to predict the animal’s position (N = 10 iterations).

(E) Histograms of average MSE values (blue/phase, red/rate) for all recorded LS neurons, 

across all conditions (N = 4,393).

(F) Histogram of average MSEphase-MSErate values for all conditions for lateral septum (LS) 

cells (magenta; N = 4,393, mean = − 1,000) and hippocampal place fields (black; N = 1,820, 

mean = − 33).

Tingley and Buzsáki Page 24

Neuron. Author manuscript; available in PMC 2019 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(G) Histogram of average MSEphase-MSErate values for all recordings in the hippocampus 

(HPC) (black; N = 45 sessions, mean = − 25) and lateral septum (magenta; N = 62 sessions, 

mean = − 1,024).

See also Figures S1–S3.
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Figure 3. Rate and Phase Population Correlation Matrices
(A–C) Top row: correlation matrix (Pearson’s) across all positions for all 5,735 hippocampal 

conditions (N = 2,951 units, A), 1,820 hippocampal place fields (N = 711 units, B), and for 

all 4,393 LS ratemaps (N = 840 units, C) using firing rates. Middle row: correlation matrices 

(circular) across all positions for all hippocampal conditions (A), hippocampal place fields 

(B), and LS conditions (C) using theta phase of firing. All color axes are 0.1–1. Bottom row: 

anti-diagonal lines from each correlation matrix are plotted for phase (blue) and rate (red) 

mappings. See also Figures S4 and S6.
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Figure 4. Microstructure of the Theta Phase Code in the LS
(A) Left: histology for a recording with a single-shank silicon probe (64 channels spanning 

1,275 μm). Right: single units were simultaneously isolated from recording sites in the 

anterior cingulate cortex (ACG; black) and dorsal lateral septum (LSD; orange). Waveforms 

are positioned to match the recording site along the shank with the largest amplitude 

waveform. LSI, intermediate lateral septum; SFi, septofimbrial nucleus.

(B) Location of the neuron’s cell body in the LS varies systematically with the strength of 

phase coding. Each dot indicates the electrode site with the maximum waveform amplitude 
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(0–1,275 μm; y axis) and the relative strength of phase coding (x axis) for a single neuron 

(MSEphase-MSErate).

(C) Reconstructed recording tracks for all five animals (magenta, orange, green, red, and 

blue; see also Figure S1). Black horizontal bars indicate the approximate first and last 

recording site for each animal.

(D) Group data for 5 rats. Each dot is a session mean MSE determined by all recorded 

neurons in that session (range: 8–53). The orange circle outlined in black corresponds to the 

session shown in (B). Spacing and estimated depth locations were determined with a 

combination of histology (Figure S1), electrophysiological markers, and micro-drive turn 

records.

(E) For every phase precessing LS neuron, the mean phase angle, relative to CA1 theta, for 

the first 15 bins of its phase field is shown. Each colored histogram shows the mean phase 

angles for neurons recorded from a single animal.

Colored dots, lines, and histograms in (C)–(E) correspond to the same animal.
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Figure 5. Gamma Timescale Cell Assemblies Bind Hippocampal and Lateral Septal Spatial 
Phase Codes
(A) Five example hippocampal (HPC) place fields. Upper: firing rate maps for each example 

neuron. Y axis is the number of trials; x axis is the linearized position on the track. Color 

axis is 0 to max rate. Lower: firing phase maps for each example hippocampal neuron. y axis 

represents the CA1 theta phase; x axis represents the linearized position of the animal.

(B) Firing phase maps for five example LS neurons, simultaneously recorded with the 

hippocampal neurons shown above.

(C) Cross-correlograms between each example cell pair(one HPC and one LS neuron), 

smoothed over 20 ms. Red horizontal lines indicatea50-mstimewindow, within which each 

pair of neurons reliably fires together.
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(D) Generalized linear model (GLM) approach to quantify assembly strength of 

simultaneously recorded HPC-LS neuron pairs. x axis represents the smoothing kernel size 

(1–150 ms) of spike rate; y axis represents the deviation from fit for each model. Black line 

shows values for actual data; red lines indicate the average deviation values expected after 

shuffling trial order.

(E) Scatterplot of smoothing kernel windows versus assembly strength values. For each 

HPC-LS “assembly” pair, the smoothing kernel with optimal fit (x axis) is plotted against 

the relative strength of the assembly (y axis).

(F) Histogram of optimal fit windows. Red line indicates the median of 25 ms.

(G) LS neurons that participated in at least one highly predictive HPC-LS assembly pair 

(threshold ≥4) were observed to carry a significantly stronger spatial phase-coding bias 

(two-way KS test; p < 10−20). x axis represents the percentile of the cumulative distribution 

(0%–100%) of LS neurons, and y axis represents the sorted MSE value associated with that 

percentile. Magenta and black lines correspond to MSEphase-MSErate values expected from 

LS neurons that do or do not participate in at least one gamma assembly with simultaneously 

recorded hippocampal neurons, respectively. Bounds are ±3 SDs. See also Figure S5.
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Figure 6. Lateral Septal Phase Precession Is a Readout of Dynamic Weighting of CA1 and CA3 
Inputs
(A) Representative schematic of histological results showing the hippocampal recording 

locations in four animals (four CA1 and three CA3 sites).

(B) Representative histological results from simultaneous CA1 and CA3 recording of LFP 

with reference sites that spanned 1 mm above probe recording tip.

(C) Theta phase coherence between CA1 (black), or CA3 (red), recording sites and LS.

(D) Hippocampal theta-septal gamma coherence between CA1 (black), or CA3 (red) sites 

and LS.
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(E) CA3 place fields form progressively stronger gamma assemblies with LS as the animal 

traverses through space, while CA1 place fields decrease their coupling strength. Bounds are 

±1 SEM. Black dots indicate bins that are significantly different between CA1 and CA3 

(two-sample KS test; p < 0.05). Inset shows that both CA1 and CA3 place cells tiled the 

entire track.

(F) Diagram of hypothetical coupling strengths between CA1/LS (black) and CA3/LS (red) 

as a function of spatial position of the animal.

(G) Conceptual model of how dynamic weighting interacts with theta phase delays across 

CA1–CA3 regions. LS output neuron is entrained to the phase of theta oscillation reflecting 

the most strongly coupled input.

(H) Spiking output from a LS “reader” neuron demonstrates phase precession relative to 

theta recorded at a fixed hippocampal site, in the CA3–CA1 axis, across three different 

spatial positions
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Figure 7. Theta Oscillation-Coordinated Hippocampal Assemblies Are Required for Spike-Phase 
Precession of LS Neurons
(A) Biophysical model of CA1/CA3 place field populations that provide convergent input to 

a LS neuron.

(B) CA1/CA3 place fields tile a segment of space (shown as time, assuming constant 

velocity). Each colored bar indicates the firing field for a single idealized neuron in CA1 

(upper) or CA3 (lower).

(C) Left columns: spike-phase maps for 50 simulated CA1 place cells that phase precess 

over a single trial. Right columns: spike-phase maps for neurons 10 and 40, showing reliable 
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phase precession across 40 trials. Note that CA3 place cells maintain the same dynamics but 

with a 180° phase offset from CA1 theta.

(D) CA1/CA3 populations form theta sequences within single trials.

(E) Column one: Static synaptic weight matrices for CA1 (black) and CA3 (red). Neuron 

order is sorted to match the order of place field location in (B). Column two: firing rate maps 

for the modeled LS neuron across 40 trials. White line is the mean firing rate across trials. 

Column three: firing phase maps for the modeled LS neuron across 40 trials, relative to CA1 

theta phase. Column four: mean squared error values using the same decoder as in (H) and 

(D) for shuffled data (black), firing rates (red), or firing phases (blue) of the modeled LS 

neuron.

(F) Same as in (E) but with a random synaptic weight matrix.

(G) Same as in (E) but with a synaptic weight matrix taken directly from the gamma 

assembly analysis in Figure 6E. Dynamic weighting of synaptic matrix produces a robust 

spatial phase code.

(H) Same as in (G) but without the presence of population theta sequences. This is achieved 

by injecting different theta rhythms into individual CA1/CA3 neurons.
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