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Predicting Reaction Time from the Neural State Space of the
Premotor and Parietal Grasping Network
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Neural networks of the brain involved in the planning and execution of grasping movements are not fully understood. The network
formed by macaque anterior intraparietal area (AIP) and hand area (F5) of the ventral premotor cortex is implicated strongly in the
generation of grasping movements. However, the differential role of each area in this frontoparietal network is unclear. We recorded
spiking activity from many electrodes in parallel in AIP and F5 while three macaque monkeys (Macaca mulatta) performed a delayed
grasping task. By analyzing neural population activity during action preparation, we found that state space analysis of simultaneously
recorded units is significantly more predictive of subsequent reaction times (RTs) than traditional methods. Furthermore, because we
observed a wide variety of individual unit characteristics, we developed the sign-corrected average rate (SCAR) method of neural
population averaging. The SCAR method was able to explain at least as much variance in RT overall as state space methods. Overall, F5
activity predicted RT (18% variance explained) significantly better than AIP (6%). The SCAR methods provides a straightforward
interpretation of population activity, although other state space methods could provide richer descriptions of population dynamics.
Together, these results lend support to the differential role of the parietal and frontal cortices in preparation for grasping, suggesting that

variability in preparatory activity in F5 has a more potent effect on trial-to-trial RT variability than AIP.
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ignificance Statement

Grasping movements are planned before they are executed, but how is the preparatory activity in a population of neurons related
to the subsequent reaction time (RT)? A population analysis of the activity of many neurons recorded in parallel in macaque
premotor (F5) and parietal (AIP) cortices during a delayed grasping task revealed that preparatory activity in F5 could explain a
threefold larger fraction of variability in trial-to-trial RT than AIP. These striking differences lend additional support to a differ-
ential role of the parietal and premotor cortices in grasp movement preparation, suggesting that F5 has a more direct influence on
trial-to-trial variability and movement timing, whereas AIP might be more closely linked to overall movement intentions.

~

Introduction

In the sport of fencing, rapid actions are required on the millisec-
ond scale. Small rotations of the wrist can make the difference
between a hit and a complete miss. The response of athletes to
various attacks is highly variable, despite the rigorously trained
nature of their skill set. What are the factors that contribute to the
variability of such complex actions? It is known that voluntary
movements are prepared before they are executed (Kutas and

Received April 30, 2015; revised July 3, 2015; accepted July 10, 2015.

Author contributions: J.A.M., B.D., R.W.I., and H.S. designed research; J.A.M., B.D., RW.I., and H.S. performed
research; J.A.M., B.D., and H.S. analyzed data; J.A.M. and H.S. wrote the paper.

This work was supported by German Research Foundation Research Grant SCHE 1575/1-1. We thank Natalie
Nazarenus, Ricarda Ahlert, and Matthias Ddrge for technical assistance.

The authors declare no competing financial interests.

Correspondence should be addressed to Hansjorg Scherberger, Neurobiology Laboratory, German Primate Cen-
ter, Kellnerweg 4, D-37077 Gottingen, Germany. E-mail: HScherberger@dpz.eu.

DOI:10.1523/JNEUR0SCI.1714-15.2015
Copyright © 2015 the authors  0270-6474/15/3511415-18%15.00/0

Donchin, 1974; Wise, 1985; Ghez et al., 1997). A benefit of longer
preparation is a reduction in reaction times (RTs), which is the
time between a go signal and the initiation of a movement
(Rosenbaum, 1980; Riehle and Requin, 1989). Nevertheless, RT
varies even for similar amounts of preparation.

The ideal design for studying motor preparation is the de-
layed reaching task, in which a movement must be planned
and withheld for a certain time. Studies have shown that pop-
ulation activity of neurons in the dorsal premotor cortex
(PMd) of the primate brain, recorded either sequentially
(Riehle and Requin, 1993) or in parallel (Churchland et al.,
2006¢; Afshar et al., 2011; Churchland, 2015), can explain a
large portion of the variability in reach RT and reach velocity
(Churchland et al., 2006a,b). Similar results have been ob-
tained using sequential recordings in the parietal reach region
(Snyder et al., 2006) and lateral intraparietal area (Janssen and
Shadlen, 2005). However, a comparative study of the fronto-
parietal network has not been undertaken.
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To analyze RT variability, an understanding of preparatory
activity is vital. A number of models have been proposed to ex-
plain how preparation of movement is undertaken. Initial mod-
els related the preparatory activity of single neurons to behavior
by suggesting that subpopulations of neurons may hold activity
near a movement threshold that is crossed to initiate movement
(Riehle and Requin, 1993; Hanes and Schall, 1996; Erlhagen and
Schéner, 2002), whereas more recent models use a state space
framework of population activity. In the latter framework, the
firing of each neuron represents a dimension in a high-
dimensional space of all neurons. Hence, the firing of all neurons
at a particular time represents a single point in the state space,
de-emphasizing the importance of tuning properties of individ-
ual neurons (Fetz, 1992). The “optimal subspace” hypothesis
posits that a preparatory state is achieved during planning and
that deviations from this state may delay movement (Churchland
et al., 2006¢; Churchland and Shenoy, 2007a). The “initial con-
dition hypothesis” augmented this view by further stating that
trial-to-trial fluctuations in the neural trajectory are correlated
with RT (Afshar et al., 2011).

To elucidate the role of the frontoparietal network in prepa-
ration, the established hand grasping circuit (Luppino et al.,
1999) consisting of the hand area (F5) of the ventral premotor
cortex (PMv) and the anterior intraparietal area (AIP) were in-
vestigated using a delayed grasping task. Neural activity in these
areas is modulated strongly by visual object properties (Murata et
al., 1997, 2000), extrinsic goals (Kakei et al., 2001), performed
grip types (Baumann et al., 2009; Fluet et al., 2010), and prepara-
tory activity in these areas can be used to decode the visual prop-
erties of objects and complex hand shapes required to grasp a
diverse range of objects (Carpaneto et al., 2011; Townsend et al.,
2011; Schaffelhofer et al., 2015).

In the current study, we analyzed population activity in a de-
layed grasping task with multiple grip types to evaluate how pop-
ulation activity of simultaneously recorded units in F5 and AIP
might inform subsequent behavior. Preparatory activity in F5
could explain up to 18% of the variability in trial-to-trial RT, a
significant finding, whereas AIP could explain only up to 6%. By
demonstrating a significant advantage of F5 over AIP in RT pre-
diction, our results support the concept that the encoding of RT is
represented primarily in the frontal and not the parietal lobe, at
least when grasping in the dark.

Materials and Methods

Basic procedures. Neural activity was recorded simultaneously from area
F5 and area AIP in one male and two female rhesus macaque monkeys
(Macaca mulatta, animals B, S, and Z; body weight, 11.2, 9.7, and 7.0 kg,
respectively). Animal care and all experimental procedures were con-
ducted in accordance with German and European law and were in
agreement with the Guidelines for the Care and Use of Mammals in Neu-
roscience and Behavioral Research (National Research Council, 2003).
Basic experimental methods have been described previously
(Townsend et al., 2011; Schaffelhofer et al., 2015). We trained animals to
perform a delayed grasping task. They were seated in a primate chair and
trained to grasp a handle with the left hand (animals B and Z) or the right
hand (animal S; Fig. 1D). This handle was placed in front of the monkey
at chest level and in the vertical position at a distance of ~26 cm, i.e., the
monkeys had to reach a distance of 26 cm to grasp the handle. The handle
could be grasped either with a power grip (opposition of fingers and
palm) or precision grip (opposition of index finger and thumb; Fig. 1E).
Two clearly visible recessions on either side of the handle contained
touch sensors that detected thumb and forefinger contact during preci-
sion grips, whereas power grips were detected using an infrared light
barrier inside the handle aperture. The monkey was instructed which
grip type to make by means of two colored LED-like light dots projected
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from a thin-film transistor (TFT) screen (CTF846-A; screen size, 8
inches, digital; resolution, 800 X 600; refresh rate, 75 Hz) onto the center
of the handle via a half mirror positioned between the animal’s eyes and
the target. A mask preventing a direct view of the image was placed in
front of the TFT screen and two spotlights placed on either side could
illuminate the handle. Apart from these light sources, the experimental
room was completely dark. In addition, one or two capacitive touch
sensors (model EC3016NPAPL; Carlo Gavazzi) were placed at the level of
the animals’ midtorso and functioned as hand-rest buttons. The non-
acting arm of animals B and Z were placed in a long tube, preventing it
from interacting with the handle. Monkey S was trained to keep its non-
acting hand on an additional hand-rest button.

Eye movements were measured using an infrared optical eye tracker
(model AA-ETL-200; ISCAN) via a heat mirror directly in front of the
monkey’s head. To adjust the gain and offset, red calibration dots were
shown at different locations at the beginning of each session for 25 trials
that the animal fixated for at least 2 s.

Eye tracking and the behavioral task were controlled by custom-
written software implemented in LabView Realtime (National Instru-
ments) with a time resolution of 1 ms. An infrared camera was used to
monitor behavior continuously throughout the entire experiment.

Behavioral paradigm. Animals B and S performed Task 1 (Fig. 1E),
whereas animal Z performed Task 2 (Fig. 1F). The following is an expla-
nation of the trial course of Task 1. Trials started after the monkey placed
the acting hand on the resting position and fixated a red dot (fixation
period). The animal was required to keep the acting hand, or both hands
(animal S), completely still on the resting position until after the go cue.
After 400-700 ms, two flashlights illuminated the handle for 300 ms,
followed by 600 ms of additional fixation. In the cue period, a second
light dot was then shown next to the red one to instruct the monkey about
the grip type for this trial (grip cue). Either a green or white dot appeared
for 300 ms, indicating a power or a precision grip, respectively. After that,
the monkey had to memorize the instruction for a variable memory
period. This memory period lasted for 0-1300 ms (i.e., the go cue could
appear simultaneously with the grip cue), in discrete memory period bins
of 0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, or 1300 ms, which
were pseudorandomly sampled with an equal number of trials from each
condition. Regardless of memory period length, the grip cue was always
shown for 300 ms. Switching off the fixation light then cued the monkey
to reach and grasp the target (movement period) to receive a liquid
reward. Animals were required to hold the appropriate grip for 300 ms.
Additionally, catch trials were interleaved randomly (~8% of trials), in
which a go cue was never shown and the animal only received a reward if
it maintained fixation and the hands on the hand rests for 2000 ms after
the grip cue. All trials were interleaved randomly and in total darkness.

The differences between Task 1 and Task 2 are as follows. In Task 2, there
was only one fixation period that lasted for 6001000 ms. In Task 2, the
illumination of the handle took place at the time of grip cue. In the instructed
version of Task 2, the grip cues were identical to Task 1. In the free-choice
version, both a green and white dot appeared simultaneously, indicating that
the monkey was free to choose between the two grip types. This was followed
by a memory period lasting 400—600 ms, and then either the green or white
dot reappeared for 300 ms in 50% of all free-choice trials, which turned the
free-choice task into a delayed-instructed task and was followed by a second
memory period (duration, 400—600 ms). In all other trials (instructed or free
choice), only the red fixation dot was shown during the second cue period,
making it impossible to distinguish the first and second memory periods.
The hold period in Task 2 was 200 ms as opposed to 300 ms in Task 1.
Importantly, during free-choice trials, the reward was reduced every time the
monkey repeatedly chose the same grip type.

Surgical procedures and imaging. After completion of behavioral train-
ing, each animal received an MRI scan to locate anatomical landmarks
for subsequent chronic implantation of microelectrode arrays. Each
monkey was sedated (e.g., 10 mg/kg ketamine and 0.5 mg/kg xylazine,
i.m.) and placed in the scanner (GE Healthcare 1.5T or Siemens Trio 3T)
in a prone position. T1-weighted volumetric images of the brain and
skull were obtained as described previously (Baumann et al., 2009). We
measured the stereotaxic location of the arcuate and intraparietal sulci to
guide placement of the electrode arrays.
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FMA implantation and task design. A—C, Array locations for animals B, S, and Z, respectively. Two arrays were placed in F5 on the bank of the arcuate sulcus (AS). Two additional arrays

were placed in AIP toward the lateral end of the intraparietal sulcus (IPS). In animals B and Z, two more arrays were placed on the bank of the central sulcus (CS). The cross shows medial (M), lateral
(L), anterior (A), and posterior (P) directions. Note that animal S was implanted in the left hemisphere and animals B and Z in the right hemisphere. D, Sketch of an animal in the experimental setup.
The cues were presented on a monitor projected onto a mirror, making the light dots appear superimposed onto the grasping handle. E, Delayed grasping task with two grip types (Task 1). An
example of each grip type can be seen during the movement epoch (top, power grip; bottom, precision grip). The handle was rotated to a supine orientation for demonstration purposes only. F,
Delayed grasping task with two grip types and three decision conditions (Task 2). Free-choice trials were presented twice as often as each of the other conditions. Delayed-instructed trials contained
a second grip cue turning a free-choice trial into a delayed-instructed trial. Trials were presented in a pseudorandom order.

Chronic electrode implantation. An initial surgery was performed to
implanta head post (titanium cylinder; diameter, 18 mm). After recovery
from this procedure and subsequent training of the task in the head-fixed
condition, each animal was implanted with floating microelectrode ar-
rays (FMAs; MicroProbes for Life Science) in a separate procedure. An-
imal S was implanted with 32 electrode FMAs and received two arrays in
each area (Fig. 1B). The arcuate sulcus of animal S did not present a spur,
but in the MRI a small indentation was visible in the posterior bank, ~2
mm medial to the knee, which we treated as the spur. We placed both
anterior FMAs lateral to that mark. Animals B and Z were implanted with
six electrode arrays in the right hemisphere, each with 32 electrodes (Fig.
1A, C). Two such arrays were implanted in area F5, two in area AIP, and
two in the primary motor cortex (M1). FMAs consisted of nonmoveable
monopolar platinum—iridium electrodes with initial impedances rang-
ing from 300 to 600 k() at 1 kHz measured before implantation. Post-
implantation measurements in the first months after implantation
confirmed these values in vivo. Lengths of electrodes were 1.5-7.1 mm.

All surgical procedures were performed under sterile conditions and
general anesthesia (e.g., induction with 10 mg/kg ketamine, i.m., and
0.05 mg/kg atropine, s.c., followed by intubation, 1-2% isoflurane,

and analgesia with 0.01 mg/kg buprenorphene, s.c.). Heart and respira-
tion rates, electrocardiogram, oxygen saturation, and body temperature
were monitored continuously, and systemic antibiotics and analgesics
were administered for several days after each surgery. To prevent brain
swelling while the dura was open, the animal was hyperventilated mildly
(end-tidal CO,, ~30 mmHg), and mannitol was kept at hand. Animals
were allowed to recover fully (~2 weeks) before behavioral training or
recording experiments commenced.

Neural recordings and spike sorting. Signals from the implanted arrays
were amplified and stored digitally using a 128 channel recording system
(sampling rate, 30 kS/s; 0.6—7500 Hz hardware filter; Cerebus; Blackrock
Microsystems). Data were first filtered using a median filter (window
length, 3 ms), and the result was subtracted from the raw signal. After-
ward, the signal was low-pass filtered with a causal Butterworth filter
(5000 Hz; fourth order). To eliminate movement noise (i.e., common
component induced by reference and ground), principal component
analysis (PCA) artifact cancellation was applied for all electrodes of each
array (as described by Musial et al., 2002). To ensure that no individual
channels were eliminated, PCA dimensions with any coefficient >0.36
(with respect to normalized data) were retained. Spike waveforms were
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extracted and semiautomatically sorted using a modified version of the
offline spike sorter Wave_clus (Quiroga et al., 2004; Kraskov et al., 2009).

Unit isolation was evaluated using four criteria: (1) the absence of
short (1-2 ms) intervals in the interspike interval histogram for single
units, (2) the degree of homogeneity of the detected spike waveforms, (3)
the separation of waveform clusters in the projection of the first 17 fea-
tures detected by Wave_clus, and (4) the uniqueness of the shape of the
interspike interval distribution.

After the semiautomatic sorting process, redetection of the average
waveforms (templates) was done to detect overlaid waveforms (Gozani
and Miller, 1994). Filtered signals were convolved with the templates
starting with the biggest waveform. Independently for each template,
redetection and resorting was run automatically using a linear classifier
function (MATLAB function classify). After the identification of the tar-
get template, the shift-corrected template (achieved by up and down
sampling) was subtracted from the filtered signal of the corresponding
channel to reduce artifacts for detection of the next template. This pro-
cedure allowed a detection of templates up to an overlap of 0.2 ms. As a
control, unit isolation was evaluated again as described previously to
determine the final classification of all units into single units or multi-
units. In case of ambiguity, a unit was not classified as single. Stationarity
of firing rate was checked for all units, and, in case the firing rate was not
stable over the entire recording period (>30% change in firing rate be-
tween the first 10 min and the last 10 min of recording), the unit was
excluded from additional analyses (<3% of all single units).

Data preprocessing. In all datasets trials with outlying RTs, >700 ms in
Task 1 and >500 ms in Task 2 and <200 ms in either task were excluded.
In animals B and S, these trials comprised <1% of the data and <3% in
animal Z. Clearly, all animals were careful to wait for the appropriate go
cue and did not act preemptively. We used this conservative check on
outlier RTs to safely exclude the possibility that animals were acting in
anticipation of the go cue.

Crucially, for all analyses of Task 1, trials with memory periods <500 ms
were excluded from analysis. These short memory period trials were re-
moved to ensure that animals had sufficient time to fully plan the movement
before acting. Such an exclusion criteria was not used in Task 2, because the
animal never had <700 ms to plan (delayed-instructed condition) and was
trained for many months to acquire this timing scheme.

All recorded units (single unit and multiunit) were used in our main
analyses. After spike sorting, spike events were binned in overlapping 100
ms windows and sampled every millisecond to produce a continuous
firing rate signal (1 kHz). This means that firing rates at the time of the go
cue considered spikes occurring 50 ms before to 50 ms after the go cue.
Because it is unlikely that (sensory) responses to the go cue would be
represented in AIP or F5 already at 50 ms after presentation, we believe
this binning does not bias the predictive power of RTs. In fact, our con-
clusions do not change when using a binning that does not extend be-
yond the go cue (data not shown).

Dimensionality reduction. Dimensionality reduction was performed
for the purposes of visualization only. All quantitative analyses relied on
the full dimensionality of the data. Gaussian-process factor analysis
(GPFA) was performed on the neural data from cue presentation to
movement onset (Yu et al., 2009). This method performs smoothing of
spike trains and dimensionality reduction simultaneously within a com-
mon probabilistic framework. It assumes that the activity of each unit is
a linear function (plus noise) of a low-dimensional neural state whose
evolution in time is well described by a Gaussian process. This methods
allows for better visualization on the single-trial level than other pub-
lished methods (Yu et al., 2009). The data were reduced to 12 dimensions
(the optimal number of latent dimensions in the data as determined by
cross-validation) using 20 ms nonoverlapping spike bins to produce the
trajectories in Figure 3A. In this reduction, the three displayed dimen-
sions explain 63% of the total variance. In this figure, a rotation of the
first three latent dimensions is shown (equivalent to a linear combination
of the three dimensions explaining the most variance overall).

Similarly, neural trajectories in Figure 9 were generated by performing
PCA on the peristimulus time histograms of all units for each grasp
condition separately. All individual trials were then transformed into the
two principal components explaining the most variance and binned into
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slow, medium, and fast RTs. All trials were aligned to the go cue and
plotted from 350 ms before to 280 ms after the go cue.

Projection methods. As can be seen in Figure 3A, trials of the same
condition tend to follow a stereotypical trajectory through neural space.
Following the study by Afshar et al. (2011), we reasoned that the farther
the neural state had advanced along the mean neural path at the time of
the go cue would be predictive of subsequent performance. To test this
hypothesis, we projected neural activity of individual trials at the go cue
on the mean neural trajectory of similar trials (excluding the tested trial
of the same condition). The projection is denoted in Figure 3B with the
symbol a. The vector formed between the mean firing rate at the go cue
and the firing rate at the go cue of an individual trial is projected onto the
vector between the mean firing at go and the mean firing at go = some At.
The data were tested empirically to determine the optimal At values over
all datasets. Selected At values ranged from 300 ms before to 300 ms after
the go cue.

Additionally, as depicted in Figure 3D, the instantaneous velocity of
the neural data, [tgo - (tgo — 20)], in the high-dimensional neural space
of individual trials was projected onto the mean neural trajectory. Similar
to the projection method, the velocity projection method hypothesized
that trials in which the neural space is changing in the direction of the
mean trajectory will have shorter RTs. Importantly, trials were segregated
into 100—200 ms bins based on the length of the memory period to
minimize the effect of memory period length on neural position, i.e., the
mean trajectory used as a reference for each trial was calculated solely on
other trials within the same memory period bin.

Euclidian distance method. The Euclidian distance method was per-
formed also equivalently to the study by Afshar et al. (2011). Single-trial
RT was correlated with the Euclidian distance between the high-
dimensional firing rate at the go cue on the single trial and the mean
high-dimensional firing rate of all other trials of the same condition at
some time offset, At, as depicted in Figure 3C.

The optimal subspace method, as originally reported by Churchland et
al. (2006¢), was also performed. It is equivalent to the Euclidian distance
method with a time offset of At = 0 ms. Both of these methods are based
on the hypothesis that trials in which firing rates are close to the mean
rates observed for similar trials have shorter RTs.

Average rate method. The average rate (AR) method is based on the
simple hypothesis that trials during which particular units have higher
firing rates will be associated with shorter RTs. This method posits that
neural activity increases during preparation and crosses a movement
threshold to initiate a movement, also known as the rise-to-threshold
hypothesis (Erlhagen and Schoner, 2002). Under the assumptions of this
method, higher preparatory activity would always be associated with
shorter RTs. Four implementations of this method were tested initially.
The trial-by-trial RT was correlated with the following: (1) the signed
difference between firing rate at go cue and at cue onset (i.e., an approx-
imation of baseline firing), averaged across all units; (2) the same method
but using the unsigned difference (absolute value); (3) the average firing
rate at the go cue across all units; and (4) the average firing rate at the go
cue across all units for their preferred grip type only. The third version,
which does not rely on baseline firing rate or unit preferences, was the
best performing (data not shown) and was therefore the one used for
additional analysis. For clarity, we opted to name our implementation of
the rise-to-threshold hypothesis as the AR method.

Sign-corrected average rate method. As hypothesized by the AR method,
if units that increase their activity (relative to the mean) during move-
ment preparation are associated with trials having short RTs, then they
are negatively correlated with RT. However, if the activity of some units
were in fact reduced (relative to the mean) for trials with short RT, this
would result in a positive correlation. If many of each of these types exists
in the same population, which is averaged to produce an RT prediction,
these two inverted populations would be in conflict and cancel out each
other, thereby causing poor RT prediction.

To overcome this obstacle, we introduced the sign-corrected average
rate (SCAR) method. It is identical to the simple AR method as described
in the previous section; however, the signal of all units was first multi-
plied with a sign-correction vector. That is, units that were correlated
positively with RT were inverted to produce a negative correlation. To
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decide which units were to receive a negative value in the sign-correction
vector, (1) the firing rates at the go cue of individual units were cor-
related with RT (twofold cross-validated) over all conditions. (2)
Units received a —1 value in the sign-correction vector if they pos-
sessed on average (over all conditions) an r value >0. All other units
received a value of 1 in the correction vector. This method preserves
the absolute magnitude of the mean firing rate across trials because no
normalization is performed. A number of inversion criteria were test-
ed; however, we found that it was sufficient to invert only units with a
positive r value (data not shown). It is important to note that units
were not tested separately for each condition (grip type/decision con-
dition), i.e., a unit that was inverted for a precision grip would also be
inverted during a power grip. Testing on each condition separately
would have increased RT prediction further.

RT correlations. When correlating single-trial neural metrics, i.e., the
previously described methods excluding the AR and SCAR methods,
with RT, we did not include the neural data from that trial in the calcu-
lation of the mean neural trajectory used for that prediction, as in the
study by Afshar et al. (2011). The predicted and observed RTs were then
correlated with each other. This technique, termed leave-one-out cross-
validation, ensured that predictions of the RT of each trial were not based
on movement activity from that trial.

Whenever average RT variance explained was calculated across an
average of datasets, each average was weighted by the number of trials in
each dataset.

Partial RT correlations. In our tasks, memory period length was corre-
lated highly with RT (Fig. 2). To disentangle the relationship of memory
period length to RT and the relationship of our neural prediction metrics
on RT, partial correlation, which bares much similarity to multiple re-
gression, was performed (Cramér, 1946). Partial correlation is a method
for determining the correlation between two variables while controlling
for one or more other variables. The partial correlation between two
variables, while controlling for a single other variable, is described by

ng = TNMTMB

pNBXMf Vm\‘ma

where p is the partial correlation of a neural prediction metric (N) with
RT (B), while controlling for the effect of the length of the memory
period (M). ryy is the standard Pearson’s correlation between vectors X
and Y.

Cross-validation. The results of all methods were twofold cross-
validated. All trials of each dataset were first randomly segregated into
two sets of equal size and methods performed separately on each set.
Furthermore, the SCAR method required the preevaluation of prepara-
tory correlations with RT to determine which units should have their
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Scatter plots of RT versus memory period length. A—C, The RT of animals B, S, and Z, respectively, as a function of memory period length for all task conditions and datasets. The solid

firing rates inverted. To avoid false-positive results, SCAR was first
trained on a training set of trials and always tested on trials that were not
used for training. All analyses were twofold cross-validated by flipping
the role of both sets. Segregating the data into more than two cross-
validation folds would severely reduce the number of test trials in each
condition and therefore the reliability of prediction.

Multiple linear regression. To determine whether a combination of the
tested methods could improve the amount of variance explained in RT, a
number of regressions was performed. Multiple regression was per-
formed using the leave-one-out technique, in which regressing on all
other trials generated the prediction for each trial, and this process was
repeated for each individual trial. First, the same model as described by
Afshar et al. (2011) was used, which consisted of the projection method
on both the pre-go and post-go cue axes, as well as the velocity projection
method on both the pre-go and post-go cue axes. Alternatively, a number
of simpler combinations were tested, although most are not presented
here because they yielded poor results.

To test whether or not a multivariate model could explain significantly
more variance than a simpler model, the F test was used. The F test is
ideally suited to compare models (regressions) that use nested predictors,
that is, models that use a subset of predictors of a more complex model.
However, because we wanted to compare models over a number of con-
ditions (each with varying degrees of freedom), we had to generate a
nonstandard F distribution for testing. Therefore, the F statistic compar-
ing each pair of models was calculated separately and then summed.
Additionally, because each cross-validation fold contained different tri-
als, each fold was considered as a separate condition for a total of four
conditions in Task 1 (two behavioral, two folds) and 12 conditions (six
behavioral, two folds) in Task 2. To generate a testing distribution the
probability density functions (pdfs) of each corresponding F statistic
were convolved with each other to form a new distribution. We then
calculated the likelihood of observing the calculated sum of F statistics
and from there derived the p value.

To extend this test over all datasets and reach general conclusions, the
sum of F statistics was summed across all conditions and datasets and
tested on an F distribution of convolved pdfs over all conditions and
datasets.

Chance-level calculation. Many individual correlations were computed
in the current study. To ensure that all relevant methods were truly
identifying relationships between neural data and RT, all correlations
were tested against a chance distribution. For each method and condi-
tion, chance distributions were generated by correlating the prediction of
each method with a corresponding vector of randomly shuffled RTs
(1000 repetitions). We could then calculate the probability of observing
the empirical R? given our shuffled distributions and use this as a p value.
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In the case in which a significance calculation was required over multiple
conditions and datasets, the generated chance distributions were con-
volved with each other to form a new distribution, precisely as with the F
statistic for testing multiple linear regression. The p value for significance
was fixed at 0.01.

For the SCAR method, an additional control was performed. The
SCAR method involved the inversion of the firing rates of some units. To
ensure that this inversion did not artificially produce our results, the
following control was performed. A random sample of units of the same
size as in the real data was inverted and the method performed as normal
(1000 repetitions, permutation test). The resulting chance-level distribu-
tions could be tested against the empirical results as was done for the
other chance-level calculations.

Variance selection. All recorded units were included in the main anal-
yses. To determine whether one could select a subset of units that would
perform equally or better than the entire population, a variance selection
was performed. The units with higher variances in spike count (at the go
cue) across trials were preferentially included first. In addition, arandom
unit selection was performed alongside the first analysis with the same
number of units per test. The random selection of units was performed
1000 times per percentage value. Data were interpolated to the range of
0-100% to facilitate averaging between datasets.

Significance testing was performed by summing the R? over all data-
sets and testing the likelihood of obtaining this value against the distri-
bution of convolved pdfs over all datasets as generated by the random
unit selection, precisely as was done with the F statistic for testing mul-
tiple linear regression. The significance level was set at 0.05 and Bonfer-
roni’s corrected for the number of percentages tested (100).

Bayesian information criterion. The Bayesian information criterion
(BIC) is a well known model selection criterion (McQuarrie and Tsai,
1998). It is described by the following:

BIC = —2InL + pInN,

where [ is the posterior likelihood of the data given the best-fit model,
pis the number of parameters used to generate the model, and Nis the
number of observations used. A smaller BIC is associated with a better
explanatory model. BICs were calculated for single conditions and
averaged either over conditions or over conditions and datasets.

Results

Behavior

All three animals performed the task successfully. After initiating
trials to the point of obtaining task information, i.e., receiving a
grip cue, animals B, S, and Z successfully completed those trials
96, 98, and 95% of the time, respectively. Catch trials in which the
animal was required to withhold movement were included in
Task 1. Animals B and S completed these catch trials successfully
95 and 98% of the time, respectively. Figure 2 plots the RTs of all
animals as a function of memory period length. The memory
period in Task 1 lasted 0—1300 ms, whereas the memory period in
Task 2 was relatively longer (a minimum of 1400 ms in the in-
structed condition including the grip cue) to facilitate a second
cue period in the delayed-instructed condition. RTs were reduced
during longer memory periods, consistent with the established
hypothesis that motor preparation improves over time (Rosen-
baum, 1980; Riehle and Requin, 1989). The exception to this was
the 1300 ms memory condition in Task 1, in which RT slightly
increased, likely because of the expectation of a catch trial, which
appeared periodically and lasted 2000 ms. For animals B, S, and Z,
the correlation coefficients over all datasets between memory pe-
riod length and RT were —0.55, —0.57, and —0.33, respectively.
Similar experiments have shown that saturation of RT, i.e., the
minimum length of memory period after which RT does not
significantly improve, is at least 100—200 ms (Churchland et al.,
2006¢) in a reaching task. In Task 1, we observed RT saturation,
but we did not observe this in Task 2.
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In contrast, there was no significant correlation between
memory period length and movement time, which is the time
between the hand leaving the hand-rest button and making con-
tact with the handle, indicating that animals only initiated a
movement when the movement was fully prepared. The only
exceptions are the movement times of animal B, which were
slightly longer in the 1300 ms memory period condition than in
shorter memory periods, potentially an effect of decreased atten-
tion for long memory periods. For all animals, the hands re-
mained completely stationary on the hand-rest buttons before
the go cue. The experiments from which these data were collected
were originally designed to assess hypotheses that are not pre-
sented here and will be addressed elsewhere.

Neural recordings
The analyzed datasets include a collection of 18 recording ses-
sions, six from each animal. In animal B, an average * SD of 63 =
17 and 28 = 18 units were recorded in F5 and AIP, respectively, as
well as in animal S (mean = SD, 132 = 15 and 131 *= 26) and
animal Z (85 * 18 and 81 = 24). An average of 483 trials per
dataset met the inclusion criteria, as described in Materials and
Methods. This corresponded to an average of 77 trials per condi-
tion and cross-validation fold overall. In animals S and Z, there
was no significant difference between the two brain regions in the
number of units recorded per dataset (p = 1 and p = 0.56, Wi-
lcoxon’s signed-rank test). However, in animal B, significantly
more units were obtained in area F5 (p = 0.03), which may have
affected the quality of RT decoding in area AIP. The majority of
units obtained in all animals were identified as multiunits (52%
in animal B, 60% in animal S, 70% in animal Z). All recorded
single units and multiunits were included in additional analyses.
Although the response characteristics of each individual unit
are not analyzed here in detail, it is worth noting that the overall
tuning characteristics of units in F5 and AIP were very similar
regardless of the task design used (Task 1 or 2). Furthermore,
both tasks were able to elicit strong grip type tuning in both F5
and AIP. An average of 32% of recorded units were significantly
tuned for grip type during the late memory period in F5, whereas
26% were tuned in AIP (p < 0.05, two-sample ¢ test), which did
not differ between areas (p = 0.09, Kruskal-Wallis ANOVA),
although differences were seen between animals (p = 0.002,
Kruskal-Wallis ANOVA), with animal B showing slightly less
tuning overall (24% in F5 and 18% in AIP). This finding is par-
ticularly robust when considering that there are no visual cues
present in the memory period, and, therefore, grip type tuning
tends to reach a minimum during this epoch.

Low-dimensional visualization of single-trial trajectories

To visualize how neural data evolves on single trials, a low-
dimensional representation of the full neural space of both brain
areas combined is shown in Figure 3A for an exemplar dataset
(instructed precision grip, dataset Z120829). Dimensionality re-
duction was performed using GPFA, as described in Materials
and Methods. Single trials tended to evolve from cue onset to a
preparation state and further to a movement state after the go
cue. Conversely, it did not appear that variability between trials
decreased in a systematic way when comparing the size of the
confidence ellipses at cue onset, go cue, and movement onset. To
determine whether the trajectory of an individual trial could be
related to RT, three methods were formulated, as depicted in
Figure 3B-D. These three methods, the projection method, Eu-
clidean distance method, and velocity projection method, are
presented here virtually identical to how they were performed by
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Mean Go

Neural data and RT prediction methods visualized as low-dimensional trajectories. A, Neural data of both areas of an exemplar condition reduced to a low-dimensional representation

of the trial course (determined by GPFA). Thick trace represents the mean of trials for one condition (instructed precision grip, dataset 2120829). Thin gray traces represent 10 random single trials.
Shaded ellipses (90% confidence) represent the state of all selected single trials at the start of each epoch. B-D, High-dimensional RT prediction methods in a two-dimensional illustration. Thick red
and green traces represents the mean of trials. Thin gray trace represents a single exemplar trial. « denotes the component used to predict RT for the projection method (B), Euclidean distance

method (C), and velocity projection method (D).

Afshar et al. (2011) and are described in detail in Materials and
Methods. Although GPFA aids the visualization of single trials, in
the following section, these RT prediction methods are tested in
the high-dimensional state space of all recorded units.

Finding optimal reference points for trajectory-based
methods

As can be seen in Figure 3B-D, each of the three high-
dimensional state space methods relies on a reference time point,
or At, on the mean trajectory. To find the optimal reference
point, the time domain from 500 ms before to 500 ms after the go
cue was tested. For purpose of determining optimal At values,
this time window was further limited to =300 ms, because refer-
ence points become more unreliable between conditions and da-
tasets at large offsets. Each method was performed with this range
of At values, and the predictions correlated with RT, as seen in
Figure 4. The mean of all conditions is shown with a thick trace,
and the used offsets before and after the go cue are marked
with open circles (limited within =300 ms). Inset histograms
show all individual correlation coefficients [datasets (6) X
conditions (2—6) X cross-validation folds (2)] before squar-
ing and averaging and for each animal separately. The darker
bars indicate correlations that are statistically significant (p <
0.05, Pearson’s correlation). The results from animals B and Z
are very similar and use identical offsets, whereas the results of
animal S differed significantly.

As seen in Figure 4A, the projection method using references
both before and after the go cue have correlation distributions
with nonzero median in F5: one distribution is shifted to the
negative and one to the positive. This finding is consistent with
our hypothesis, because trials that are farther along a mean tra-
jectory going forward in time should lead to shorter RTs and
therefore an overall negative correlation between our neural pre-
dictor and RT. In AIP the projection method also performed

significantly, although the resulting R* is much lower than in F5
(Fig. 4B). Based on this analysis, the best positive and negative At
values, which were then used in all subsequent analysis, were
—290 and 60 ms in F5 for animals B and Z and —170 and 260 ms
for animal S. In AIP, values of —210 and 200 ms were used for
animals B and Z, and values of —40 and 60 ms were used for
animal S.

The Euclidian distance method performed similarly to the
projection method but explained overall less variance in RT (Fig.
4C,D). In both F5 and AIP, reference points generally produced
correlation histograms that were shifted significantly from zero.
In most cases the pre-go distribution was shifted to the negative
direction and the post-go to the positive direction, again consis-
tent with the hypothesis that trials that are closer to the state of the
network after the go cue will have shorter RTs, with the notable
exception of animal B on the pre-go axis, a point that is returned
to later. Additionally, when using a time offset of 0 ms, identical
to the so-called optimal subspace method (Churchland et al.,
2006¢), the correlation distribution tended to be only marginally
significantly shifted from zero in F5 and AIP. Despite this, the
optimal subspace method was not used in additional analyses,
because the Euclidean distance method outperformed it in every
case. Based on this analysis, the At values that were used in addi-
tional analysis were —300 and 170 ms in F5 for animals B and Z
and —270 and 270 ms for animal S. In AIP, values of —90 and 300
ms were used for animals B and Z and values of —100 and 300 ms
for animal S.

The velocity projection method performed poorly overall, ac-
counting for <1% of the variance in RT (Fig. 4E, F). Only rarely
do reference points in F5 or AIP have correlation distributions
significantly shifted from zero. Furthermore, accounting for the
effect of memory period length on RT using partial correlation
completely eliminates this effect (data not shown). Therefore, for
most of our additional analyses, the velocity projection method
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was excluded. It should be noted that trials were segregated into
bins based on memory period length, as described in Materials
and Methods. However, when all trials are pooled together, the
resulting predictions of RT are still nonsignificant (data not
shown).

Population firing rate-based methods

In addition to our high-dimensional trajectory-based methods,
we also tested simpler methods based on averaging the activity of
all units around the go cue. Such methods still depend on simul-
taneously recorded units, because they require an estimation of
the population neural state for each trial. The first method we
tested is the AR at go, which is our implementation of the rise-
to-threshold hypothesis, as described by Afshar et al. (2011). The
correlation histograms obtained by the AR method are shown in
Figure 4, G for F5 and I for AIP. The median of the correlation
distribution is significantly shifted negatively in two of the three
animals in F5 (Wilcoxon’s signed-rank test), suggesting that
higher firing rates around the go cue led to shorter RTs. However,
in AIP, the distribution was only shifted for one of the three
animals. However, in all cases in which a significant shift was
present, this shift was in the negative direction, suggesting that
higher firing rate tended to be related to shorter RTs.

The AR method relies on averaging. Therefore, if some units
in the population are correlated negatively with RT whereas oth-
ers are correlated positively, these effects could cancel out at the
population level. To deal with this issue, we first correlated the
firing rate at the go cue of each unit with RT on a set of training
trials. Then, as described in Materials and Methods, on a set of
testing trials we inverted the firing rates of units that had a posi-
tive correlation in the pretesting (twofold cross-validated).
Briefly, the process consists of multiplying the firing of all units by
a sign-correction vector (see Materials and Methods). This new
method was termed the SCAR method. The correlation histo-
grams of the SCAR method are shown in Figure 4, H and J, for F5
and AIP, respectively. In both areas the median of the correlation
distribution was shifted strongly into the negative domain (three
of three animals in both areas, Wilcoxon’s signed-rank test). Over
all datasets, the average number of units whose activity was in-
verted was 38% in F5 and 42% in AIP, a large portion of the total
unit count. The number of units inverted was less for animal S, in
which the performance of the AR method was already consider-
ably high.

Pooling of multiunits and single units does not bias

RT prediction

To ensure that the previous results were not attributable to the
sole contribution of either multiunits or single units, we repeated
the analysis using only multiunits or single units. Results are
presented as a performance ratio of average fraction of RT vari-

<«

Figure4. Determination of the optimal reference time (At) relative to go cue on the mean
trajectory. A, B, Results of the projection method in areas F5 and AIP, respectively. C, D, Results
of the Euclidean distance method in areas F5 and AIP, respectively. E, F, Results of the velocity
projection method in areas F5 and AIP, respectively. Thick traces are the mean of all conditions
and datasets of each animal, thin traces are the SEM, and white circles are the optimal At used
in all subsequent analysis. Insets in A—F show histograms of correlation coefficients between
each neural predictor and RT over all conditions (2- 6), datasets (6), and cross-validation folds
(2). Black bars denote correlations with a p value <0.05. Arrows show the median together
with the p value of significant difference from zero (Wilcoxon’s signed-rank test). G, H, Corre-
lation coefficient histograms of the AR at go method and the SCAR method, respectively, in F5.
1,J, Same as G and H, but for neural data from AIP.
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ance explained using only single units or multiunits versus the
pool of all units (where 1 represents identical performance). In
F5, when including only single units, the pre-go and post-go
projection methods produced ratios of 0.81 and 0.84, respec-
tively. In AIP, the pre-go and post-go projection methods pro-
duced ratios of 0.76 and 0.91, respectively. The pre-go and
post-go Euclidean distance methods produced ratios of 0.65 and
0.95 for F5 and 0.72 and 0.81 for AIP single units.

When including only multiunits, in F5, the pre-go and
post-go projection methods produced ratios of 0.64 and 0.69 in
F5 and 0.77 and 0.69 in AIP. The Euclidean distance methods
produced ratios of 0.87 and 0.87 in F5 and 1.13 and 0.59 in AIP.

The same analysis was done for the population-based meth-
ods (AR and SCAR). The AR method had performance ratios of
0.74 and 0.79 when using single units only in F5 and AIP, respec-
tively, whereas multiunit only performance was 1.25 and 1.07.
The SCAR method had performance ratios of 0.76 and 0.87 when
using single units only in F5 and AIP, respectively, whereas mul-
tiunit only performance was 0.66 and 0.63.

In almost every case, including only multiunits or single units
in the analysis reduced the overall performance. Using only single
units caused a performance reduction of 9-36%. Similarly, using
multiunits caused a reduction of 13—41%, with the exception of
the Euclidean distance method (before go cue) in AIP and the AR
method in both areas, which increased slightly. Overall, the pre-
diction of RT cannot be explained based solely on the contribu-
tion of either single units or multiunits. However, the AR method
seems to perform best using multiunits, suggesting that com-
pounding single-unit responses stabilizes the performance of this
method.

Neural activity predicts trial-by-trial RT

Together, the results of all methods based on optimal At selection
are shown in Figure 5. The mean R*is plotted for all 18 datasets in
both F5 and AIP. Open bars mark methods that did not perform
above chance level, as described in Materials and Methods. The
average R over all methods is significantly higher in F5 than ATP
(p <0.001, Kruskal-Wallis ANOVA), suggesting that the popu-
lation activity in F5 better encodes the variability in grasping
plans. However, it is important to note that the current tasks
include a large reaching component, which is also represented
strongly in F5 and AIP (Lehmann and Scherberger, 2013), al-
though more so in AIP. Therefore, some similarities between the
behavioral and neural results of the current study and previous
reaching studies are expected.

Not all methods achieved the same level of performance over-
all (p < 0.001, Kruskal-Wallis ANOVA). The best method on
average, SCAR, was able to explain 18% of the variance in RT in
F5 and 6% in AIP. The SCAR method and the projection (before
go cue) method performed best in F5 for animals B and Z, ex-
plaining 18 and 16% of the variance in RT, respectively. In animal
S, this pattern differed in F5, because the best performing meth-
ods were SCAR and Euclidean distance (after go cue), explaining
17 and 13% of variance in RT, respectively. The mean RT predic-
tion for each animal is summarized in Figure 6A. There was no
effect of grip type (p = 0.69, Kruskal-Wallis ANOVA) in all
animals, suggesting that RT could be predicted equally well re-
gardless of grip. Additionally, there was no effect of cross-
validation fold (p = 0.93, Kruskal-Wallis ANOVA), confirming
that segregating the data into training and testing trials did not
introduce inconsistencies into the results.

As described previously, Task 2 contained different task types
(instructed, free choice, and delayed instructed). There was a
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Figure 5.

Average fraction of RT variance explained for all methods and datasets (averaged across conditions and cross-validation folds). A, Average fraction explained by F5 data. B, Average

fraction for AIP. Note the clear advantage of area F5 over AIP. Chance-level calculation is based on shuffling neural data with respect to RTs repeatedly. The observed R* values are then compared
against the shuffled distributions to assess significance. Significant results are illustrated as solid bars, whereas the open bars show results that can be explained by chance (p = 0.01).

significant effect of task type on RT prediction (p < 0.001,
Kruskal-Wallis ANOVA) over all methods, although the effect
size was very small (effect size, n* = 0.018). The worst perform-
ing decision condition was the delayed-instructed condition, in
which a second cue was presented later in the memory period.
This small, but significant, effect on RT prediction is likely attrib-
utable to the disruptive effect of a second cue close to the end of
the memory period. Interestingly, there was no difference in RT
prediction between the instructed condition and the free-choice
condition (p = 0.80, Wilcoxon’s rank-sum test), suggesting that
the way in which a motor plan is selected does not affect the
relationship between preparatory activity and RT.

To summarize the number of individual correlations that
have significant p values (p < 0.05; equivalent to the black bars in
the histograms of Fig. 4), the total fraction of significant correla-
tions is plotted in Figure 6C. In F5, between 21 and 96% of the
correlations were significant for each method, whereas this range
was between 4 and 67% in AIP, therefore confirming the overall
better predictability of RT in F5.

Given the success of the SCAR method, an interesting ques-
tion arises. If it is effective to predict RT by calculating a weighted
mean of all units, in which the weights are either exactly —1 or 1,
would performance improve if weights were not restricted in any
way? This idea can be tested directly by using linear regression to
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Figure 6.  Comparison of prediction performance and fraction of significant full/partial correlations between predictors and RT over all task conditions, datasets, and brain areas. A, Average
fraction of RT variance explained by correlation. B, Average fraction of RT variance explained by partial correlation. Significant results are llustrated as solid bars, whereas the open bars show results
that can be explained by chance (p = 0.01). , Fraction of conditions with significant correlations (p << 0.05). D, Fraction of conditions with significant partial correlations (p << 0.05).
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fit a set of weights to all units (MATLAB function regress). The
results of this analysis, when cross-validated identically to the
main analysis (twofold), show that a linear regression over all
individual units can explain 3.9% of variance in RT in F5 and
2.2% in AIP, with a significant advantage of F5 over AIP (p <
0.001, Kruskal-Wallis ANOVA). However, this performance is
only one-quarter of the projection or SCAR methods overall.
Because the number of available units frequently outnumbers the
number of available trials, coefficients cannot be ideally identi-
fied. For this reason, the regression often excluded up to 15% of
the units in each dataset by assigning them a coefficient of zero.
To deal with the small number of trials available, it is also
possible to use stepwise linear regression to add or remove units
based on how their inclusion affects the model (MATLAB func-
tion stepwisefit). To produce an optimal solution, the model was
initialized with only a constant term and units were subsequently
added if they significantly improved the model (F statistic, p <
0.05). The results of this analysis show that a stepwise linear re-
gression over all individual units can explain 12.1% of variance in
RT in F5 and 3.4% in AIP, with a significant advantage of F5 over
AIP (p < 0.001, Kruskal-Wallis ANOVA). However, in this anal-
ysis, between 77 and 97% of units were excluded from the model
to produce an optimal fit. Together, the linear regression results
are consistent with previous analyses showing an advantage of F5
over AIP and are similar to the results obtained by selecting units
by variance over trials (see Fig. 8). However, their usefulness is
limited, at least in datasets with a restricted number of trials.

Removing the effect of the memory period does not eliminate
RT prediction

The length of the memory period was strongly negatively corre-
lated with RT in all tasks and animals (Fig. 2). To ensure that a
straightforward encoding of the memory period in the firing rates
of individual units was not responsible for our findings, all meth-
ods were retested using partial correlation. As described in Ma-
terials and Methods, partial correlation allows for the correlation
of two variables while controlling for the linear effects of one or
more additional variables. Here we controlled for the effect of
memory period length on RT. Figure 6B shows the mean R” over
all datasets while controlling for the effect of memory period
length. Partial correlation reduces the performance of all meth-
ods, but almost all methods remain above chance level in F5. In
AIP, all methods are reduced to chance level in at least one ani-
mal, with the exception of the SCAR method. The largest reduc-
tion in performance caused by partial correlation was 66% over
all methods in animal B, suggesting a strong reliance on the mem-
ory period length and consistent with the unexpected direction of
the shift in the correlation coefficient distribution of animal B in
Figure 4C. The smallest reduction in performance was 25% in
animal Z. In AIP, results of each animal were never reduced by
>38%. For comparison, the mean R” using the standard corre-
lation metric is shown in Figure 6A. Similarly, the number of
significant correlations was reduced when using partial correla-
tion as illustrated in Figure 6D.

Anterior AIP outperforms posterior AIP

A number of recent studies have highlighted that the anterior (aAIP)
and posterior (pAIP) subdivisions of AIP differentially encode visual
task parameters (Baumann et al., 2009; Romero and Janssen, 2014)
and differ drastically in their effective connectivity (Premereur et al.,
2015). Because it is not well understood how these two areas differ in
their contribution to preparatory activity for grasping, we further
segregated our units into aAIP and pAIP corresponding to the ante-
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rior and posterior implanted arrays, respectively, and repeated the
main analyses.

Unlike the comparison between F5 and AIP, the number of
units recorded on each array within AIP differed significantly for
all animals (p < 0.05, Wilcoxon’s signed-rank test). Therefore,
for each dataset, units were discarded randomly from the larger
set until an equal number of units were present from each subarea
(stratification).

If the same RT prediction methods used in the main analysis
are applied to subdivisions of AIP, there is a small, but significant,
advantage of aAIP over pAIP (p = 0.021, Kruskal-Wallis
ANOVA). Most of this advantage comes from the projection
(pre-go) method, with an average R? of 0.031 in aAIP and 0.019
in pAIP (p < 0.01, Wilcoxon’s signed-rank test). In agreement
with the main results, there was no significant difference in RT
prediction between grip conditions or cross-validation folds (p =
0.36 and p = 0.86, Kruskal-Wallis ANOVA). These findings are
in line with the emerging view that a gradient of visual to motor
processing exists between pAIP and aAIP.

Multiple regression does not improve RT prediction

By combining multiple prediction methods in a multiple regres-
sion, it is possible to capitalize on the potential orthogonality
between different predictors. To test whether a multiple regres-
sion could increase overall prediction of RT, we first replicated
the regression described by Afshar et al. (2011), which consists of
aregression of the pre-go and post-go cue versions of the projec-
tion and the velocity projection methods. Because the velocity
projection method performed poorly in our analysis, it was not
expected for this regression to significantly improve RT predic-
tion. In fact, this four-factor multiple regression only out-
performed simpler unimodal and bimodal regressions consisting
of subsets of these factors in 16.7% of all datasets in F5and 11.1%
in AIP (F test). Furthermore, this regression never achieved a
lower BIC score than more parsimonious regressions in any da-
taset or brain area, suggesting that combining these four factors
in a regression is not justified in our dataset.

A number of other regressions were tested, but in no case were
>50% of datasets in F5 and 16.7% of datasets in AIP able to signifi-
cantly outperform simpler regressions (F test). Furthermore, none
of these multiple factor regressions achieved a lower BICin >11.1%
of datasets in F5 and in none of the datasets in AIP.

Because multiple regression performs best when individual
variables are independent, it would be unlikely to explain signif-
icantly more variance in RT if our predictors are highly corre-
lated. In fact, most methods are highly correlated with one
another in our dataset (minimum R? > 0.14), with the exception
of the velocity projection method (R* < 0.03), which performed
poorly in the main analysis.

No alternative reference point can outperform SCAR

The SCAR method relies on first correlating the firing rate of each
unit with RT and then inverting based on the resulting correla-
tion coefficient. Because this method relies on cross-validation, it
would be preferable to perform a method that does not rely on
previous information. To ensure that this alternative was not
possible, a control was performed. The mean firing rate at mul-
tiple time points (up to 2 s) before the go cue was subtracted from
the firing rate of each single trial, and the absolute value of the
resulting signal was taken. Subsequently, the firing rate on each
trial was averaged over units and correlated with RT. This
method has the effect of inverting the activity of each unit relative
to the mean firing rate at some previous time point. In no case
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Stability of the sign-correction vector determined at the go cue by the SCAR method. RT prediction is calculated using sign-corrected neural activity around each time point. 4, B, SCAR
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was such a method able to explain more or equal variance in RT
than the SCAR method, suggesting that there exists no trivial
alternative to pretesting each individual unit with respect to mea-
sured RT. The same was true if grip cue-aligned activity was used
for reference.

Consistency of the sign-correction vector during movement
Because the SCAR method relies on previous information of the
relationship between firing rate and RT, we wondered whether
the learned sign-correction vector, which is used to invert the
activity of positively-correlated units, revealed a natural align-
ment of firing rates across time or whether it simply fit the data
well at the time of the go cue. To test this, we used the sign-
correction vectors determined in the main analysis to repeat the
SCAR method using neural activity not just from the go cue but
also at variable time points from 500 ms before to 800 ms after the
go cue. The results of this analysis are depicted in Figure 7. As can
be seen in Figure 7C for animal S in F5, maximal RT prediction is
achieved shortly before median movement onset (R*> = 0.56). If
neural activities of many units peak shortly before movement
onset, then the SCAR method should perform best at this time.
Such a result would suggest that trials on which activity drifted
toward the firing rate observed at movement onset were more
likely to be trials with a short RT, in line with the rise-to-threshold
hypothesis (Erlhagen and Schoner, 2002).

However, as can be seen in Figure 7A, the results of animals B
and Z differed significantly in F5. In this case, the peak RT pre-
diction occurs precisely around the time of go cue. In contrast to
the results of animal S, a peak at the go cue suggests that, although
our sign correction was able to properly align the firing of each
unit at the go cue, it does not necessarily represent a consistent
pattern in the firing of the underlying units.

In AIP, peak RT prediction was achieved in all animals shortly
before median movement onset, i.e., a higher (sign-corrected)

firing rate on single trials tended to lead to shorter RTs. Maximal
RT prediction before movement onset can be explained by the
idea that activity either rises during the memory period to achieve
peak activity during the movement or that activity is decreased
during the memory period to reach a minimum during move-
ment. This result in AIP is consistent with a study showing sig-
nificant RT prediction from activity in AIP shortly before
movement onset (Verhoef et al., 2015).

Variance selection allows high performance with a subset

of units

Because all recorded units were included in the previous analysis,
we were curious whether a subset of units could be selected that
performed equally well or better than the entire population. To
test this, a variance selection of units was performed. Units were
discarded from the analysis in order of increasing variance in
spike count (at the go cue) across trials. This way, units with
higher variances were preferentially included. For the two best
performing methods, SCAR and projection (before go cue), the
variance selection performed significantly better than chance
(p < 0.05, Bonferroni’s corrected) in F5 for all animals (Fig.
8A,C). In AIP, only variance selection using the SCAR method
outperformed chance (Fig. 8 B,D).

In all cases, selecting units by variance did not improve
maximal performance, as expected. In fact, when comparing per-
formance using all units to a smaller subset in F5, using a
variance-selected subset of only 32 or 18% of recorded units, for
the SCAR and projection (before go cue) methods, respectively,
suffered only a 5% decrease in performance. For the SCAR
method, it was only necessary to use a subset of 23% of the avail-
able units in F5 to attain 95% of maximal performance. Together,
these results suggest that, when units are selected by variance at
the go cue, only relatively small subsets of the recorded units are
required to attain virtually maximal performance. More impor-



11428 - J. Neurosci., August 12,2015 - 35(32):11415-11432

Michaels et al. ® Reaction Time Prediction in the Neural State Space

0.25 0.25p
1 I
= \/ariance Selection
'8 o2 02 Random Unit Selection
% - m Variance Selection > Random Selection
S
5 0.15 N 0.15
O
(]
—
o
© 0i 01F
bt
©
S
o
?
o 005 0.05
o . . . . J 0 . . . .
100 80 60 40 20 0 100 80 60 40 20 0
o 9% e 0-251
o
<
=
)
E o 02}
o
>
0]
et
£ o1 0.15}
c
o
=
|5}
@
o od 0.1}
4
o
—
o
(0]
0.05
5 005
S —
o ———
?
o 0 0
100 80 60 40 20 0 100 80 60 40 20 0

Percent of F5 units included

Figure 8.

Percent of AIP units included

Selection of units by firing rate variance at the go cue for the two best performing methods in animals B and Z. A, B, Variance selection of units versus random selection using the SCAR

method in F5 (A) and AIP (B). C, D, Variance selection of units versus random selection using the projection (before go cue) method in F5 (C) and AIP (D). Horizontal black bars on top represent unit
percentages in which the variance selection performed significantly better than random selection (p = 0.05, Bonferroni’s corrected, permutation test).

tantly, including all units in the population does not appear to
add noise to these methods, because maximal performance is
achieved when including all units, suggesting that they properly
describe the relationship between preparatory activity and RT at
the population or network level.

Variability of RT axis from day to day and animal to animal

When considering each dataset separately, it became clear that
the day-to-day variability in RT prediction for each method is
relatively high (Fig. 5). To elucidate how neural trajectories,
which are presumably very similar over sessions, could explain
very different amounts of variance in RT, we visualized a few
individual sessions using PCA. This second dimensionality re-
duction method was introduced, in addition to the GPFA used in
Figure 2A, to visualize average trajectories as opposed to single
trials. In contrast to GPFA, which applies many different and
sometimes large smoothing kernels, PCA allows more direct con-
trol over the amount of smoothing over time. In Figure 9, the first
two principal components of individual conditions of individual
recording sessions are shown. The mean trajectory over all trials
is depicted along with the mean trajectory of trials binned into
slow, medium, and fast RT trials. In every subplot, a visualization
of the projection (after go cue) method is presented from the
data. In this visualization, the position of single trials along the
dashed projection axis would determine our measurement for

how far along the mean neural trajectory this trial is. The subse-
quent length of the projection of each single trial onto this axis
would then be used to predict RT. In Figure 94, trajectories of a
power grip condition are shown from dataset B140509. It appears
that the fast and slow RT trials are located distantly to each other
along the projection axis, suggesting that this axis would be valu-
able in explaining trial-to-trial RT variability. This was in fact the
case, because the projection (after go cue) method was able to
explain 27% of the variance in RT in the main analysis of this
dataset. However, note that the position of the fastest RT trials is
less far along the mean trajectory than slow trials, directly con-
tradicting the predictions of our hypothesis. As we noted in Fig-
ure 6B, much of the RT prediction obtained in animal B was
eliminated by controlling for the effect of memory period length.
Based on the trajectory in Figure 94, it seems that trials with
longer memory periods tended to continue along the projection
axis instead of lingering near the mean trajectory. Because longer
memory periods led to slower RTs for the most extreme memory
period lengths (1300 ms), trials that have progressed farther
along the mean indicated slower RT trials.

Plotted in Figure 9B is the mean trajectory of the precision grip
on the very next dataset (B140515). The mean trajectory for this
condition is very similar to that of Figure 9A. However, the ori-
entation of the projection axis is approximately orthogonal to
that of an axis running through the slow and fast RT trials, sug-
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gesting that this axis would explain only a small amount of vari-
ability in trial-to-trial RT. The projection (after go cue) method
performed at chance level for this dataset, only explaining 3% of
the variance in RT. Therefore, it seems plausible that, even when
trajectories are similar, it is possible for RT variance to be rotated
relative to the mean trajectory, suggesting that the mean trajec-
tory may not always be an ideal reference. In this case, the Euclid-
ean distance (after go cue) method performed significantly better
because trials with shorter RT were located closer to the move-
ment onset state in the state space.

The trajectory in Figure 9C shows a precision grip from
dataset $1209013. It seems to differ substantially from the
other trajectories. In this case, there is no clear progression of
the preparatory trajectory near the go cue, and there is also no
abrupt change in the directionality of the trajectory after the
go cue. Therefore, it is not surprising that both projection
methods performed quite poorly on this dataset. Only by se-
lecting a At for the projection (after go cue) method that was
quite large (210 ms) could improve RT prediction. In this case,
the projection (after go cue) and Euclidean distance (after go
cue) methods performed similarly, which is not surprising
because projection and distance become mathematically sim-
ilar for large At values.

Figure 9D represents an ideal trajectory of a power grip
from dataset Z120921. In this case, trials that are farther along
the projection axis correspond to trials with shorter RTs, in
line with the predictions of the projection method.

Discussion

Using simultaneous neural recordings from three animals, we
have shown that preparatory activity in both premotor and
parietal cortices is correlated with trial-to-trial variability in
RT. However, the activity in F5 is far more predictive of RT
than in AIP. Although the length of the memory period facil-
itated RT predictability, our findings cannot be explained
purely based on this relationship. The use of a state space
framework, made possible by the parallel recording of many
units, represents a major step forward in understanding the
relationship between preparatory activity and behavioral
parameters.

Trial-to-trial RT prediction

Although response characteristics and tuning properties of AIP and
F5 neurons can be very similar (Baumann et al., 2009; Fluet et al.,
2010), we have shown that their trial-to-trial relationship with RT
differs greatly (Fig. 5). The current result is not trivial, because F5 and
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AIP are densely and reciprocally connected (Luppino et al., 1999;
Borra et al., 2008). However, the level of RT predictability found in
the preparatory activity of AIP units is consistent with previous stud-
ies in nearby areas (Janssen and Shadlen, 2005; Snyder et al., 2006).

Together, the relative advantage of F5 over AIP is not altogether
surprising given the fact that F5, which has projections to the spinal
cord (Heetal., 1993; Borraetal., 2010) and a facilitation effect on M 1
(Shimazu et al., 2004), must naturally be involved in the transition
between preparation and movement execution.

Comparing prediction methods

High performance of the projection method, matched only by the
SCAR method, is consistent with the “initial conditions” hypoth-
esis formulated by Afshar et al. (2011) from activity in PMd. Even
after controlling for the effect of memory period length, the pro-
jection method still performs above chance level; however, the
SCAR method can outperform the projection method, especially
in Task 1. SCAR offers an alternative explanation for the relation-
ship between single-unit firing and RT. In this framework, most
individual units have a consistent relationship with RT, i.e.,
higher or lower firing rates before the go cue are associated with
shorter RT. Controlling for the sign of this relationship was able
to increase RT prediction up to four times and follows well from
the observation that the preparatory activity in PMd is both pos-
itively and negatively correlated with RT (Riehle and Requin,
1993), as in F5.

Could subpopulations of these units explain prediction of RT?
If this were the case, we would expect units that fire more during
the delay would continue to rise during the movement. In two of
three animals, the SCAR method peaked in RT prediction at the
go cue, suggesting that this sign correction was a local property
and not a consistent property of each unit (Fig. 7A, C). Indeed,
activity is often higher in the delay period than during the move-
ment (Crammond and Kalaska, 2000), suggesting that the rela-
tionship between firing during preparation and movement is
complex (Churchland and Shenoy, 2007b).

Interestingly, maximal performance is always achieved for the
projection and SCAR methods when including all recorded units
and not a variance-selected subset in F5 (Fig. 8), supporting the
conclusion that both methods accurately describe population-
level features and are not simply dominated by specific subpopu-
lations of units.

Previously, the best performing method was a multiple regres-
sion of projection and velocity projection components (Afshar et
al.,2011). We did not find significant performance of the velocity
projection method or any multiple regression. When examining
our neural trajectories, it seems that in many cases the speed of
change in neural signal remained high or even increased during
the memory period, especially in Task 1 (our unpublished data).
This may represent an interesting quality of F5 activity that differs
from activity in PMd. Such memory-related activity could mask
relationships between trial-to-trial neural velocity and RT, espe-
cially after factoring in the length of the memory period.

Differences between PMv and PMd

To our knowledge, the preparatory activity recorded in F5 in our
study explains more trial-to-trial variance in RT than any other
published study. However, the results obtained in nearby PMd
are quantitatively comparable (Afshar et al., 2011). A number of
studies have systematically contrasted PMv and PMd (for review,
see Hoshi and Tanji, 2007). It may be that F5 is more involved in
the specific timing and execution of reaching movements than
PMd, as evidenced by chemical inactivation (Kurata and Hoff-
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man, 1994). Nevertheless, both PMv and PMd are essential for
grasping movements (Raos et al., 2004, 2006). Electrical micro-
stimulation in PMd during preparation (Churchland and She-
noy, 2007a), and potentially F5 (Gerits et al., 2012), delays
movement onset.

Although PMd and PMv are part of relatively distinct parieto-
frontal networks, they both have an important effect on behav-
ioral timing. Additionally, both PMd and PMv project to similar
locations within M1 and lack a clear hierarchy (Dum and Strick,
2005), suggesting that their roles are complementary and not
sequential.

Limitations

To rule out premature muscle contractions as an explanation for
RT prediction obtained during a delay, electromyographic re-
cording of relevant muscles has been used in the past (Church-
land et al., 2006¢; Afshar et al., 2011). Such recordings were not
undertaken in the current study; however, we do not believe that
premature muscle contractions are a likely cause of the RT pre-
diction observed here for three reasons. First, the hands of all
animals remained completely still on the hand rest buttons until
after the go cue had been given, as confirmed by infrared moni-
toring. Second, the RT's of all animals were well above 200 ms in at
least 97% of trials, suggesting that they appropriately awaited the
go cue. Third, animals successfully withheld movement during
the catch trials, suggesting that they were properly awaiting the go
signal.

Although the primary interest of the current study was grasp-
ing actions, all movements included a large reaching component
as well. It remains a possibility that the relative advantage of F5
over AIP could in part be attributable to a larger role of F5 in
reaching than AIP. However, previous studies dissociating reach-
ing and grasping have shown that PMv is greatly involved in the
representation of grasping without a reach component (Hepp-
Reymond et al., 1994) and is potentially even less involved in
reach encoding than AIP (Lehmann and Scherberger, 2013).
Therefore, finding higher RT prediction accuracy in F5 rather
suggests a larger influence of the grasping component in the neu-
ral signal.

Implications for models of motor preparation

It is clear that the most dominant factor in the neural trajectories
of animal B is the length of the memory period itself (Fig. 9A),
which seems to act counter to the notion of an optimal subspace,
because trials do not congregate within an area of low variability.
It has been shown that variability is decreased by external stimuli,
which was observed in PMd (Churchland et al., 2006¢) and a
number of other cortical areas (Churchland et al., 2010). If F5
neurons were multiplexing many factors in addition to a motor
plan such as anticipation of the go cue, similar to hazard rate
(Janssen and Shadlen, 2005), or variability in attention over lon-
ger periods of time, trial-to-trial variability might be increased at
go cue. Furthermore, encoding of the length of the memory pe-
riod clearly increased RT predictability in F5 and AIP, as evi-
denced by the decrease in predictability when using partial
correlation. Additional work is needed to determine the extent to
which F5 and AIP encode cue anticipation or attention-related
factors.

Alternatively, it could be that the subspace required to suc-
cessfully complete the grasping movement is sufficiently large to
allow trajectories to lie in a relatively wide space. The absence of a
static prepare-and-hold state is consistent with the augmented
view of the initial conditions hypothesis posited by Ames et al.
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(2014), who showed that the memory state is bypassed in PMd
when time to prepare an action is lacking. In this view, the sub-
space required to successfully complete an action, i.e., with no
penalty in movement generation, but a possible penalty in RT,
could be quite broad. However, it is clear that F5 firing rates do
not necessarily congregate in a specific part of the state space
given enough time, as would be predicted by an attractor model
of preparatory dynamics. The interesting question of determin-
ing whether such a prepare-and-hold state is necessary in F5 or
AIP, along with whether the observed preparatory processes set
the initial conditions of a dynamical system, as they do in PMd
and M1 (Churchland et al., 2012; for review, see Shenoy et al.,
2013), are left to future works.

Recently, the ability to record activity from many neurons
simultaneously has opened up new possibilities in the investiga-
tion of the motor and premotor cortices (for review, see Church-
land et al., 2007). The current study explores the relationship
between preparatory activity in large populations of neurons and
subsequent behavior, shedding light on the differential role of
parietal and frontal cortices in this process.
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