
Systems/Circuits

Cryptochrome-Dependent and -Independent Circadian
Entrainment Circuits in Drosophila

Taishi Yoshii,1 Christiane Hermann-Luibl,2 Christa Kistenpfennig,1,2 Benjamin Schmid,3 Kenji Tomioka,1

and Charlotte Helfrich-Förster2

1Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan, 2Neurobiology and Genetics, Theodor-Boveri
Institute, Biocenter, University of Würzburg, Würzburg D-97074, Germany, and 3Max Planck Institute of Molecular Cell Biology and Genetics, D-01307
Dresden, Germany

Entrainment to environmental light/dark (LD) cycles is a central function of circadian clocks. In Drosophila, entrainment is achieved by
Cryptochrome (CRY) and input from the visual system. During activation by brief light pulses, CRY triggers the degradation of TIMELESS
and subsequent shift in circadian phase. This is less important for LD entrainment, leading to questions regarding light input circuits and
mechanisms from the visual system. Recent studies show that different subsets of brain pacemaker clock neurons, the morning (M) and
evening (E) oscillators, have distinct functions in light entrainment. However, the role of CRY in M and E oscillators for entrainment to LD
cycles is unknown. Here, we address this question by selectively expressing CRY in different subsets of clock neurons in a cry-null (cry0)
mutant background. We were able to rescue the light entrainment deficits of cry0 mutants by expressing CRY in E oscillators but not in any
other clock neurons. Par domain protein 1 molecular oscillations in the E, but not M, cells of cry0 mutants still responded to the LD phase
delay. This residual light response was stemming from the visual system because it disappeared when all external photoreceptors were
ablated genetically. We concluded that the E oscillators are the targets of light input via CRY and the visual system and are required for
normal light entrainment.

Key words: circadian clock; clock neurons; Cryptochrome; Drosophila melanogaster; light entrainment

Introduction
Light is the most important environmental time cue [zeitgeber
time (ZT)] for circadian clocks in most organisms. The light-
resetting mechanism in the clock of the model organism Drosophila
melanogaster is primarily explained by the rapid degradation of one
clock protein, TIMELESS (TIM), by light (Lee et al., 1996; Myers
et al., 1996; Zeng et al., 1996). Although the Drosophila visual
system, which includes the compound eyes, ocelli, and Hofbauer–
Buchner (H–B) eyelets, mediates light information to the clock,
these pathways do not cause a rapid degradation of TIM
(Stanewsky et al., 1998; Yang et al., 1998; Emery et al., 2000). In
contrast, light-dependent TIM degradation is mainly caused by

the blue light-sensitive protein Cryptochrome (CRY), which is
expressed in pacemaker clock neurons in the brain and can inter-
act directly with TIM in these cells (Ceriani et al., 1999; Klarsfeld
et al., 2004; Benito et al., 2008). After exposure to light, CRY is
activated and undergoes a conformational change at the C
terminus, leading to its binding to TIM (Busza et al., 2004;
Dissel et al., 2004; Vaidya et al., 2013). After this, the TIM/CRY
complex is ubiquitinated by JETLAG (JET) and undergoes
degradation via the proteasomal pathway (Koh et al., 2006;
Peschel et al., 2006).

There are �150 neurons expressing clock genes in the Dro-
sophila brain, provisionally called “clock neurons” (Muraro et al.,
2013). They are divided into nine groups: (1) dorsal neuron
(DN)1a; (2) DN1p; (3) DN2; (4) DN3; (5) lateral posterior neuron;
(6) lateral neuron (LN)d; (7) fifth small type (s)-LNv; (8) large
type (l)-LNv; and (9) s-LNv (Helfrich-Förster, 2003, 2007). s-LNv

and l-LNv neurons contain pigment-dispersing factor (PDF), a neu-
ropeptide that is involved in intercellular communication between
the clock neurons (Shafer et al., 2008; Yoshii et al., 2009b). Further-
more, the s-LNv group is important for anticipatory morning activ-
ity and the pacemaker center that maintains free-running rhythms
in constant darkness (DD) (Stoleru et al., 2005; Picot et al., 2007). In
contrast, LNd and fifth s-LNv neurons are important for anticipatory
evening activity. Therefore, neurons in the former group are called
morning (M) cells and the latter are named evening (E) cells.

CRY is expressed in most of the important clock neurons
(Yoshii et al., 2008), but several clock neurons that do not contain
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CRY or express only very low levels are nevertheless synchronized
by light. There are additional differences in the expression levels
of CRY between different clock neurons (Yoshii et al., 2008).
These facts have raised the question of whether separate clock
neurons have different functions in CRY-dependent light en-
trainment. Furthermore, several studies have shown that the re-
sponses to short light pulses are different in M and E oscillators
(Shang et al., 2008; Tang et al., 2010; Lamba et al., 2014). Never-
theless, little is known about the role of M and E cells, or CRY, for
entrainment to regular light/dark (LD) cycles. To address this
issue, in the present study, we generated fly lines that express CRY
in subsets of different neurons and tested their entrainability to
LD cycles.

Materials and Methods
Fly strains. w1118 (w) flies were used as a control strain in this study. This
line was used originally to create the cry01 mutant; therefore, both have
the same genetic background except for the replacement of the cry
locus by a mini-white containing P-element transgene in the mutant
(Dolezelova et al., 2007). To test the effect of eye color, CantonS flies were
outcrossed into the w background for six generations to create red-eyed
flies, named w�, that have the w genetic background. To rescue cry ex-
pression in a subset of clock neurons, cry01 mutants were crossed with the
following transgenic flies: uas–cry (Emery et al., 1998), tim(uas)–gal4 (Blau
and Young, 1999), gmr–gal4 (Freeman, 1996), cry–gal4 #39 (Klarsfeld et al.,
2004), Pdf–gal4 (Renn et al., 1999), npf–gal4 (Wu et al., 2003), trpA1SH–gal4
(Hamada et al., 2008), c929–gal4 (Taghert et al., 2001), mai179–gal4
(Grima et al., 2004), r6–gal4 (Helfrich-Förster et al., 2007), Pdf–gal8096A

(Stoleru et al., 2004), Clk4.1M–gal4 (Zhang et al., 2010), R78G01–gal4, and

R54D11–gal4 (Pfeiffer et al., 2008). Clk4.1M–gal4, R78G01–gal4, and
R54D11–gal4 transgenes were inserted on the third chromosome in which
the cry gene is located; therefore, cry01 strains containing the gal4 transgenes
were generated by meiotic recombination. w;uas–GFP S65t (#1522) flies
were obtained from the Bloomington Drosophila Stock Center. Flies were
reared under 12/12 h LD cycles on Drosophila medium (0.7% agar, 8.0%
glucose, 3.3% yeast, 4.0% cornmeal, 2.5% wheat embryo, and 0.25% propi-
onic acid) at 25°C.

Determination of s-tim and ls-tim alleles. To determine s-tim and ls-tim
polymorphisms of each fly stain, PCR was performed using the following
primer set: sense, TAGGTATCGCCCTCCAAG; and antisense, TAG-
GCAGCTCCACAATCA (Schlichting et al., 2014). The resulting PCR
products were subjected to DNA sequencing. CantonS, Pdf– gal8096A,
and trpA1SH– gal4 strains possess the ls-tim allele. w1118, cry01, uas– cry,
tim(uas)– gal4, cry– gal4 #39, Pdf– gal4, npf– gal4, c929 – gal4, mai179 –
gal4, r6 – gal4, R78G01– gal4, and R54D11– gal4 strains possess the s-tim
allele.

Activity recording and data analysis. Three- to 6-d-old male flies were
used to record locomotor activity rhythms. Flies were confined in record-
ing tubes containing agar/sugar food (2% agar and 4% sucrose) for the
Drosophila Activity Monitor (DAM2; Trikinetics). The monitors were
placed in an incubator (CN-40A; Mitsubishi Electric) at a constant tem-
perature of 20°C. White LEDs were set above the monitors in the incu-
bator, and lights on and off were controlled by an LC4 light controller
(Trikinetics). The light intensity used in all experiments was 100 lux
(3.2 �W/cm �2). To ensure that all strains were entrained completely
under 16/8 h LD, the activity rhythms of all strains were first recorded
for 7 d under 16/8 h LD. Subsequently, the flies were subjected to an
8 h phase delay of LD by a prolongation of the light phase as shown in
Figure 3.

Figure 1. TIM degradation kinetics after light pulses (LP). Flies were exposed to light pulses of different durations that started at different ZTs until ZT 21, when the flies were collected. A, TIM
immunostaining in LN cells in w control brains (left 2 panels) and cry01 mutant brains (right 2 panels) at ZT 21. PDF costaining was also performed to distinguish the groups of LN cells (images not
shown). B, TIM degradation kinetics in three LN groups in response to different light pulses. To normalize data, TIM staining intensity with no light pulse was set to 1.0. The mean � SEM staining
intensity was calculated from 10 hemispheres of 10 different brains. TIM staining was almost completely abolished after a 120 min light pulse in w control brains (solid lines), whereas it remained
at a high level in cry01 mutant brains (dashed lines).
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For visual inspection, raw data were displayed as actograms using
ActogramJ (http://actogramj.neurofly.de/; Schmid et al., 2011). To cal-
culate the magnitude of the phase shift, daily activity profiles of individ-
ual flies were plotted, and the phase of the evening peak of each fly was
determined manually, as described previously (Rieger et al., 2003). The
phase angles between the evening peak on the day of the LD phase shift
and the evening peak on day 1 (or day 2) after the LD phase shift were

calculated for individual flies as shown in Figure 5A, and the mean phase
angles were calculated for each strain. For statistical analysis, Tukey’s
multiple comparison test was used after testing for a normal distribution
with the Kolmogorov–Smirnov test. Statistics were calculated using EZR
software, which is based on R (Kanda, 2013).

Immunohistochemistry and confocal imaging. Whole flies were fixed in
4% paraformaldehyde in PBS with 0.1% Triton X-100 for 2.5 h at room

Figure 2. Characterization of gal4 strains. gal4 lines were crossed with uas–GFP–S65t to visualize the gal4 expression patterns. Flies were entrained to 12/12 h LD for 5 d and were dissected at
ZT 19. Brains were triple stained with anti-GFP (green), anti-VRI (cyan), and anti-PDF (magenta in A) or anti-ITP (magenta in bottom rows of B–D). The ITP-positive LNd and fifth s-LNv are
CRY-positive neurons (Johard et al., 2009). trpA1SH– gal4/uas–GFP flies were double stained with anti-GFP (green) and anti-dCRY (magenta) to determine whether GFP-positive LNd were also CRY
positive (C, top row). Scale bars, 10 �m.
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temperature (RT). Fixed flies were washed three times in PBS, and then
their brains were dissected. After washing three times with PBS con-
taining 0.5% Triton X-100 (PBS-T), brains were blocked in PBS-T
containing 5% normal donkey or goat serum for 1 h at RT and sub-
sequently incubated in primary antibodies at 4°C for 48 h. After wash-
ing six times in PBS-T, the brains were incubated with secondary
antibodies at RT for 3 h. Then brains were washed six times in PBS-T and
mounted in Vectashield mounting medium (Vector Laboratories). The
primary antibodies used were chicken anti-GFP (1:2000; ab13970; Ab-
cam), mouse anti-PDF (1:1000; Developmental Studies Hybridoma
Bank; Cyran et al., 2005), guinea pig anti-vrille (VRI; 1:3000; Glossop et
al., 2003), rat anti-TIM (1:1000; Yoshii et al., 2008), rabbit anti-CRY
(1:1000; Yoshii et al., 2008), rabbit anti-ion transport peptide (ITP;
1;10,000; Hermann-Luibl et al., 2014), and rabbit anti-Par domain pro-
tein 1 (PDP1; 1:3000; Cyran et al., 2003). We used the following
fluorescence-conjugated secondary antibodies at a 1:500 concentration:
Alexa Fluor antibodies (Life Technologies) of 488 nm (goat anti-chicken
and goat anti-mouse), 555 nm (goat anti-rabbit), 635 nm (goat anti-
mouse and goat anti-guinea pig), and goat anti-rabbit or anti-rat IgG Cy3
(Millipore).

Staining was visualized using laser scanning confocal microscopes
(Fluoview300 from Olympus; and TCS SPE from Leica). For quantifica-
tion of PDP1 immunostaining, the confocal microscope settings were
kept constant throughout the experiments. For each time point, nine
hemispheres from nine different brains were analyzed. Measurement of
staining intensity was performed using NIH ImageJ (W. S. Rasband,
National Institutes of Health, Bethesda, MD), as described previously
(Yoshii et al., 2009a).

Results
CRY-dependent TIM degradation by a light pulse
Previous studies using whole-head extracts and S2 cells have
shown that TIM is degraded rapidly by light in a CRY-dependent
manner (Busza et al., 2004; Peschel et al., 2009). To test the speed
of TIM degradation in the brain clock neurons under light, w
control flies and cry01 mutants, which were entrained to 12/12 h
LD, were subjected to a light pulse of different durations, starting
at different ZTs, before collecting the flies at ZT 21. At ZT 21, TIM
is normally at its peak level, whereas the tim mRNA level is al-
ready declined (So and Rosbash, 1997). Thus, we expected to
observe relatively clear TIM degradation kinetics at this time
point, unaffected by its mRNA synthesis. Our immunohisto-
chemical analysis revealed that TIM required a 120 min light
pulse to decline to a level almost undetectable by immunohisto-
chemistry in all LN groups of the control flies, including the
CRY-negative LNds (Fig. 1A,B). These data fit to TIM degrada-
tion kinetics from head extracts (Busza et al., 2004) but not to in
vitro studies (Ozturk et al., 2014), in which TIM is more rapidly
degraded by light. It is worth mentioning also that much shorter
light pulses (although depending on light intensity) are sufficient
for causing TIM degradation (Vinayak et al., 2013), albeit com-
plete depletion is not reached until a few hours after the light
pulse. Even after a 120 min light pulse, there was still some resid-
ual TIM detectable, especially in the cytoplasm (Fig. 1A). There-
fore, light-dependent TIM degradation may be more efficient in
the nucleus than in the cytoplasm.

In cry01 mutants, TIM levels did not change even after a 120
min light pulse, clearly indicating that TIM degradation by the
light pulse was indeed mediated by CRY. The same TIM kinetics
were also observed in the DN groups, including CRY-negative
DN1p and DN2 neurons (data not shown). Thus, CRY-dependent
TIM degradation also occurs in CRY-negative clock neurons, as
shown in a previous study (Yoshii et al., 2008). For unknown
reasons, TIM staining in the DN groups in cry01 mutants was very
weak even without a light pulse. Therefore, quantification was

not performed in these cells. Possible reasons for this weak TIM
staining in the DN groups are as follows: (1) a phase shift of the
TIM peak in the mutants away from ZT21, when the staining was
performed, or (2) a novel role of CRY in modulating TIM stabil-
ity in the dark. However, both hypotheses require additional in-
vestigation to be validated.

Characterization of gal4 lines
Before generating fly lines that express CRY only in subsets of
clock neurons, we screened the Janelia gal4 stocks (Pfeiffer et al.,
2008) for strains suitable for our purpose. We found two gal4
lines that showed rather specific GFP expression in the clock
neurons when crossed with uas– gfp flies. In particular, GFP ex-
pression of R78G01– gal4/uas– gfp flies was observed in the l-LNv

and few additional non-clock cells in the brain (Fig. 2A).
R54D11– gal4/uas– gfp flies showed GFP signal in the fifth s-LNv,
one ITP-positive LNd (CRY-positive neuron; Johard et al., 2009),
one l-LNv, very weakly in two s-LNv neurons, and very few non-
clock cells in the brain (Fig. 2B). We also investigated GFP ex-
pression in trpA1SH– gal4/uas– gfp flies showing GFP signal in the
fifth s-LNv, three CRY-positive LNd, and one DN1a (Fig. 2C;
Hamada et al., 2008). The c929 – gal4 line had been used previ-
ously as an l-LNv-specific driver (Taghert et al., 2001). Here, we
found that it also shows expression in the fifth s-LNv and one
ITP (and CRY)-positive LNd, in addition to all l-LNv neurons
(Fig. 2D). We used these lines together with well characterized
clock-neuron-specific gal4 drivers to generate the cry-rescue
flies (Table 1).

Re-entrainment experiments to a phase-shifted LD cycle
To investigate entrainability to light, flies were subjected to an 8 h
phase delay of the given LD cycle. We chose a 16/8 h LD cycle for
this experiment because it is easier to discriminate the actual
phase of the evening activity peak from the startle response
caused by lights off (Rieger et al., 2012). In 16/8 LD cycles, the
evening activity of w control flies peaked before lights off,
whereas cry01 mutants and eyeless grm– hid/� mutants showed
activity peaks later and earlier than the control flies, respec-
tively (Fig. 3). After an 8 h phase delay of LD, the activity
rhythms of w control flies and grm– hid/� mutants immedi-
ately phase shifted and established a steady phase within al-
most 1 d (Fig. 3). In contrast, cry01 mutants needed several
days to completely synchronize to the new phase of LD. This

Table 1. Expression patterns of different gal4 divers in clock neurons

Gal4 driver Expression sites in clock neurons

tim(uas)gal4 All clock neurons
cry– gal4 #39 All cry-positive neurons (� 3 CRY-negative LNd )
mai179 – gal4 Three CRY-positive LNd , fifth s-LNv , �2 l-LNv ,

s-LNv , *DN1a

mai179 – gal4/Pdf– gal80 Three CRY-positive LNd , fifth s-LNv , *DN1a

R54D11– gal4 One CRY-positive LNd , fifth s-LNv , *one l-LNv ,
*one to two s-LNv

c929 – gal4 One CRY-positive LNd , fifth s-LNv , l-LNv

npf– gal4 Three LNd (one CRY-positive and two CRY-
negative), fifth s-LNv , one to two l-LNv

trpA1SH– gal4 Three LNd (CRY-positive), fifth s-LNv , one DN1a

Pdf– gal4 l-LNv , s-LNv

r6 – gal4 s-LNv

R78G01– gal4 l-LNv

Clk4.1M– gal4 Six CRY-positive DN1p

gmr– gal4 Eyes

*Indicates very weak expression.
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slow re-entrainment was rescued by cry expression in CRY-
positive neurons in cry– gal4/uas– cry;cry01 flies (Fig. 3). When
both the eyes and CRY were absent in grm– hid/�;cry01 mu-
tants, the flies were not able to synchronize to LD cycles, in
agreement with previous studies (Helfrich-Förster et al., 2001;
Klarsfeld et al., 2004).

cry rescue in the fifth s-LNv and LNd neurons
To investigate the role of CRY in different clock neurons, we then
generated 11 cry-rescue strains by crossing different clock-
specific gal4 drivers with a uas– cry line in the cry01 background
and subjected them to the 8 h phase delay. Average actograms of
all strains are shown in Figure 4. To evaluate the speed of the
re-entrainment, we determined the phase delays accomplished
by individual flies on days 1 and 2 after the shift (Fig. 5A). The
evening activity of w control flies phase shifted by almost 7 h on
day 1 after the 8 h phase shift of LD (Figs. 3, 5B), meaning that w
flies almost completed re-entrainment to the new LD cycle within
1 d. w� flies, which have the same genetic background as w con-
trol flies but have red eyes, similarly showed fast re-entrainment,
proving that eye color does not matter in this assay. CantonS
wild-type flies were slightly slower than w control flies in the
re-entrainment. The difference was �1 h and statistically signif-
icant. Thus, the genetic background including the tim allele (Pe-
schel et al., 2006; w: s-tim; CantonS: ls-tim) slightly affected the
speed of the re-entrainment. cry01 mutants phase shifted by �2 h
on both day 1 and day 2, suggesting that the phase shift mediated
by visual system-dependent light entrainment is limited to �2
h/d. In addition, rescuing cry in the eyes with a gmr– gal4 driver
did not improve the cry01 phase shift.

When all clock neurons, all CRY-positive clock neurons, or
the majority of the CRY-positive LN groups expressed cry by
tim– gal4, cry– gal4, or mai– gal4, respectively, the flies were able
to re-entrain at the same speed as the w and w� flies. mai– gal4 is
expressed in the LN groups (except for the three CRY-negative
LNd and one to two l-LNv) and very weakly in the DN1a neurons
(Picot et al., 2007; Rieger et al., 2009). Thus, this suggests that the
DN groups are not major players in CRY-dependent fast light
entrainment. The Clk4.1M– gal4 is a specific driver for CRY-
positive DN1p neurons (Zhang et al., 2010), and the phase shift of
cry-rescued flies with this line was not significantly different from
cry01 mutants or uas– cry/�;cry01 flies, further confirming that

CRY in the DN groups does not contribute to light re-
entrainment to phase delays.

The r6 – gal4 and R78G01– gal4 are specific drivers for the
s-LNv and l-LNv, respectively. The phase shifts of cry-rescued flies
with these drivers were not statistically different from cry01 mu-
tants (Fig. 5B). However, when cry was rescued in both s-LNv and
l-LNv neurons with the Pdf– gal4 driver, the flies were able to
phase shift by �3 h/d, and this was statistically significant from
the phase shift in cry01 mutants. In contrast, mai– gal4/Pdf– gal80
is a specific line for three CRY-positive LNd and the fifth s-LNv.
cry-rescued flies with this driver achieved �6 h of phase shift.
Other gal4 drivers that are expressed in both the fifth s-LNv and
LNd neurons (R54D11– gal4, c929 – gal4, trpA1SH– gal4, and npf–
gal4) also showed considerably improved phase shifts. Together,
these data show that CRY expression in the fifth s-LNv and LNd

neurons is particularly important for fast light entrainment.
However, because cry-rescued flies with the mai– gal4 driver
shifted at a significantly faster rate than the mai– gal4/Pdf– gal80
cry-rescued flies (at least on day 1), CRY expression in the PDF
neurons (s-LNv and l-LNv) seems to additionally support the
phenotypic rescue. We should also note that gal4 expression in
the fifth s-LNv and LNd neurons in c929 – gal4, trpA1SH– gal4 and
npf– gal4 strains is relatively weak compared with the tim– gal4,
cry– gal4, and mai– gal4 strains. In addition, the R54D11– gal4,
c929 – gal4, trpA1SH– gal4 strains show gal4 expression only in one
CRY-positive LNd. Therefore, the minor differences in behavior
between the E cell-specific cry-rescue strains may be attributable
to the level of CRY expression and/or the number of CRY-
positive E cells.

Phase shifts in clock neurons via CRY and the eyes
Next, we investigated the cycling of a core clock protein in the
clock neurons under the phase shift condition. The PDP1 clock
protein was chosen, because the cycling of PERIOD (PER) and
TIM are thought to be influenced directly by light-mediated TIM
degradation, but here we intended to show contributions from
other pathways to the protein cycling, in particular pacemaker
neurons. Three strains, w control flies, cry01 mutants, and mai–
gal4/Pdf– gal80�cry;cry01 flies, were entrained to 16/8 h LD for
7 d and subjected to an 8 h phase shift of the LD cycle using the
same behavioral protocol that was performed in the previous
experiments shown in Figure 3. The flies were collected at 3 h

Figure 3. Activity rhythms under 16/8 h LD before and after an 8 h LD phase shift. The gray area in the actograms indicates the dark phase. Bars above and below the actograms indicate light
conditions before and after the LD phase shift, respectively. Actograms show mean activity rhythms calculated from the number of flies indicated next to the strain names. Because gmr– hid/�;cry01

flies were not able to synchronize to LD cycles, the actogram is of a representative individual fly. cry�cry;cry01 indicates w;cry– gal4 #39/uas– cry;cry01.
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intervals for immunostaining before and after day 1 of the phase
shift (Fig. 5A).

In w control flies, all LN groups displayed large phase shifts
in PDP1 cycling after an 8 h phase shift of LD (Fig. 6). PDP1
began to increase at approximately ZT 12 and reached peak
levels at ZT 18 before the LD phase shift in all LN groups, and
these were phase shifted by 9 –15 h after the LD shift. Thus,

PDP1 cycling was surprisingly shifted by �8 h in terms of the
onset of the PDP1 increase and the phase of the peaks. Among
the DN groups, the DN1a showed similar phase shifts to the LN
groups (Fig. 7). Only a subset of the DN1p neurons phase
shifted. The other DN groups seemed to be insensitive to the
LD phase shift and showed no difference in the phase at which
PDP1 peaked before or after the shift. The phase shift of the

Figure 4. Activity rhythms of other strains, which were not included in Figure 3, under 16/8 h LD before and after an 8 h LD phase shift. The gray area in the actograms indicates the dark phase.
Bars above and below the actograms indicate light conditions before and after the LD phase shift, respectively. Actograms show mean activity rhythms calculated from the number of flies indicated
next to the strain names.

6136 • J. Neurosci., April 15, 2015 • 35(15):6131– 6141 Yoshii et al. • Circadian Circuits for Rapid Light Entrainment



DN2 neurons was hard to judge because these neurons seemed
to resynchronize slowly.

In cry01 mutants, the l-LNv neurons did not show any strong
PDP1 cycling before or after the phase shift; therefore, we could
not reliably determine any peak (Fig. 6). The same was true for
the DN neurons, although the DN1p showed some similarities to
the controls (Fig. 7). Prominent PDP1 oscillations were present
in the s-LNv, fifth s-LNv, and LNd neurons of cry01 mutants (Fig.
6). In the s-LNv neurons, PDP1 showed a narrower peak than in
the controls, but, most importantly, PDP1 cycling did not follow
the phase delay of the LD cycle (Fig. 6). In contrast, PDP1 cycling
in the fifth s-LNv and LNd of cry01 mutants was reasonably phase
shifted as judged from an increase in PDP1 levels. We could not
determine unequivocally the phase of the PDP1 peak before the
shift, because PDP1 seemed to reach its maximal level at ZT 24,
when our time series was stopped. Importantly, PDP1 of the fifth
s-LNv and LNd reached its peak levels later in cry01 mutants than
in the controls, and this coincided with the late E activity peak of
the mutants (Fig. 3), further providing evidence for the proposed
role of the E cells in controlling this peak. The response of the
molecular clock in the fifth s-LNv and LNd neurons of cry01 mu-

tants to the phase-delayed LD cycles shows that visual system-
dependent light input pathways, in addition to CRY, entrain the E
cells. The magnitude of the shifts matches the behavioral data
that revealed a phase delay of 2 h/d of the E peak in cry01

mutants (Fig. 5B).
When cry expression was rescued in the E cells in mai– gal4/

Pdf– gal80�cry;cry01 flies, the wild-type phase of the PDP1 peak
(at approximately ZT 18 –ZT 21) was restored in the fifth s-LNv

and LNd neurons; in addition, these neurons also responded with
a phase delay to the shifted LD cycles in a manner very similar to
the wild-type neurons (Fig. 6). The increase in PDP1 levels after
the phase shift occurred earlier in the rescued flies than in the
controls, but the PDP1 peaks were reached at the same time (at
approximately ZT 19 to ZT 22) in both fly groups, suggesting that
CRY expression in the E cells was sufficient for almost normal
phase delays of the E cells. Once again, this corresponds to the
delay of E activity shown in the behavioral experiments (Fig. 5B).
Interestingly, CRY rescue in the E cells had little effect on PDP1
cycling in the s-LNv (Fig. 6), which did not show any apparent
phase delay in response to the LD shift. In addition, there was no
effect on PDP1 cycling in the l-LNv (Fig. 6) or DN (Fig. 7). Thus,

Figure 5. The magnitude of the phase shifts after an 8 h LD phase delay. A, Determination of the phase angle between the evening activity peak before and after the LD phase shift. The phase of
the evening activity peak was determined on the day when the light phase was prolonged to induce a shift in the LD cycle. The next day was regarded as day 1, when the activity phase shift occurred.
B, The magnitude of the phase shifts (mean � SEM) on day 1 (left) and day 2 (right) after an 8 h LD phase delay. The control strains (CantonS, w�, and w) were phase shifted by 6 –7 h in response
to an 8 h LD shift on the first day, suggesting that these flies almost finished re-entrainment within 1 d. Lowercase letters above the bars indicate significant differences revealed by Tukey’s multiple
comparison test ( p � 0.01).
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cry rescue in the E cells increased the speed
of the phase shift in the E cells themselves
but not in other clock neurons. Neverthe-
less, we emphasize that there must be
crosstalk between the different clock neu-
rons, because the shape and phase of the
PDP1 oscillations in s-LNv neurons ap-
peared more normal after CRY rescue in
the E cells (Fig. 6).

Discussion
The Drosophila circadian clock is ex-
tremely light sensitive (Helfrich-Förster et
al., 2002; Hirsh et al., 2010). Short-term
exposure to a weak light pulse is sufficient
for TIM degradation and a large phase
shift in activity rhythms (Vinayak et al.,
2013). This rapid response of the Dro-
sophila clock to light is attributed to TIM
degradation by the CRY-dependent path-
way in the clock neurons (Stanewsky et al.,
1998; Emery et al., 2000; Busza et al.,
2004). In the present study, we demon-
strated that the fifth s-LNv and LNd neu-
rons, known as the E cells, play an
important role in the CRY-dependent fast light entrainment. In
the absence of CRY, molecular cycling in the E cells can respond
to an 8 h phase shift of LD, whereas cycling in the M cells (l-LNv

and s-LNv neurons) cannot (Fig. 6). Thus, visual input pathways
entrain the E cells but not the M cells, at least not during a short
period. The rescue of cry in the E cells alone increases the speed of
the phase shift of activity rhythms and PDP1 cycling in these cells.

Together, both the visual system and CRY initially reset the E
cells, enabling extremely sensitive light entrainment in the Dro-
sophila clock.

Circadian network for light entrainment
To compound a hierarchical structure in the clock network, some
clock neurons would dominate others to drive a coherent circa-

Figure 6. PDP1 cycling in LN clock neurons before and after an 8 h LD phase shift. A, Sampling schedule for PDP1 staining. The arrowheads on the actogram indicate when flies were sampled for
immunostaining. B, Mean � SEM PDP1 staining intensity was calculated from nine hemispheres of nine different brains for each time point in the course of a single experiment. The open circles with
dashed lines and filled circles with solid lines indicate the PDP1 cycling before and after the LD phase shift, respectively. PDF costaining was performed on all brains to distinguish different LN groups
(images not shown). The bars above the graphs indicate light conditions.

Figure 7. PDP1 cycling in DN clock neurons before and after an 8 h LD phase shift. Mean � SEM PDP1 staining intensity was
calculated from nine hemispheres of nine different brains for each time point in the course of a single experiment. The open circles
with dashed lines and filled circles with normal lines indicate PDP1 cycling before and after the LD phase shift, respectively. The bars
above the graphs indicate the light conditions.
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dian rhythm in behavior (Yoshii et al., 2012). It has been shown
that the M cells are master pacemakers and maintain the molec-
ular cycling in some of the LNd neurons in DD (Stoleru et al.,
2005; Yao and Shafer, 2014). In contrast, the E cells are more
important under constant light conditions. Functional E cells are
able to drive free-running rhythms in constant light, but func-
tional M cells are not (Picot et al., 2007; Stoleru et al., 2007; Rieger
et al., 2009). This fact, together with our present results, suggests
that the E cells are a specialized group of clock cells for light
entrainment, and they may have a dominant power to control
activity rhythms under light.

However, there are lines of evidence showing that the PDF
neurons are also important for light resetting. The group of
larger PDF neurons, the so-called l-LNv, is less important for
generating activity rhythms (Grima et al., 2004; Shafer and
Taghert, 2009). However, flies lacking l-LNv neurons are rel-
atively insensitive to a light pulse at dawn but not at dusk
(Shang et al., 2008). Double mutants of cry and Pdf (or Pdf-
receptor), which lack an evening activity peak but show a large
morning peak under LD (Cusumano et al., 2009; Zhang et al.,
2009), show damping PER oscillations in the fifth s-LNv and
LNd neurons and no behavioral evidence of light re-
entrainment in response to an 8 h LD phase shift (Im et al.,
2011). Thus, the PDF neurons and PDF itself are also impor-
tant for the light response of the clock.

To explain all the results of the present and previous stud-
ies, one can speculate that light input from the visual system
may pass through the PDF neurons before arriving in the E
cells. Therefore, light entrainment in cry/Pdf double mutants
may be defective because of the lack of cry and the main neu-
rotransmitter of the PDF neurons. Although all neuronal con-
nections between the visual system and the clock neurons in
the adult fly have not been identified, it is known that the
neuronal projections from the H–B eyelets terminate very
close to where the PDF neurons send projections into the
accessory medulla (Helfrich-Förster et al., 2002, 2007; Malpel
et al., 2002). The larval precursor of the H–B eyelet, the Bolwig
organ, which constitutes the larval visual system, signals to the
larval LNv via acetylcholine (Wegener et al., 2004; Keene et al.,
2011; Yao et al., 2012). This leads to a reset of the DN1 clock
neurons via PDF signaling (Klarsfeld et al., 2011). Therefore,
the same mechanism may also exist in the adult fly, with the
PDF neurons receiving light information from the visual sys-
tem and then signaling to the fifth s-LNv and LNd cells via
PDF. Indeed, both the fifth s-LNv and the LNd were shown to
be receptive to PDF, and there is evidence for a functional
neuronal connection between the PDF neurons and the LNd

(Shafer et al., 2008; Yao et al., 2012; Yao and Shafer, 2014).
Guo et al. (2014) reported that temporal activation of PDF
neurons by the temperature-sensitive TrpA1 channel mimics a
phase response curve (PRC) in response to light pulses and
that this activation of PDF neurons promotes TIM degrada-
tion in all clock neurons (Guo et al., 2014). This system is CRY
independent but PDF-receptor dependent. Thus, it is possible
that the PDF neurons are activated by visual input pathways
and cause degradation of TIM in the E cells, resetting their
molecular clocks.

One remaining question is how the M cells and PDF can con-
tribute to the LD entrainment in the absence of CRY, although
PDP1 cycling in the s-LNv and l-LNv was insensitive to an LD
phase shift in cry01 and mai– gal4/Pdf– gal80�cry;cry01 flies (Fig.
6). To address this, we have to ask whether the molecular clock in

the M cells is required for LD entrainment of the E cells and of
activity rhythms in future work.

PRC or LD phase shift
Two recent reports also proposed a non-cell-autonomous
mechanism involved in light-dependent phase resetting of the
clock (Tang et al., 2010; Lamba et al., 2014). Tang et al. (2010)
revealed that the TIM degradation in M cells is insensitive to a
light pulse at ZT 15, which is the phase delay zone in the PRC
to light, whereas the E cells are still sensitive (Tang et al.,
2010). However, CRY expression in the M cells is necessary for
the phase delay, because knockdown of cry in the s-LNv neu-
rons attenuates the amplitude of the phase delay. Lamba et al.
(2014) further examined this using two genetic methods: (1)
rescue of wild-type jet under a jet mutant background in a
manner similar to the protocol performed for cry rescue in the
present study; and (2) the knockdown of jet by RNAi (Lamba
et al., 2014). JET is an E3 ubiquitin ligase that promotes deg-
radation of TIM together with CRY (Koh et al., 2006; Peschel
et al., 2009). Interestingly, when there is sufficient jet expres-
sion in the M cells, TIM degradation occurs in both the M and
E cells (Lamba et al., 2014). This suggests that an interaction
between the M and E cells is important for phase resetting.
This is in good agreement with our data, showing TIM degra-
dation in CRY-negative clock neurons after light exposure
(Fig. 1).

Both studies showed that activity phase shifts are mediated
by network interactions between M and E cells. Our data
match this, because the rescue of cry in both the M and E cells
completely restored wild-type entrainment. However, the cry
rescue in fifth s-LNv and LNd cells consistently showed a sig-
nificant improvement in the speed of re-entrainment (Fig.
5B), suggesting the importance of the E cells. One difference
between our study and the above mentioned studies is the way
in which we evaluated the light response of the clock. In the LD
phase-shift experiment, a long-term light exposure covering
the delay and advance zones of the PRC strongly resets the
clock in day 1 of the LD shift. In contrast, the PRC experiment
reveals finer parameters of the clock with respect to a short
light response, e.g., the direction of the phase shift, the mag-
nitude of the shift, and the sensitive phase. Therefore, it is not
easy to compare our data with the PRC studies.

A longer light pulse usually causes a larger phase shift (Kisten-
pfennig et al., 2012). When flies receive the same number of
photons, a dimmer yet longer light pulse is more effective than a
brighter yet shorter pulse (Vinayak et al., 2013). Among the clock
neurons, TIM degradation in the fifth s-LNv neuron is especially
sensitive to a long light pulse (Vinayak et al., 2013), which may
imply that the role of the E cells in light-resetting mechanisms
emerges only under a long-term light exposure.
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C, Nässel DR (2009) Peptidergic clock neurons in Drosophila: ion trans-
port peptide and short neuropeptide F in subsets of dorsal and ventral
lateral neurons. J Comp Neurol 516:59 –73. CrossRef Medline

Kanda Y (2013) Investigation of the freely available easy-to-use software
“EZR” for medical statistics. Bone Marrow Transplant 48:452– 458.
CrossRef Medline

Keene AC, Mazzoni EO, Zhen J, Younger MA, Yamaguchi S, Blau J, Desplan
C, Sprecher SG (2011) Distinct visual pathways mediate Drosophila lar-

val light avoidance and circadian clock entrainment. J Neurosci 31:6527–
6534. CrossRef Medline

Kistenpfennig C, Hirsh J, Yoshii T, Helfrich-Förster C (2012) Phase-shifting
the fruit fly clock without cryptochrome. J Biol Rhythms 27:117–125.
CrossRef Medline

Klarsfeld A, Malpel S, Michard-Vanhée C, Picot M, Chélot E, Rouyer F
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