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The human brain undergoes substantial development throughout adolescence and into early adulthood. This maturational process is
thought to include the refinement of connectivity between putative connectivity hub regions of the brain, which collectively form a dense
core that enhances the functional integration of anatomically distributed, and functionally specialized, neural systems. Here, we used
longitudinal diffusion magnetic resonance imaging to characterize changes in connectivity between 80 cortical and subcortical anatom-
ical regions over a 2 year period in 31 adolescents between the ages of 15 and 19 years. Connectome-wide analysis indicated that only a
small subset of connections showed evidence of statistically significant developmental change over the study period, with 8% and 6% of
connections demonstrating decreased and increased structural connectivity, respectively. Nonetheless, these connections linked 93%
and 90% of the 80 regions, respectively, pointing to a selective, yet anatomically distributed pattern of developmental changes that
involves most of the brain. Hub regions showed a distinct tendency to be highly connected to each other, indicating robust “rich-club”
organization. Moreover, connectivity between hubs was disproportionately influenced by development, such that connectivity between
subcortical hubs decreased over time, whereas frontal–subcortical and frontal–parietal hub– hub connectivity increased over time.
These findings suggest that late adolescence is characterized by selective, yet significant remodeling of hub– hub connectivity, with the
topological organization of hubs shifting emphasis from subcortical hubs in favor of an increasingly prominent role for frontal hub
regions.
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Introduction
The human brain undergoes protracted development that ex-
tends into the third decade of life (Giedd et al., 2015). This pro-
cess involves both progressive and regressive cellular events that
refine and integrate anatomically distributed and functionally
specialized systems (Tau and Peterson, 2010). Particularly note-
worthy are maturational changes during adolescence, a period

that coincides with heightened vulnerability to mental illness
and behavioral problems (Paus et al., 2008). Understanding
adolescent brain maturation is therefore critical for identifying
neurodevelopmental pathways that confer risk or resilience to
psychopathology (Di Martino et al., 2014).

Magnetic resonance imaging (MRI) studies have found that
adolescent changes in the organization of large-scale structural
and functional neural networks involve the strengthening of
long-range connections between distal brain regions (Fair et al.,
2007, 2009; Kelly et al., 2009; Dosenbach et al., 2010; Hagmann et
al., 2010; Dennis et al., 2013; for review, see Di Martino et al.,
2014). Recent studies have suggested that these connections are
supported by a collection of spatially distributed and topologi-
cally central regions—putative network hubs (Harriger et al.,
2012; van den Heuvel et al., 2012; de Reus and van den Heuvel,
2013; van den Heuvel and Sporns, 2013)—and may enhance
functional integration (Uddin et al., 2011; Grayson et al., 2014).
The maturation of connectivity between hub regions may thus en-
able the integrated brain function that marks the transition from
adolescent to adult patterns of neural activity (Fair et al., 2009).

Despite this view, recent evidence also suggests that hub– hub
connectivity may be established early in development, with most
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subsequent developmental change occurring in connections be-
tween hubs and topologically peripheral nonhub regions (Hwang
et al., 2013; Towlson et al., 2013). For example, one recent study
of preterm born infants found that strong connectivity between a
core set of hub regions, referred to as a “rich club” (Colizza et al.,
2006; van den Heuvel and Sporns, 2011), was present by 30 weeks
of gestation, and remained relatively stable until term-equivalent
age (Ball et al., 2014). In contrast, connections between hubs and
nonhubs underwent the most pronounced development (Ball et
al., 2014). This finding is consistent with evidence in the nema-
tode worm Caenorhabditis elegans indicating that rich-club neu-
rons are the earliest to develop (Towlson et al., 2013). In contrast
to the adolescent MRI literature, this work suggests that connec-
tivity between hubs may be established early, forming a stable
backbone around which additional network elements continue
to develop throughout childhood and adolescence. However, a
direct, longitudinal analysis of developmental changes in hub
connectivity during adolescence is lacking.

Here, we address this gap by comprehensively mapping lon-
gitudinal changes in structural connectivity over a 2 year period
during mid to late adolescence to determine whether there is any
evidence for the selective development of specific types of neural
connections. If connectivity between hubs is established early, as
has been implied by studies of preterm-born infants (Ball et al.,
2014) and model organisms (Towlson et al., 2013), then we ex-
pect that adolescent development of these connections should be
marginal, and that most change will occur in connections be-
tween hubs and nonhubs. If, on the other hand, there is ongoing
development of long-range connections that support integrated
brain function, as suggested by the adolescent MRI literature (Di
Martino et al., 2014), then we expect the most pronounced de-
velopmental changes to occur precisely in connections between
spatially distributed hub regions.

Materials and Methods
Participants
Our analysis included 31 healthy right-handed adolescents (18 male, 13
female) assessed with MRI in the age range of 15.58 –17.94 years (mean,
16.58; SD, 0.54) and again a mean of 2.27 years (SD, 0.25) later in the age
range of 17.89 –19.96 years (mean, 18.85; SD, 0.45). We focused on this
late adolescent developmental epoch because it represents a time that
precedes the transition from adolescence to adulthood. Participants were
recruited as part of a longitudinal research project investigating biologi-
cal, psychological, and social risk factors for psychopathology (for fur-
ther details, see Whittle et al., 2008; Dwyer et al., 2014). From among this
community sample, 53 eligible participants were identified for potential
inclusion in the current study, with initial eligibility determined on the
basis of (1) having completed diffusion- and T1-weighted MRI se-
quences at both 15–18 and 18 –20 years of age and (2) the absence of a
lifetime history of a psychiatric diagnosis, as our goal was to investigate
normative development of structural connectivity within individuals.
We also excluded participants with evidence of a major medical or neu-
rological condition, a contraindication related to medication, a neuro-
logical or incidental radiological abnormality detected as part of routine
MRI screening by a hospital radiologist, or a history of head injury re-
sulting in loss of consciousness. Based on these criteria, a total of 10
participants (of 53 participants; 19%) were excluded, leaving 43 eligible
participants. As a result of technical issues (e.g., hardware-induced, phys-
iologic, and metallic artifacts) and quality control, diffusion- and T1-
weighted MRI data of the high standard required for structural
connectivity analysis were available for 32 participants (of 43 partici-
pants; 74%). One left-handed participant was excluded to eliminate the
possible effects of handedness, leaving a final sample of 31 adolescents.
The final sample had an average Full Scale Intelligence Quotient of
106.71 (SD, 15.88; range, 75–140) at the baseline time point, as measured
by an age-appropriate scale of intelligence (Wechsler, 1999, 2003).

MRI acquisition
MRI was performed on a 3 Tesla system (MAGNETOM Trio, A Tim
System, Siemens Medical Solutions) at the Royal Children’s Hospital,
Melbourne, including diffusion-weighted and T1-weighted sequences.
For the high angular resolution diffusion imaging (HARDI) acquisition,
60 gradient-weighted volumes were acquired using a multidirection,
twice-refocused spin-echo echoplanar imaging sequence with the follow-
ing parameters: 60 directions; diffusion-sensitizing gradient (b-value) �
3000 s/mm 2; slice thickness � 2.3 mm; repetition time (TR) � 7300 ms;
echo time (TE) � 104 ms; field of view (FOV) � 240 mm 2; image
matrix � 104 � 104; and voxel size � 2.3 mm 3 (isotropic). Twice-
refocused spin-echo has been shown to reduce eddy current-induced
distortion (Reese et al., 2003). In addition, seven T2-weighted (i.e.,
b-value � 0; no gradient weighting) volumes were acquired, interspersed
throughout the gradient-weighted volumes. For the high-resolution T1-
weighted acquisition, a three-dimensional magnetization-prepared
rapid acquisition gradient echo sequence was used to obtain 176 T1-
weighted contiguous 0.9-mm-thick slices. Imaging parameters were as
follows: TR � 1900 ms; TE � 2.24 ms; flip angle � 9°; FOV � 230 mm 2;
image matrix � 256 � 256; voxel size � 0.9 mm 3 (isotropic).

MRI processing and connectome mapping
The following processing pipeline was repeated on baseline and
follow-up MRI data for each subject. Raw HARDI and T1-weighted vol-
umes were screened visually for gross artifacts and quantitatively for
excessive head movement before being processed using well validated,
widely accepted neuroimaging analysis tools, including FreeSurfer
(Fischl, 2012), FMRIB Software Library (Jenkinson et al., 2012),
MRtrix (Tournier et al., 2012), and Brain Connectivity Toolbox
(Rubinov and Sporns, 2010; https://sites.google.com/site/bctnet/). Net-
works were visualized using BrainNet Viewer (Xia et al., 2013;
www.nitrc.org/projects/bnv/), and NeuroMArVL (Monash Adaptive Vi-
sualization Lab; http://marvl.infotech.monash.edu.au/).

The T1-weighted volume was parcellated into 33 cortical (Desikan et
al., 2006) and 7 subcortical (Fischl et al., 2002) homologous regions in
each hemisphere, totaling 80 distinct brain regions. The inverse transfor-
mation matrix from the linear alignment of the mean b0 volume to the
T1-weighted volume in Talairach space was applied to the parcellation to
align the cortical and subcortical regions to diffusion space (Jenkinson et
al., 2002). Non-negativity constrained super-resolved spherical decon-
volution— better known as constrained spherical deconvolution
(CSD)—was used to estimate the distribution of fiber orientations at
each voxel of the HARDI volume (Tournier et al., 2012). The advantages
of CSD include improved characterization of complex fiber distributions
within each voxel, thereby reducing spurious fiber dispersion, false pos-
itives, and false negatives when fiber tracking (Tournier et al., 2008;
Jeurissen et al., 2011; Ramirez-Manzanares et al., 2011). Whole-brain
tractography using a probabilistic fiber-tracking algorithm was per-
formed on CSD data to obtain a computer-generated “tractogram” com-
prised of 1 million streamlines that collectively estimate the trajectories
of axonal pathways in the brain (Tournier et al., 2012). Probabilistic
tractography combined with CSD has been shown to be useful for resolv-
ing crossing fibers and for reconstructing axonal pathways that corre-
spond well with known white matter anatomy (Jeurissen et al., 2011;
Tournier et al., 2012).

The parcellation and tractogram were combined to produce an 80 �
80 weighted, undirected connectivity matrix. In this matrix, each [i, j]
matrix element represented the number of streamlines intersecting re-
gions i and j, which we derived by filtering the tractogram to include only
streamlines whose points of propagation intersected two or more differ-
ent regions. A streamline intersecting more than two regions was as-
sumed to connect the pair of regions that were maximally separated
according to the Euclidean distance calculated using the center of gravity
of each region. To avoid the inclusion of spurious streamlines crossing
the medial longitudinal fissure, interhemispheric streamlines were re-
stricted to those with at least one point of propagation located in a mask
created by the mean dilation of the corpus callosum.

To further reduce the number of potentially spurious connections,
region pairs with a streamline count less than T � 38 were set to 0. The
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value of T was chosen as the maximum threshold that could be applied
to the connectivity matrices while ensuring that each matrix formed a
single, connected component (i.e., a fully connected network; as de-
scribed by Lynall et al., 2010), which is a reasonable assumption for
the brain. Secondary analyses indicated that results were robust under
variations of T.

Within each individual dataset, matrix elements, each encoding the
number of streamlines connecting a unique pair of brain regions, were
converted to a streamline density value, calculated as the number of
streamlines over the total volume (in cubic millimeters) of the two con-
nected brain regions. Using this streamline density measure mitigates the
potential for larger brain regions to have higher connectivity simply be-
cause they possess a greater surface area (Hagmann et al., 2010; van den
Heuvel and Sporns, 2011). The primary analyses were performed using
these participant-specific streamline density matrices. Secondary analy-
ses were performed using participant-specific mean fractional anisot-
ropy (FA) matrices, wherein each matrix element encoded the mean of
FA for voxels traversed by at least one of the set of streamlines connecting
a unique pair of brain regions.

Analyses
Our analyses used tools from graph theory (Bullmore and Sporns, 2009;
Fornito et al., 2013) to understand brain network organization. In graph
theory, brain networks are represented as collections of nodes (brain
regions) connected by edges (structural connections). In our primary
analyses, edge weights represented the streamline density of connections
between nodes. The following describes our pipeline for characterizing
developmental changes in relation to hub connectivity.

Network-based statistic. Our first goal in the analysis pipeline was to
identify structural connections showing significant effects of develop-
ment across the entire connectome in a regionally unbiased way. To this
end, we used the Network Based Statistic (NBS; Zalesky et al., 2010a) to
identify subsets of edges showing either greater connectivity (i.e., in-
creased streamline density) at baseline compared with follow-up or vice
versa. The NBS is a validated nonparametric statistical approach for con-
trolling familywise error (FWE) in connectome-wide analyses. Com-
pared with conservative FWE controlling procedures (e.g., Bonferroni
and false discovery rate), the NBS offers greater statistical power to iden-
tify statistically significant effects in network analyses (Zalesky et al.,
2010a, 2011).

For each connection, we computed a one-tailed paired-samples t test
comparing the magnitude of the edge weight at each individual element
of the connectivity matrix between baseline and follow-up. We then
applied a threshold of p � 0.05 to the resulting t statistic matrix to yield a
binarized matrix of suprathreshold connections. A breadth first search
(Ahuja et al., 1993) was then used to identify any connected components
(i.e., subnetworks) in this matrix, and the number of connections in each
component (i.e., component size) was computed. In this context, a con-
nected component refers to a collection of nodes that is linked by a set of
suprathreshold edges.

To generate an empirical null distribution for evaluating the statis-
tical significance of the observed component sizes, the two levels
(baseline and follow-up) of the fixed factor (time) were shuffled 5000
times while constraining the random factor (subject) so that each
individual contributed only one observation to each level of the per-
muted within-subject factor. This constraint accounts for the fact that
repeated measurements on the same individual will be correlated and
cannot be considered exchangeable under the null hypothesis (Suck-
ling and Bullmore, 2004). The maximal component size was retained
at each iteration, and these values were used to generate an empirical
null distribution of maximal component sizes, against which the ob-
served component sizes were evaluated. This procedure ensures FWE
correction of the resulting component-wide p values. Components with
component-wide p � 0.05 were considered statistically significant.

Rich-club analysis. The rich-club phenomenon refers to the ten-
dency of high-degree nodes (e.g., hub regions) to be highly connected
to each other, more so than expected by chance (Colizza et al., 2006).

Rich-club organization was examined using a mean streamline density
matrix, calculated as the average value at each edge of streamline density
matrices at follow-up across all subjects. The follow-up data were used
for this analysis because they represent the network in its most mature
configuration. We note that rich-club behavior was also observed in the
baseline group-averaged streamline density matrix.

The tendency of hubs to be highly connected to each other can be
measured with the rich-club coefficient. We calculated the weighted rich-
club coefficient, �w�k�, in the group-averaged network according to the
following equation (Opsahl et al., 2008; van den Heuvel and Sporns,
2011):

�w�k� �
W�k�l�1

E�k

wl
ranked

,

where W�k represents the sum of weights on edges within the subgraph
defined by retaining only nodes with degree �k, E�k is the number of
edges present in the subgraph defined by retaining only nodes with de-
gree �k, and w ranked is a vector of ranked (highest to lowest) edge weights
taken from the entire network. This equation thus expresses rich-club
organization as a ratio between the total weight of links between nodes
with degree �k, and the total weight of the same number of links taken
from the strongest (most highly weighted) connections in the network.

Having computed the rich-club coefficient for each k in our observed
data, we then calculated the rich-club coefficient, �rand

w �k�, for each of
1000 randomized networks. Randomized networks were constructed by
shuffling the weighted links in the group-averaged network while pre-
serving the degree distribution (Maslov and Sneppen, 2002; Rubinov and
Sporns, 2010). At each level of k, the normalized rich-club coefficient,
�norm

w �k�, was computed as the ratio between the observed rich-club co-
efficient, �w�k�, and the mean of �rand

w �k� across the 1000 randomized
networks, ��rand

w �k�	, as follows:


norm
w �k� �

�w�k�

��rand
w �k�	

.

The ensemble of 1000 randomized networks also yielded an empirical
null distribution of �rand

w across the range of k, which was used to deter-
mine whether �w�k� was significantly greater than �rand

w �k� at each level of
k (one-tailed, p � 0.05). Comparison with respect to this null model is
crucial to ensure that any apparent rich-club organization in the network
significantly exceeds levels expected by chance. We focus here on the
weighted rich-club coefficients computed relative to randomized net-
works characterized by the same degree sequence as the observed net-
work, as in van den Heuvel and Sporns (2011), but note that rich-club
behavior was also observed relative to randomized networks with
preserved topology but randomized link weights, and in the un-
weighted network relative to randomized networks with preserved
degree sequence.

Results
Changes in structural connectivity over time
We first set out to identify subsets of structural connections
showing statistically significant increases and decreases in
streamline density from baseline to follow-up. The group average
connection density (i.e., the proportion of all possible connec-
tions actually present) for each time point was 33% (SD, 2%),
suggesting that any developmental changes occurring between
these time points predominantly involved the redistribution of
connectivity weights, rather than large-scale addition or removal
of connections.

In the analysis of connections showing significant decreases in
streamline density over time, the NBS identified a subnetwork
comprising 248 edges (8% of possible connections) linking 74
nodes (93% of the 80 regions; FWE corrected, p � 0.001). In
contrast, the NBS subnetwork of connections showing significant
increases in streamline density over time comprised 185 edges
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Figure 1. Developmental changes in structural connectivity. a illustrates the anatomical arrangement of the subset of edges identified by the NBS (Zalesky et al., 2010a) as showing significant
decreases (left) and increases (right) in streamline density over time, with the thickness of each connection weighted by its associated one-tailed t test statistic (FWE corrected, p � 0.05). Edge color
represents connection type: peripheral (yellow), feeder (orange), and hub– hub (red), with larger nodes corresponding to hub regions. Node color represents the assignment of each region of
interest to one of five broad anatomical divisions: frontal (cyan), parietal (lime), temporal (magenta), occipital (orange-red), or subcortical (blue). The center panel illustrates the anatomical
distribution of the developmental decreases (lower triangular matrix) and increases (upper triangular matrix) in connectivity based on the classification of edges according to the anatomical divisions
they interconnected. The values in these matrices represent relative proportions, calculated as the ratio between (1) the frequency of edges linking each pair of divisions and (2) the total number of
edges belonging to the two categories. Illustrated in b– d are peripheral, feeder, and hub– hub connections, respectively, extracted from the NBS subnetworks in a.
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(6% of possible connections) linking 72 nodes (90% of the 80
regions; FWE corrected, p � 6 � 10 �4). In both of these cases,
the proportion of connections showing significant develop-
mental effects was relatively small, but these connections
spanned a large proportion of the 80 regions. Figure 1a illus-
trates the anatomical arrangement of the subset of connec-
tions identified by the NBS as showing significant decreases
and increases in streamline density over time, with the thick-
ness of each connection weighted by its associated one-tailed t
test statistic (FWE corrected, p � 0.05).

These NBS results were robust to variations of the streamline
count threshold, T. Specifically, a significant subnetwork show-
ing decreased streamline density over time (FWE corrected, p �
0.05) was identified for each threshold in the range 5 � T � 38.
These networks varied in size between 248 and 354 (8% and 11%)
edges, and 73 and 76 (91% and 95%) nodes. Significant subnet-
works showing increased streamline density over time (FWE cor-
rected, p � 0.05) were also identified for thresholds in the range
5 � T � 38, with the number of edges varying between 184 and
234 (6% and 7%), and the number of nodes between 72 and 77
(90% and 96%).

The NBS results were also robust to variations of the primary
threshold. Changing this threshold to p � 0.025 yielded similar,
albeit smaller, subnetworks: 166 connections (5%; linking 67
nodes) showed significantly decreased streamline density over
time (FWE corrected, p � 0.001), whereas 118 connections (4%;
linking 64 nodes) showed significantly increased streamline den-
sity over time (FWE corrected, p � 0.001).

Anatomical distribution of structural connectivity changes
To understand the anatomical distribution of the connections
showing significant developmental effects, we assigned each re-
gion to one of the following five broad divisions: frontal, parietal,
temporal, occipital, or subcortical. For each NBS subnetwork, we
then examined the relative frequency of edges linking each pair of
divisions. As shown in Figure 1a, connections in the subnetwork
showing significant decreases in streamline density over time typ-
ically involved subcortical regions, including edges classified as
parietal–subcortical (16%), frontal–subcortical (12%), tempo-
ral–subcortical (12%), and subcortical–subcortical (11%). In
contrast, connections in the subnetwork showing significant in-
creases in streamline density over time typically involved frontal
regions, including edges classified as frontal–subcortical (18%),
frontal–parietal (16%), frontal–temporal (16%), and frontal–
frontal (9%; Fig. 1a).

We also compared the NBS subnetworks on the length of their
connections. As a proxy for the physical length of connections, we
computed the Euclidean distance between the centroids of con-
nected brain regions. The connection distance of edges in the
subnetwork showing increased streamline density over time was
greater than in the subnetwork showing decreased streamline
density over time (t(448) � 3.40, p � 7 � 10�4), suggesting that
developmental increases of connectivity were more likely to oc-
cur in long-distance connections.

Rich-club organization
Figure 2a shows the normalized rich-club coefficients, 
norm

w �k�,
for the follow-up group-averaged streamline density-weighted
network. Weighted rich-club coefficients, �w�k�, were signifi-
cantly greater than those derived from randomized networks,
�rand

w �k�, for a range of k from 30 to 72 (one-tailed, p � 0.05),
indicating robust rich-club organization in the network. Thus,
brain network hubs showed a significant tendency to be highly

connected to each other, forming an anatomical backbone for
functional integration of spatially distributed brain regions (van
den Heuvel and Sporns, 2013).

Hub classification and connection types
Nodes with a high degree (k � 1 SD above the mean, where the
mean is 45.55 and SD is 13.91) were classified as network hubs,
in accordance with prior work (van den Heuvel and Sporns,
2011). Fourteen such network hubs were identified, and in-
cluded regions in bilateral superior–frontal and superior–pa-
rietal cortex, precuneus, caudate, putamen, and thalamus, as
well as left insula and right hippocampus. Defining hub re-
gions based on the follow-up group-averaged streamline
density-weighted network did not affect the findings because
the set of hubs at each time point was identical, except for one
region.

Based on this definition of hub regions, edges identified by the
NBS were classified as one of the following connection types:
peripheral connections, which link nonhubs; feeder connections,

a

b

c

Figure 2. Rich-club curves and magnitude of developmental changes in peripheral, feeder,
and hub– hub connections. a shows the normalized rich-club coefficients, 
norm

w �k� (red), for
the follow-up group-averaged streamline density-weighted network. Weighted rich-club co-
efficients, �w�k� (black), were found to be significantly greater than those derived from ran-
domized networks, �rand

w �k� (gray), for a range of k from 30 to 72 (one-tailed, p � 0.05;
filled/solid red markers), indicating robust rich-club organization in the network. b and c show
the percentage difference between observed and expected proportions at each level of k for
each connection type [peripheral (yellow), feeder (orange), and hub– hub (red)] in the subnet-
work showing decreased streamline density over time (b) and the subnetwork showing in-
creased streamline density over time (c). � 2 analysis of the difference between the observed
and expected proportions (also at each level of k) revealed a significant effect of connection type
( p � 0.05; filled/solid markers) in both the subnetwork showing decreased streamline density
over time (for each k in the range 27 � k � 36 except k � 31, and 45 � k � 73; b) and the
subnetwork showing increased streamline density over time (for each k in the range 30 � k �
62 except k � 54; c). As can be seen, a disproportionate number of hub– hub connections
showed developmental changes, particularly at levels of k that coincide with the topological
rich-club effect (a).
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which link nonhubs and hubs; and hub– hub connections, which
link two hubs. The proportions of edges showing decreased
streamline density over time that were classified as peripheral,
feeder, or hub– hub were 36%, 55%, and 9%, respectively.
Among edges showing increased streamline density over time,
48%, 41%, and 11% were classified as peripheral, feeder, and
hub– hub connections, respectively.

These raw proportions suggest that developmental changes in
hub– hub connections are relatively minor during late adoles-
cence. However, there generally tends to be fewer hub– hub con-
nections in the brain compared with feeder and peripheral
connections, and this difference will bias analyses of raw propor-
tions in the NBS subnetworks. To control for this bias, we per-
formed � 2 analyses to test for differences in the distribution of
distinct connection types in the NBS subnetworks. At each level
of k, we classified nodes with degree �k as hubs, then computed
the following: (1) the observed proportion of each connection
type (peripheral, feeder, and hub– hub) in the NBS subnetwork;
and (2) the expected proportion of each connection type (based
on the actual proportion of each connection type in the group-
averaged network). � 2 analysis of the difference between these
proportions (also at each level of k) revealed a significant effect of
connection type (p � 0.05) in both the subnetwork showing
decreased streamline density over time (for each k in the range
27 � k � 36, except for k � 31, and 45 � k � 73), and the
subnetwork showing increased streamline density over time (for
each k in the range 30 � k � 62, except for k � 54). These results
are illustrated in Figure 2, b and c, which plots the percentage
difference between observed and expected proportions at each
level of k for each connection type in the subnetwork showing
decreased streamline density over time (Fig. 2b) and the sub-
network showing increased streamline density over time (Fig.
2c). As can be seen, a disproportionate number of hub– hub
connections showed developmental changes, particularly at
levels of k that coincide with the topological rich-club effect
(Fig. 2a).

Anatomical distribution of changes in peripheral, feeder, and
hub– hub connectivity
Figures 1 and 3 illustrate the anatomical distribution of develop-
mental changes in peripheral, feeder, and hub– hub connectivity.
As shown in Figure 1b, peripheral connections in the subnetwork
showing significant decreases in streamline density over time
were distributed relatively evenly throughout the network—18%
were frontal–frontal, 12% were parietal–parietal, and 10% were
parietal–temporal—and peripheral connections between frontal
and other anatomical divisions were a feature of the subnetwork
showing significant increases in streamline density over time.
Figure 1c shows that among feeder connections, the most
prominent developmental decreases in streamline density
were between subcortical and other anatomical divisions (e.g.,
parietal–subcortical, 21%), and the most prominent develop-
mental increases in streamline density were between frontal and
other anatomical divisions (e.g., frontal–subcortical, 19%). As
shown in Figure 1d, nearly half the hub– hub connections in the
subnetwork showing decreased streamline density over time were
subcortical–subcortical (48%), while nearly one-third were pari-
etal–subcortical (30%). In addition, hub– hub connections in the
subnetwork showing increased streamline density over time were
predominantly frontal–subcortical (38%) and frontal–parietal
(19%; Fig. 1d). Connectograms illustrating the developmental
decreases and increases in streamline density for peripheral,
feeder, and hub– hub connections are shown in Figure 3, a and b.

The effect of connectivity weight and parcellation
Further analyses were performed to examine whether the find-
ings were sensitive to the specific measure of connectivity weight
or the choice of parcellation. Regarding the former, we repeated
our analyses using mean FA-weighted networks, wherein each
matrix element encoded the mean of FA for voxels traversed by at
least one of the set of streamlines connecting a unique pair of
brain regions. Similar to streamline density-weighted networks,
170 connections (5%) linking 69 nodes showed significantly de-
creased mean FA (FWE corrected, p � 0.028), and 254 connec-

a b

Figure 3. Connectograms of developmental decreases and increases in streamline density are shown in a and b, respectively, with links colored by connection type: peripheral (yellow), feeder
(orange), and hub– hub (red). Regions of interest are grouped according to broad anatomical divisions [i.e., frontal (cyan), parietal (lime), temporal (magenta), occipital (orange-red), or subcortical
(blue)] and are further ordered by degree (bar height is proportional to degree), with bars colored in red corresponding to hub regions. F, Frontal; L, left; O, occipital; P, parietal; R, right; S, subcortical;
T, temporal.
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tions (8%) linking 76 nodes showed significantly increased mean
FA (FWE corrected, p � 6 � 10�4). There was rich-club organi-
zation in both baseline and follow-up group-averaged mean FA-
weighted networks. The disproportionate number of hub– hub
connections was evident in the subnetwork showing increases in
mean FA over time, with � 2 analyses revealing a significant effect
of connection type (p � 0.05) for each k in the range 35 � k � 70,
but no such pattern was apparent in the subnetwork showing
decreases in mean FA over time, suggesting that the developmen-
tal increases of hub connectivity are more robust than decreases
to the way in which connectivity weight is defined.

To ensure that the findings were not driven by the chosen
parcellation scheme (Fischl et al., 2002; Desikan et al., 2006), we
repeated the analyses using a random parcellation comprising
530 nodes (265 per hemisphere) of approximately equal volume,
generated according to the methods described by Zalesky et al.
(2010b) and Fornito et al. (2010, 2011). For streamline density-
weighted networks, 5889 connections (4%) linking all 530 nodes
showed significantly decreased streamline density (FWE cor-
rected, p � 0.001), and 4730 connections (3%) linking 528 nodes
showed significantly increased streamline density (FWE cor-
rected, p � 0.035). Similarly, for mean FA-weighted networks,
5732 connections (4%) linking all 530 nodes showed significantly
decreased mean FA (FWE corrected, p � 0.014), and 6151 con-
nections (4%) linking all 530 nodes showed significantly in-
creased mean FA (FWE corrected, p � 0.001). Figure 4a
illustrates the anatomical location of nodes classified as hubs
(nonhubs) in the follow-up group-averaged streamline density-
weighted network based on the 530-node parcellation according
to the high-degree cutoff k � 1 SD above the mean (mean, 368.68;
SD, 79.94). The localization of hubs to association cortex and
subcortical areas is consistent with the spatial distribution of hub
nodes obtained using the 80-node parcellation (Fig. 2d). Net-
works based on the 530-node parcellation showed robust rich-
club organization. Figure 4b shows this effect for the follow-up
group-averaged streamline density-weighted network. Similar
results were obtained for the baseline group-averaged streamline
density-weighted network, and both baseline and follow-up
group-averaged mean FA-weighted networks. As shown in Figure
4, c and d, developmental changes—particularly increases—in stream-
line density were predominantly related to hub– hub connectiv-
ity. Developmental increases in mean FA also showed a
preference for changes in hub– hub connectivity.

Discussion
This study examined longitudinal changes in structural connec-
tivity of brain network hub regions during late adolescence. Our
findings indicate that this period is characterized by selective, yet
significant remodeling of connections between spatially distrib-
uted hub regions. The most prominent changes in hub– hub con-
nectivity over time involved decreases between subcortical
regions and increases between frontal and subcortical regions.
These findings support the hypothesis that refinement of hub–
hub connectivity continues into late adolescence. Further, they
suggest that this development is characterized by a relative redis-
tribution of the topological importance of distinct classes of hub
regions, in which there is a gradual de-emphasis of subcortical
connections and an increasing emphasis on connections between
frontal and subcortical areas.

Our findings suggest that late adolescence is characterized by a
complex combination of selective, yet anatomically distributed
progressive and regressive changes, such that only a small pro-
portion of connections showed evidence of statistically signifi-

cant developmental change, but these connections linked regions
located throughout the brain. The fact that this type of change is
occurring during mid to late adolescence is further evidence that
significant neurodevelopmental processes, with potentially im-
portant implications for behavior and mental health, are still oc-
curring during this phase of life. Indeed, our observation that

a

b

c

d

Figure 4. The effect of parcellation scale on developmental changes in structural connectiv-
ity. a illustrates the anatomical location of nodes classified as hubs (red) and nonhubs (gold) in
the follow-up group-averaged streamline density-weighted network based on the 530-node
parcellation. b shows the normalized rich-club coefficients, 
norm

w �k� (red), for this network.
Weighted rich-club coefficients, �w�k� (black), were found to be significantly greater than
those derived from randomized networks, �rand

w �k� (gray), for each k in the range 143 � k �
170 and 172 � k � 510 (one-tailed, p � 0.05; filled/solid red markers), indicating robust
rich-club organization in the network. c and d show the percentage difference between ob-
served and expected proportions at each level of k for each connection type [peripheral (yellow),
feeder (orange), and hub– hub (red)] in the subnetwork showing decreased streamline density
over time (c) and the subnetwork showing increased streamline density over time (d). � 2

analysis of the difference between the observed and expected proportions (also at each level of
k) revealed a significant effect of connection type ( p � 0.05; filled/solid markers) in both the
subnetwork showing decreased streamline density over time (for the majority of k in the range
171 � k � 503; c) and the subnetwork showing increased streamline density over time (for
each k in the range 171 � k � 491 and 508 � k � 515; d). As can be seen, developmental
changes—particularly increases—in streamline density were predominantly related to hub–
hub connectivity, particularly at levels of k that coincide with the topological rich-club effect (b).
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structural hub– hub connectivity undergoes significant develop-
ment during adolescence is consistent with previous studies dem-
onstrating that significant remodeling of functional connectivity
between hubs occurs between childhood and adulthood (Uddin
et al., 2011; Grayson et al., 2014). Thus, unlike the developmental
window between 30 and 40 weeks of gestation, which is an im-
portant period for the development of connections between
(rich-club) hub regions and topologically peripheral regions (i.e.,
feeder connections; Ball et al., 2014), late adolescence appears to
be an important period for the refinement of hub– hub connec-
tivity. It is thus possible that distinct connection types may un-
dergo development at different rates, and during different
developmental epochs. More specifically, hub– hub connectivity
may emerge early to act as a scaffold upon which other regions are
added to the network. As the network becomes more established,
it may undergo further refinement, which, in adolescence, is
characterized by an augmentation of hub– hub connectivity to
support the increasing levels of functional integration thought to
characterize this developmental period. This is not to say that
connections involving nonhub regions do not develop in child-
hood and adolescence; indeed, our own data indicate that, in
absolute terms, most of the connections showing developmental
changes involved nonhubs. However, our findings point to a
disproportionate number of hub– hub connections undergoing
developmental change when considered relative to the propor-
tion of each connection type in the brain.

Subnetworks of connections showing decreased and increased
connectivity (i.e., streamline density) over time had distinct an-
atomical distributions. Specifically, the connectivity of frontal
regions tended to increase with development, whereas subcorti-
cal connectivity tended to decrease. This trend was observed at
both the connectome-wide level and specifically with respect to
hub– hub connections. Increased connectivity between frontal
and subcortical hubs was particularly prominent. These findings
are consistent with a large body of work indicating that the frontal
cortex and its associated white matter undergo a protracted pe-
riod of development extending into the third decade of life (Ya-
kovlev and Lecours, 1967; Huttenlocher, 1979; Giedd et al.,
2015), and with evidence that connectivity between the frontal
cortex and striatum (i.e., caudate and putamen) undergoes
marked developmental change during adolescence (Sowell et al.,
1999; Paus et al., 2001; Liston et al., 2006; Hwang et al., 2010;
Schmithorst and Yuan, 2010). Our findings may thus reflect a
developmental process known as “frontalization,” whereby the
frontal lobes become increasingly dominant in planning, orga-
nizing, and regulating thought and behavior, enabling the inte-
gration of information from diverse parts of the brain to support
complex behavior (Lewis and Todd, 2007). Developmental
changes in the link between frontal and subcortical regions may
have particular relevance for understanding risk taking (Spear,
2000; Steinberg, 2005) and depression (Davey et al., 2008) during
adolescence. It is well known that subcortical regions, which de-
velop early in life, are primarily responsible for the initiation of
affective/emotional and reward-seeking processes (Panksepp,
1998). Decreasing connectivity between subcortical areas and in-
creasing connectivity with frontal cortex may render these re-
gions less autonomous and more receptive to top-down control
during the transition from adolescence to adulthood, thus coin-
ciding with a higher degree of behavioral regulation.

It is well known that adolescence is associated with substantial
myelination of long-range axonal pathways (Benes et al., 1994).
Our data are consistent with these observations and suggest that
myelination of hub– hub connectivity may be particularly pro-

nounced in late adolescence. However, caution is warranted
when inferring the physiological basis of changes in connectivity
measures derived from diffusion MRI, and it is possible that
changes in fiber trajectory, organization, density, or other param-
eters related to axonal integrity may also affect the measures ex-
amined in our analysis (Paus, 2010; Fornito et al., 2013; Jones et
al., 2013).

Our sample size precluded an analysis of sex differences,
which are known to influence brain development (Giedd et al.,
2015). Replication and extension of our findings in a larger sam-
ple are thus required. Understanding how developmental
changes in hub connectivity affect network topology and dynam-
ics will also be an important goal for future research.

In summary, we report evidence for selective, yet anatomically
distributed progressive and regressive changes in structural con-
nectivity in late adolescence. The specific pattern of developmen-
tal changes is most pronounced for connectivity between hub
regions, and is consistent with an increasingly prominent role for
frontal hub regions, coupled with a decreasing emphasis on the
connectivity of subcortical structures. Understanding how de-
railment of these developmental processes contributes to risk for
psychopathology may assist efforts to predict disease vulnerabil-
ity and target early interventions, given that many brain disorders
are associated with hub pathology (van den Heuvel et al., 2013;
Crossley et al., 2014; Fornito et al., 2015).
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