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Origin of Thoracic Spinal Network Activity during
Locomotor-Like Activity in the Neonatal Rat

Lauriane Beliez, Grégory Barrière, Sandrine S. Bertrand, and Jean-René Cazalets
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Effective quadrupedal locomotor behaviors require the coordination of many muscles in the limbs, back, neck, and tail. Because of the
spinal motoneuronal somatotopic organization, motor coordination implies interactions among distant spinal networks. Here, we
investigated some of the interactions between the lumbar locomotor networks that control limb movements and the thoracic networks
that control the axial muscles involved in trunk movement. For this purpose, we used an in vitro isolated newborn rat spinal cord (from
T2 to sacrococcygeal) preparation. Using extracellular ventral root recordings, we showed that, while the thoracic cord possesses an
intrinsic rhythmogenic capacity, the lumbar circuits, if they are rhythmically active, will entrain the rhythmicity of the thoracic circuitry.
However, if the lumbar circuits are rhythmically active, these latter circuits will entrain the rhythmicity of the thoracic circuitry. Blocking
the synaptic transmission in some thoracic areas revealed that the lumbar locomotor network could trigger locomotor bursting in distant
thoracic segments through short and long propriospinal pathways. Patch-clamp recordings revealed that 72% of the thoracic motoneu-
rons (locomotor-driven motoneurons) expressed membrane potential oscillations and spiking activity coordinated with the locomotor
activity expressed by the lumbar cord. A biphasic excitatory (glutamatergic)/inhibitory (glycinergic) synaptic drive was recorded in
thoracic locomotor-driven motoneurons. Finally, we found evidence that part of this locomotor drive involved a monosynaptic compo-
nent coming directly from the lumbar locomotor network. We conclude that the lumbar locomotor network plays a central role in the
generation of locomotor outputs in the thoracic cord by acting at both the premotoneuronal and motoneuronal levels.

Key words: axial; coordination; in vitro; locomotion; posture; spinal cord

Introduction
Locomotor behaviors require not only the production of
forces for propelling the body but also forces for maintaining
balance, which is dynamically challenged during each locomo-
tor cycle. Kinematic and electromyographic analyses of loco-
motor behavior in vertebrates have shown that these two
requirements are achieved through an organized pattern of
activation of muscles in the hindlimbs, forelimbs, and axial
body segments. This implies that synergistic operations take
place between the supraspinal and spinal premotoneuronal
networks involved in locomotion and posture (Grillner et al.,
1995; Falgairolle et al., 2006; Rossignol et al., 2006; Deliagina
et al., 2008).

Coordination of the trunk and limb muscles during locomo-
tion has been described in humans (Thorstensson et al., 1982; de
Sèze et al., 2008; Ceccato et al., 2009), rats (Gramsbergen et al.,
1999), and cats (Carlson et al., 1979; Zomlefer et al., 1984), and
evidence for a central coordination mechanism was obtained
from experiments in cats (Koehler et al., 1984) and neonatal rats
(Falgairolle and Cazalets, 2007). So far, however, most of our
knowledge about how the motor control of the trunk is achieved
during locomotion has been derived from undulatory species in
which the trunk is the core of the locomotor system (Matsushima
and Grillner, 1992; Roberts et al., 1998; Hagevik and McClellan,
1999; Grillner and Wallen, 2002; Cohen, 1987; for review, see
Falgairolle et al., 2013). Surprisingly, little is known about the
cellular mechanisms involved in the control of trunk movement
during locomotion in limbed vertebrates.

Recently, using an isolated spinal cord preparation of new-
born rats, we showed that the thoracic segments, in which the
back-muscle motoneurons are distributed, displayed motor
bursts in a 1:1 phase relationship with the lumbar motor bursts
during locomotor-like activity (Falgairolle and Cazalets, 2007). A
similar 1:1 relationship has also been found in intact adult rats
(Gramsbergen et al., 1999), in contrast to cats (Koehler et al., 1984;
Zomlefer et al., 1984) and humans (Thorstensson et al., 1982; de Sèze
et al., 2008) where two back-muscle bursts per locomotor cycle oc-
cur. Interestingly, we showed that the temporal organization of these
in vitro activities propagates in the caudorostral direction along the
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thoracic cord and could account for the traveling bending wave ob-
served along the body axis of rat pups during actual locomotor
movements. This indicates that intraspinal coupling mechanisms
might contribute to the coordination of the body segments observed
during actual locomotion. In the present work, we used the same
preparation to go one step further in identifying some of the mech-
anisms involved in the coupling of lumbar and thoracic activities
during fictive locomotion. We provide evidence that the expression
of a locomotor pattern at the thoracic level depends on the activation
of the lumbar locomotor network itself. At the cellular level, we
identified two thoracic motoneuron subpopulations: (1) locomo-
tor-driven motoneurons that displayed membrane potential oscilla-
tions and spiking activity in relation with the locomotor cycle and (2)
nonlocomotor-driven motoneurons that have membrane potential
fluctuations and spiking activity that were not correlated with
locomotor-like activity. In the former group, we showed that part of
the locomotor-related synaptic drive arises directly from the lumbar
locomotor network, the command of which spreads throughout the
thoracic segments via short and long propriospinal pathways.

Materials and Methods
Experiments were performed in vitro on isolated spinal cords from new-
born Sprague Dawley rats of either sex aged from postnatal day (P) 1 to
P5 (n � 79 preparations). All procedures were conducted in accordance
with the local ethics committee of the University of Bordeaux and the
European Committee Council Directive. All efforts were made to mini-
mize animal suffering and to reduce the number of animals.

In vitro isolated spinal cord preparation. Rat pups were anesthetized
using isofluorane until no reflex could be elicited in response to tail or toe
pinching. Animals were decapitated, and the skin of the back was re-
moved before the preparations were placed dorsal side up in a dissecting
chamber. A laminectomy was performed to expose the spinal cord, which
was carefully dissected using fine forceps and microscissors under a bin-
ocular magnifier. Dissections and recording procedures were performed
under continuous superperfusion of artificial CSF (aCSF) equilibrated
with 95% O2–5% CO2, pH 7.4, at room temperature (24 –26°C) and
contained the following (in mM): 130 NaCl, 3 KCl, 2.5 CaCl2, 1.3 MgSO4,
0.58 NaH2PO4, 25 NaHCO3, and 10 glucose. Spinal cords were sectioned
at the T2 level at the beginning of the experiment. In some experiments,
the spinal cord was artificially partitioned using Vaseline walls as previ-
ously described (Cazalets et al., 1995) to restrict the bath application of
pharmacological agents to specific spinal segments. The watertightness
of the barriers was systematically checked at the end of the experiment by
observing the movements of methylene blue added to the bathing me-
dium on one side of the Vaseline walls.

Electrophysiological recordings and analyses. To readily access the axial
muscle motoneurons, we developed a specific preparation in which a
transverse section of the spinal cord at a given thoracic segment was cut
using fine scissors (MC-26B, Moria). To set the section upright and
facilitate the positioning of a glass microelectrode, the cut surface of the
spinal cord was positioned on a Sylgard block (see Fig. 4B). From the 59
motoneurons used in the present study, 32 were patch-clamp recorded in
whole-cell configurations and 27 were recorded using intracellular sharp
microelectrodes with a Multiclamp 700B amplifier (Molecular Devices).
Motoneurons were identified by the presence of antidromic action po-
tentials elicited by segmental ventral root stimulations. Only those mo-
toneurons with a resting membrane potential ��50 mV and a spike
amplitude of �50 mV were considered. Patch-clamp glass microelec-
trodes (4 –7 M�) were filled with the following solution (in mM): 120
K-gluconate, 20 KCl, 0.1 MgCl2, 1 EGTA, 10 HEPES, 0.1 CaCl2, 0.1 GTP,
0.2 cAMP, 0.1 leupeptin, 77 D-mannitol, 3 Na2-ATP, pH 7.3. Sharp glass
microelectrodes (70 M�) were filled with 2 M K-acetate. Extracellular
motor activities were recorded from various spinal cord ventral roots.
For long ventral roots at the lumbar level, Vaseline-insulated stainless
steel pin electrodes were used. For the short thoracic ventral roots, glass
suction electrodes were used. Extracellular activities were amplified using
custom-made amplifiers. Electrophysiological recordings were digitized

using an analog-to-digital interface (Heka) driven by the Axograph soft-
ware (Axograph). Extracellular raw signals were high-pass filtered (50
Hz), rectified, and integrated before analysis. Locomotor parameters
were computed using custom-made routines written in Matlab (Math-
works). The mean cycles were computed using one L2 ventral root as the
reference because it invariably exhibited the best signal-to-noise ratio
(Fig. 1). Wavelet transform analyses (Mor and Lev-Tov, 2007) were per-
formed using the Matlab wavelet coherence package provided by Aslak
Grinsted (http://noc.ac.uk/using-science/crosswavelet-wavelet-coherence).
This methodology is more accurate than conventional manual or semiauto-
mated burst detection methods, especially with low signal-to-noise ratio
recordings (Mor and Lev-Tov, 2007). Moreover, using this method allows
access to the evolution of a signal’s frequency content over time. Of particu-
lar interest is the possibility of extracting the common power, correlation,
and phase relationship between two simultaneously acquired signals of the
cross wavelet transform and wavelet coherence (Torrence and Compo, 1998;
Grinsted et al., 2004). A detailed explanation of the wavelet-based method-
ology used in the present work had been previously presented by Mor and
Lev-Tov (2007) (Torrence and Compo, 1998; Grinsted et al., 2004). Each
pretreated signal was decomposed in the frequency domain over time using
a continuous wavelet transform (Morlet wavelet, 10 octaves per scale).
Cross-wavelet and wavelet coherence algorithms were applied to paired,
pretreated signals to highlight the common high-power frequencies (color
coded) and significant correlations (color coded) between each frequency
component between signals over time. The changes in rhythmic activity
frequencies and the coherence and phase relationships between the signals
were then extracted from regions of interest that were defined from mixed
cross-coherence maps in which the results of the cross wavelet and wavelet
coherence were combined (Mor and Lev-Tov, 2007). For this purpose, each
power value obtained in the time/frequency domain from the cross-wavelet
transform was weighted by the corresponding value of coherence (ranging
from 0 to 1) obtained from the wavelet coherence. This allows highlighting of
the time/frequency regions in which the two signals not only share common
high-power values but are also highly coherent.

Pharmacology. Episodes of locomotor-like activities were elicited by
the exogenous application of a mixture of 15 �M N-methyl-D,L-aspartate
(NMA) and 15 �M serotonin (5-HT; (Cazalets et al., 1992). All drugs
were from Sigma-Aldrich. Glycinergic receptors were blocked using
strychnine and glutamatergic NMDA. Non-NMDA receptors were
blocked using (2R)-amino-5-phophonovaleric acid (APV) and 6,7-
dinitroquinoxaline-2,3-dione (DNQX), respectively. We also occasion-
ally replaced the normal saline with either a modified aCSF that contains
low-calcium/high-magnesium concentrations (0.1 mM CaCl2, 5 mM

MgCl2) to locally block the chemical synaptic transmission (Richards
and Sercombe, 1970; Morin and Viala, 2002) or an isotonic sucrose
solution (339 mM in distilled water, adjusted to pH 7.4) to reversibly block
neuronal activity in some segments (Sqalli-Houssaini et al., 1993). A high-
cation-containing aCSF (7.5 mM CaCl2 and 8 mM MgSO4) was also used to
decrease the polysynaptic transmission in spinal segments (Berry and Pen-
treath, 1976; Jahr and Yoshioka, 1986; Cazalets et al., 1995).

Immunochemistry. Spinal cords were fixed in 4% paraformaldehyde in
PBS overnight at 4°C, cryoprotected in 20% sucrose, embedded in OCT
Tissue-Tek, frozen, and cut transversely on a cryostat (30 �M). The slices
were mounted on slides and processed for choline acetyl transferase
(ChAT) immunodetection using a goat anti-ChAT antibody (1:100; Mil-
lipore) revealed with an Alexa Fluor 488 donkey anti-goat secondary
antibody (1:500; Tartas et al., 2010). Images of ChAT-immunopositive
cells were acquired using a Nikon AZ100M microscope.

Retrograde labeling of back-muscle motoneurons. Neonatal rats (P1–P3)
were anesthetized with isofluorane until the loss of reflexive movement
in response to tail or toe pinching and were then placed on a cold pad.
Small incisions were made in the skin to expose the back muscles. Crys-
tals of cholera toxin-B subunit Alexa Fluor 594 conjugate (Invitrogen), a
retrograde tracer, were carefully inserted using insect pins into the right
back muscles at different levels along the axis. The skin was bonded with
surgical glue and pups were progressively warmed up and checked during
recovery from the anesthesia before being returned to their mother. One
day after tracer injection, the pups were anesthetized using isoflurane and
their spinal cords were dissected out and postfixed in 4% paraformalde-
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hyde in 0.2 M phosphate buffer. After dehydration, the spinal cord was
cut and prepared for ChAT immunochemistry.

Statistical analysis. Statistical analyses were performed on the raw data
with nonparametric t tests using Prism software (Graphpad). The Wil-
coxon matched-pair test was used to compare two series of data. One-
way ANOVA was performed to test �2 groups. The level of significance

was set at p � 0.05. All data are expressed as the mean � SEM in the text
and in the figures. The asterisks in the figures indicate positive signifi-
cance levels, and the numbers in or above the histogram bars refer to the
number of neurons tested. Circular statistics were performed using the
circular statistic toolbox in Matlab (Berens, 2009) and Oriana (Kovach
Computing Services).
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Figure 1. Thoracolumbar bursting coordination during fictive locomotion. A, Schematic diagram of the experimental procedure (left). Simultaneous recordings from lumbar and thoracic ventral
roots during an episode of locomotor-like activity induced by NMA (15 �M) and 5-HT (15 �M; right). B, High-pass filtered, rectified, and smoothed traces (left) taken from the sequence presented
in A (gray area). The right panel illustrates the mean normalized cycle repeated two times (n � 63 cycles, right L2 taken as reference). C, Example of the wavelet analysis performed between pairs
of recordings. Cross wavelet transform (top) and wavelet coherence between bilateral L2 activities revealed the common high-power frequencies and correlation between signals over time,
respectively. The power and coherence of the frequencies between traces are color coded with warm and cool colors to indicate high and low values, respectively. Black contours delimit areas within
the 5% significance level. Regions of interest (white dashed rectangles) were defined from the map obtained by mixing the results of the cross-wavelet and wavelet coherence (bottom map). White
arrows indicate the phase relationship between each significant frequency components (the left direction indicates an out-of-phase relationship). The bottom graphs illustrate the evolution of the
frequency (black markers) and coherence (red markers) over time within the regions of interest. Each marker represents the mean values obtained using bins of 1 s. D, Polar plot representations of
the phase relationships between the bursting activities recorded from various ventral roots and the right L2. The direction and length of the red arrows indicate the mean phase value and the r value,
respectively. The distributions of raw values are also provided as histograms (using bins of 5°). r, Right; l, left; T, thoracic; L, lumbar.
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Results
Coordination of thoracolumbar activity patterns during
fictive locomotion
In this first series of experiments, locomotor-like activity was
elicited from isolated spinal cord preparations using exogenous
applications of NMA (15 �M) and 5-HT (15 �M). When bath-
applied to the whole thoracolumbosacral spinal cord, this mix-
ture elicited sustained episodes of stable locomotor-like activity
at the lumbar level in all of the preparations tested (n � 79; mean
period, 3.32 � 0.09 s), characterized by a bilateral alternation of
segmental motor bursts and an homolateral alternation of flexor-
like and extensor-like motor bursts recorded from the L2 and L5
ventral roots, respectively. Under this experimental condition,
thoracic ventral roots showed rhythmical bursting activities in 63
of 79 preparations (79%; Fig. 1A). In the remaining 16 of 79
preparations, the locomotor activity recorded at the lumbar level
did not spread up to the thoracic segments, where only a tonic
activity was observed (data not shown). In the 63 preparations
from which thoracic motor bursts were evoked, we computed the
level of tonic activity from the baseline, which is shown by
the gray area below each rectified and smoothed recording from
the ventral roots in the left panel of Figure 1B. The ratio between
the amplitudes of the burst and tonic components of the recorded
activities was smaller in the thoracic segments than in the lumbar
segments. On average, the mean ratio obtained from the L2 ven-
tral roots in all experiments (n � 63 preparations, 1.75 � 0.08)
was significantly greater than the mean ratio obtained from
pooled thoracic recordings (1.09 � 0.01, p � 0.0001, Mann–
Whitney test). A serotonergic activation of sympathetic related
neurons in the intermediolateral cell column at the thoracic level
may have contributed to the decreased ratio at this level (Pierce et
al., 2010). In this context, we decided to use a wavelet transform-
based method to investigate the relationships of thoracic and
lumbar activities (see Materials and Methods; Mor and Lev-Tov,
2007). This is illustrated in Figure 1C (top), in which the time–
frequency map in the range of 0.0625–2 Hz was obtained by the
cross-wavelet transform of the bilateral L2 ventral roots record-
ings presented in Figure 1A. From this time–frequency map, the
power of each frequency is coded using cold (low power) and hot
(high power) colors, and we can see that both L2 roots share a
high power in a frequency band ranging from 0.25 to 0.4 Hz. This
band was included in an area within which both signals were
highly coherent, as shown by the coherence spectrum (Fig. 1C,
middle). For convenience, the cross-wavelet and coherence spec-
trums were combined in a mixed cross-coherence map (see Ma-
terial and Methods; Mor and Lev-Tov, 2007) to highlight the
regions in which both signals share high-power frequencies that
are also highly coherent (Fig. 1C, bottom map). From this map,
we defined a region of interest (dashed white rectangle) from
which the locomotor frequency (0.28 � 0.01 Hz) and coherence
values (0.96 � 0.01) were extracted (from the cross-wavelet and
coherence spectrum, respectively) and plotted over time (Fig. 1C,
bottom plot). Finally, from the cross-wavelet transform, we also
extracted the evolution of the phase relationship between both L2
roots within the frequency range of interest. The evolution of the
phase relationship over time between both L2 roots is indicated
by the white arrows on the cross-coherence map. Arrows point-
ing to the left indicate in phase relationships while arrows point-
ing to the right indicate out-of-phase relationships. In the region
of interest illustrated in the cross-coherence map of Figure 1B, all
arrows point to the left, indicating that the activities recorded

from the two L2 roots are in phase opposition (172.2 � 8.6°), as
expected during locomotor-like activity in this preparation.

The polar plots in Figure 1D show the phase relationships be-
tween all recorded ventral roots and the right L2, which was used as
the reference. The polar plots on the top of Figure 1D illustrate the
typical organization of rhythmical burst activity at the lumbar level
during an episode of fictive locomotion. This activity is characterized
by an alternation of homolateral extensor-like and flexor-like activ-
ities (rL5/rL2, 155.3 � 9.8°) together with a bilateral alternation of
activity recorded at each segmental level (lL2/rL2, 172.3 � 8.6°).
These plots indicate that the bursting activity recorded at the tho-
racic level were phase-locked to the lumbar locomotor activity. As
previously reported, there was a progressive caudorostral propaga-
tion of motor bursts along the thoracic segments (Falgairolle and
Cazalets, 2007; Beliez et al., 2014). Indeed, computing the phase
relationships between the bursting activity recorded from the vari-
ous ventral roots and the right L2 showed that the phase value in-
creased from the caudal to rostral ipsilateral thoracic segments
(rT12/rL2, 17.8 � 10.2°; rT10/rL2, 40.7 � 11.7°; rT6/rL2, 62.0 �
12.5°; rT4/rL2, 63.2 � 16.8°). In addition to the segmental alternat-
ing activity (lL2/rL2, 172.3 � 8.6°) and between the homolateral
extensor-like and flexor-like activities (rL5/rL2, 155.3 � 9.8°) during
fictive locomotion, segmental thoracic bursts also alternated, as
shown by the opposite direction of the mean vector computed from
bursting activities of the left T12 and right T12 as well as those from
the right L2 (lT12/rL2, 175.5 � 11.8°; rT12/rL2, 17.8 � 10.2°).

Conditional rhythmogenic capacity of the isolated
thoracic cord
To investigate the rhythmogenic capacity of the thoracic seg-
ments, the spinal cord was artificially partitioned at the T12/T13
level (n � 28 preparations) to restrict the bath application of
NMA/5-HT to the thoracic or lumbosacral segments. Under con-
trol conditions in which NMA/5HT was bath-applied to both
compartments, the rhythmic activity in the two regions was syn-
chronized (Fig. 2A1). In these preparations, restricting the NMA/
5-HT bath application to the lumbosacral segments triggered
locomotor-like activity at the lumbar level, whereas the thoracic
segments remained silent (Fig. 2A2). In this later case, however,
the lumbar locomotor period (2.68 � 0.14 s, n � 28 prepara-
tions) was significantly decreased compared with the control
(3.16 � 0.14 s, p � 0.05, paired t test), indicating that the thoracic
segments contributed to regulating the cycle duration of the lum-
bar locomotor network (Fig. 2B). In all cases, applying NMA/
5-HT only to the thoracic segments only triggered a tonic activity
at the thoracic level and failed to initiate any rhythmical activity
(Fig. 2A3).

In a previous study, we showed that the thoracic cord was able to
generate slow nonlocomotor rhythmic bursting when isolated from
the lumbar enlargement by a transection of the cord at the T12/T13
level (in 75% of cases with bath application of NMA plus either 5-HT
or DA; Falgairolle and Cazalets, 2007). In the present work, follow-
ing the same transection, bath application of NMA/5-HT elicited
rhythmic activity in 6 of 18 preparations, as illustrated in Figure
2C1,C2. Under the control condition, in which NMA/5-HT was
applied to the whole spinal cord before transection, NMA/5-HT
triggered coordinated locomotor bursting activities between the
thoracic and lumbar cord (Fig. 2C1). Following transection, a new
application of NMA/5-HT elicited at the thoracic level a slow rhyth-
mic bursting activity that was no longer related to the lumbar
locomotor-like activity (Fig. 2C2). The thoracic and lumbar cycle
periods were significantly increased (7.87 � 0.87 s, n � 62 cycles)
and decreased (2.6 � 0.01 s, n � 202 cycles), respectively, compared

6120 • J. Neurosci., April 15, 2015 • 35(15):6117– 6130 Beliez et al. • Lumbar Locomotor CPG Control of Thoracic Networks



with the control cycle period measured before transection (3.00 �
0.09 s, n � 51 cycles, p � 0.05, Mann–Whitney test). Under the same
conditions, however, 12 of 18 preparations only expressed a tonic
activity at the thoracic level after transection. In these latter prepara-
tions, however, increasing the excitability of the thoracic networks
by adding a GABAergic antagonist (gabazine, 1 �M) to the bathing
saline containing NMA/5-HT triggered a slow rhythmic motor ac-
tivity (n � 9 preparations, 7.82 � 0.76 s, data not shown).

Because the use of transection in this preparation may have led
us to underestimate the endogenous rhythmic capacities of the
restricted spinal cord segments (Juvin et al., 2005), we also bath-
applied NMA/5-HT to the thoracic cord after blocking neuronal
activity by superfusing an isotonic sucrose solution onto the lum-
bosacral segments (see Materials and Methods). Under these
conditions, we observed the same slow pattern of thoracic burst-
ing that was observed after transection (Fig. 2, compare D1, D2),
with a significant increase of the bursting period (n � 7 prepara-
tions, 8.23 � 1.06 s) compared with the control locomotor period
(3.57 � 0.37 s).

The coordinating mechanisms between the thoracic and lum-
bar networks may involve long ascending propriospinal path-
ways and/or segmentally relayed ascending inputs that propagate
from one thoracic segment to another. To test these hypotheses,
the spinal cord was artificially divided into three compartments
(T3–T5, T6 –T11, T12– cauda equina) using Vaseline walls. In all
six preparations tested, applying NMA/5-HT simultaneously in

the three compartments triggered coordinated locomotor bursts
along the spinal cord (Fig. 3A). A blockade of synaptic activity by
local application of aCSF containing low Ca 2�/high Mg 2� over
the T6 –T11 segments did not prevent the expression of locomo-
tor bursting in the upper thoracic segments, which remained
locked to the lumbar activity (Fig. 3B). However, this synaptic
blockade of interposed thoracic relays elicited a significant phase
shift (p � 0.005, Watson U 2 test) in the upper thoracic motor
bursting at the T5 (mean phase value: control, 54 � 28.8°; low
Ca 2�/high Mg 2�, 122.4 � 39.6°) and T3 (mean phase value:
control, 79.2 � 43.2°; low Ca 2�/high Mg 2�, 140.4 � 39.6°; Fig.
3C) levels. The motor burst phase shift was observed in all six
preparations in which the experiment was performed (mean
phase value at T5: control, 93.6 � 14.4°; low Ca 2�/high Mg 2�,
111.6 � 14.4°, p � 0.005, Watson U 2 test). This indicates that
both the long ascending propriospinal fibers and segmentally
relayed ascending information contributed to the coordination
of thoracic and lumbar bursting activities.

Localization of thoracic motoneurons innervating the
paraspinal back muscles
In a previous study, we showed that the motoneurons that inner-
vate the back muscles (longissimus and multifidus dorsali mus-
cles) were organized into columns along the thoracolumbar
spinal cord (Falgairolle and Cazalets, 2007), but their location in
the transversal plane was not defined. Before achieving intracel-
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lular recordings from axial thoracic motoneurons, the precise
determination of their location in the spinal cord was a prereq-
uisite. ChAT immunolabeling revealed the two main motoneu-
ronal populations in lamina IX along the thoracic cord (Fig. 4A1).
To locate the back-muscle motoneurons, Alexa Fluor 594-
conjugated cholera toxin-B subunit (CTB-AF 594) crystals were
inserted into the longissimus and multifidus dorsali muscles on
one side (n � 3 preparations). In agreement with the literature
(Smith and Hollyday, 1983), retrogradely labeled motoneuron
somata from these muscles (Fig. 4A2) were located exclusively in
the ventromedian motoneuronal population (Fig. 4A3).

Locomotor and nonlocomotor-driven thoracic motoneurons
Intracellular patch-clamp recordings from motoneurons were
performed along the thoracic cord (from T3 to T12) to investi-
gate the activity of thoracic axial motoneurons during episodes of
locomotor-like activity. For this purpose, we used a spinal cord
preparation that was transversally cut at various recording levels
so that we could visually target the ventromedially located mo-
toneurons (see Materials and Methods; Fig. 4B). Our results are
based on the recordings made from 59 antidromically identified
thoracic motoneurons (Fig. 4B, left trace) that could be recorded
for �1 h.

During the bath application of NMA/5-HT to the thoraco-
lumbosacral spinal cord preparations, we found that 25 of 33 of
the recorded motoneurons fired action potential bursts in coor-
dination with the locomotor activity recorded from the lumbar
ventral roots. Figure 4C provides a representative example of the
changes that occurred in a thoracic locomotor-driven motoneu-
ron when the locomotor networks were activated. During the
first few minutes of NMA/5-HT application, a tonic activity was
observed in the ventral roots before a stable locomotor activity
took place at the lumbar level. Concomitantly, the thoracic mo-
toneuron membrane potential underwent a gradual depolariza-

tion associated with an increase of synaptic inputs (data not
shown; see Fig. 6A). Thereafter, motoneurons started to fire ac-
tion potentials during the depolarization phase of the membrane
potential oscillations (Fig. 4C, middle). Plots of the spike distri-
butions during the various motor cycle phases (arbitrarily
divided into 10 bins; Fig. 4C, right) showed a clear locomotor-
related modulation. In contrast, in the remaining 8 of 33 thoracic
nonlocomotor-driven motoneurons, spiking activity was uni-
formly distributed and was not related to any particular phase of
the motor cycle, although a locomotor-related activity was ob-
servable in the extracellular recording from the corresponding
thoracic ventral root (Fig. 4D). Furthermore, the two types of
motoneurons could be recorded at the same segmental levels in
the same preparations (n � 5 preparations).

To determine whether the absence of bursting activity
observed in the thoracic ventral roots after the restricted pharma-
cological activation of lumbosacral segments was due to sub-
threshold activation of the thoracic motoneurons, we performed
intracellular recordings in the thoracic motoneurons (Fig. 5).
When a NMA/5-HT-supplemented aCSF solution was specifi-
cally superfused onto the lumbosacral cord (Fig. 5A1,B1), no
rhythmical activity could be extracellularly recorded from the
thoracic ventral roots, but 13 motoneurons of the 25 tested pre-
sented membrane potential oscillations that were rhythmically
synchronized with the locomotor-like activity recorded at the
lumbar level. To ascertain the presence or absence of coupling
between the extracellular activity recorded from the lumbar area
and the intracellular activity of recorded thoracic motoneurons,
the locomotor sequences obtained under this experimental
condition were analyzed using wavelet transformation method-
ology. The membrane potential oscillations recorded from one
locomotor-driven motoneuron located in the left T7 segment
during lumbar fictive locomotion is illustrated in Figure 5A2. The
mixed cross-coherence map presented in Figure 5A3 shows that
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the bilateral L2 bursting activities (Fig. 5A3, top) were signifi-
cantly correlated in a frequency band (white rectangle) corre-
sponding to a mean cycle frequency of 0.4 � 0.02 Hz. As
expected, bilateral L2 bursting activities in this frequency band

were alternating (mean phase left/right
L2: 184.9 � 10.9°, not illustrated). Of par-
ticular interest was the observation that
in the same frequency band, the mo-
toneuron expressed membrane potential
oscillations that were also significantly
correlated to the lumbar activity (Fig.
5A3, bottom) with a mean phase value of
194.2 � 12.6° between the left motoneu-
ron and the right L2. In contrast, the re-
maining 12 of 25 motoneurons tested
under the same experimental conditions
did not express any oscillations in mem-
brane potential, as illustrated for a T5 mo-
toneuron in Figure 5B2. In this case,
wavelet analysis of the sequence revealed
that during the lumbar locomotor activ-
ity, during which bilateral L2 activities al-
ternated (mean phase: 183.6 � 10.3°) at a
mean frequency of 0.21 � 0.01 Hz (Fig.
5B3, top), the membrane potential fluctu-
ations were not significantly correlated to
the lumbar activity (Fig. 5B3, bottom).

The nature of the motoneuron, i.e.,
locomotor-driven and nonlocomotor-
driven, was not affected by whether NMA/
5-HT was applied over the thoracolumbar
segments or at the lumbar level alone (n �
20 motoneurons). This indicated the coex-
istence of two functionally different popula-
tions of thoracic motoneurons. From the 59
motoneurons recorded in one or both
experimental conditions, 38 (64%) were
locomotor-driven motoneurons, as they ex-
pressed phasic membrane potential oscilla-
tions coordinated to the locomotor pattern;
the remaining 21 motoneurons did not ex-
press any coordination during locomotor-
like activity (Fig. 5C). These observations
suggest that the absence of extracellularly re-
corded motor bursts when only the lumbo-
sacral cord was pharmacologically activated
was due to a subthreshold activation of tho-
racic motoneurons. Interestingly, the pro-
portion of locomotor-driven motoneurons
is not uniform along the thoracic cord, be-
ing found in a more caudal location than
nonlocomotor-driven motoneurons (T8–
T10: 81%, T6–T7: 64%, T3–T5: 50%, p �
0.0001, �2, Fig. 5D).

Characterization of the locomotor
synaptic drive in thoracic motoneurons
To determine the nature of the synaptic
drive received by locomotor-driven mo-
toneurons (n � 6 from six different prep-
arations), the lumbosacral cord was
superfused with NMA/5-HT to induce lo-
comotor episodes, during which the spi-

nal cord was partitioned with a Vaseline wall at the T12/T13 level
to selectively bath-apply receptor antagonists to the thoracic level
(Fig. 6). Figure 6A1 presents a T7 motoneuron recorded over the
course of a locomotor episode. This slow time scale shows a slow
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depolarization of the motoneuron membrane potential of 6 mV
during the establishment of the locomotor activity. An expanded
view of the sequence (Fig. 6B1) revealed locomotor-related mem-
brane potential oscillations (5.9 � 0.23 mV, n � 30 cycles) on top
of the slow depolarization. Following the bath application of
DNQX (5 �M), an AMPA/kainate receptor antagonist, to the
thoracic compartment, both the slow depolarization and the am-

plitude of locomotor-related oscillations were decreased by 13%
(5.2 mV) and 59% (2.4 � 0.08 mV, n � 29 cycles), respectively
(Fig. 6A2,B2). The subsequent addition of AP5 (5 �M), an NMDA
receptor antagonist, to the DNQX-containing saline further de-
creased the amplitude of the slow depolarization (1.9 mV, 68%
decrease from the control depolarization) and phasic drive (1.8 �
0.07 mV, 69% decrease from the control amplitude, n � 29 cy-

C

M
ot

on
eu

ro
ns

 (
%

)

T3-T5 T6-T7 T8-T10

D

0

20

40

60

80

100

(9) (9) (3)

(9) (16) (13)

Mn in phase with ipsilateral L2 bursts
Mn in phase with contralateral L2 bursts

28%

72%

Locomotor driven Non locomotor driven

B2A2

B3A3

CXWT r L2 / l T5 Mn

128

32

8

2

1/2

1/8

1/32

1/128

CXWT r L2 / l L2

Fr
eq

ue
nc

y 
(H

z)
Fr

eq
ue

nc
y 

(H
z) 1

0.5

0.25

0.125

0.0625

1

0.5

0.25

0.125

0.0625

0 18016014012010080604020

Time (s)

CXWT r L2 / l  T7 Mn

128

32

8

2

1/2

1/8

1/32

1/128

CXWT r L2 / l L2

Fr
eq

ue
nc

y 
(H

z)
Fr

eq
ue

nc
y 

(H
z) 1

0.5

0.25

0.125

0.0625

1

0.5

0.25

0.125

0.0625

0 80604020

Time (s)

B1 Non locomotor-driven MnLocomotor-driven Mn

r L2

l L2

l T7 Mn
-60 mV

r L2

l L2

l T5 Mn
-60 mV

A1

NMA/5HT

L2

aCSF NMA/5HT

T5
L2

aCSF

T7

2mV

10s

2mV

20s

Figure 5. Restricted pharmacological activation of lumbar locomotor networks triggers membrane potential oscillations in thoracic locomotor-driven motoneurons. A1, B1, Schematic of the
experimental procedure. A Vaseline wall was built at the T12 level so that the lumbar segments could be activated separately from the thoracic cord. Extracellular recordings were performed from
the left and right L2 ventral roots and intracellular recordings from motoneurons were performed at different thoracic levels. The NMA/5-HT mixture was applied to the lumbar cord to induce fictive
locomotion. Shown is the activity of an intracellularly recorded motoneuron that exhibited locomotor-timed membrane potential oscillations in this experimental condition (A2, locomotor-driven
motoneurons) and of another motoneuron that did not exhibit locomotor-timed membrane potential oscillations in this experimental condition (B2, nonlocomotor-driven motoneurons). Mn,
Motoneurons. A3, Mixed cross-coherence maps (CXWT) highlighting the correlation between the activity recorded from L2 ventral roots (top) and between the motoneuron membrane potential
oscillations and the right L2 ventral root (bottom). B3, Same representation as in A3. Note that in this case the motoneuron membrane potential fluctuations are not correlated to the lumbar activity.
C, The percentage of locomotor-driven motoneurons showing a synaptic drive in phase with the ipsilateral (gray) or contralateral (white) L2 locomotor bursts. D, Cumulative histograms of the
percentages of locomotor-driven (black) and nonlocomotor-driven motoneurons in the upper (T3–T5), intermediate (T6 –T7), and lower (T8 –T10) thoracic segments. Numbers in brackets indicate
the number of motoneurons. r, Right; l, left; T, thoracic; L, lumbar.

6124 • J. Neurosci., April 15, 2015 • 35(15):6117– 6130 Beliez et al. • Lumbar Locomotor CPG Control of Thoracic Networks



2s

1mV

5mV

A3

1min

1mV

0 1 2 3 4
Normalized cycle

A1

rL2

lL2

lL2

lL2

lT7 Mn

lT7 Mn

2s

-70mV

5mV

5mV

1min

lT7 Mn

C1

rL2

lL2

lT10 Mn

-60mV

2s

lT10 Mn 3mV

5mV

3mV

0 1 2 3 4
Normalized cycle

0 1 2 3 4
Normalized cycle

2s

1mV

5mV

2s

3mV

A2

B3B1 B2

3mV

C2

1min

1mV

0 1 2 3 4
Normalized cycle

0 1 2 3 4
Normalized cycle

DNQX
NMA/5-HTNMA/5-HT

DNQX + AP-5
NMA/5-HT

nACSF
L2

T10

L2

T10

T7

L2

T7

L2

T7

L2

DNQX + AP-5 + Strych.
NMA/5-HTNMA/5-HT

(n=30) (n=28)

(n=30) (n=30)

(n=30)

nACSF

Figure 6. Characterization of the synaptic drive received by locomotor-driven thoracic motoneurons. A, Time courses of the overall membrane potential depolarization recorded from a T7
motoneuron from the onset to the end of a locomotor episode induced by restricted applications of NMA/5-HT compared with the lumbar cord under control conditions (A1), and during thoracic bath
application of DNQX (5 �M) alone (A2) or combined with AP5 (5 �M; A3). Note the decreased amplitude of the slow depolarization in the presence of DNQX and DNQX/AP5. B, Sequences of
locomotor-like activity extracted from the episodes presented in A, which show that the membrane potential oscillations are phase-locked to the locomotor activity. The bottom panels illustrate the
mean cycle (repeated 4 times) obtained using the left L2 at the thoracic level under control conditions as the reference, or in the presence of DNQX or DNQX/AP5. C, Representative traces of a thoracic
motoneuron (T10) recorded during NMA/5-HT-induced locomotion under control conditions (C1) and in the presence of strychnine (2 �M), DNQX (5 �M), and AP5 (5 �M; C2) applied to the thoracic
segments. r, Right; l, left; T, thoracic; L, lumbar.

Beliez et al. • Lumbar Locomotor CPG Control of Thoracic Networks J. Neurosci., April 15, 2015 • 35(15):6117– 6130 • 6125



cles; Fig. 6A3,B3). We also found that thoracic motoneurons re-
ceived glycinergic inputs during locomotor-like activity. In the
T10 motoneuron presented in Figure 6C1, the phasic membrane
potential oscillations were abolished when strychnine (2 �M) was
added to the saline solution containing DNQX-AP5 that was
superfused over the thoracic compartment (Fig. 6C2). Alto-
gether, these experiments indicate that the synaptic drive sustain-
ing the phasic activity of locomotor-driven motoneurons at the
thoracic level is mediated through the activation of NMDA and
non-NMDA glutamatergic receptors and glycinergic receptors.

The lumbar locomotor network sends a monosynaptic drive
to thoracic motoneurons
Finally, we tested whether the locomotor synaptic drive received
by the locomotor-driven thoracic motoneurons directly origi-
nated from the lumbar locomotor network. Because aCSF solu-
tions containing a high concentration of cations are known to
depress polysynaptic transmission (Berry and Pentreath, 1976;
Jahr and Yoshioka, 1986; Cazalets et al., 1995), we tested the
effects of the superfusion of a high-cation-containing aCSF to the
thoracic cord on intracellularly recorded locomotor-driven tho-
racic motoneurons (n � 5 from five different preparations) fol-
lowing the induction of fictive locomotion by the selective
activation of the lumbosacral segments with NMA/5-HT. Figure
7 shows the locomotor synaptic drive of a T5 motoneuron under
the control condition (Fig. 7A) and in the presence of the high-
cation-containing aCSF (Fig. 7B). Although the synaptic drive
received by the motoneuron was depressed (4.95 � 0.15 mV in
control condition, 2.49 � 0.04 mV in the presence of the high-
cation solution), it was still possible to discriminate locomotor-
related synaptic inputs when thoracic relays were depressed (Fig.
7C). On average, the amplitude of the locomotor drive was de-
creased by 43.2 � 21.5% (n � 5 motoneurons) by the high-
cation-containing solution compared with the control condition.
This observation thus provides evidence that part of the locomo-
tor synaptic drive sent by the lumbar central pattern generator
(CPG) to the thoracic locomotor-driven motoneurons is mono-
synaptic.

Discussion
One of the main results of the study, which is summarized in the
diagram in Figure 8, is that the lumbar CPG for locomotion makes
an important contribution to the emergence of locomotor-like ac-
tivities at the thoracic level. We have shown that a subset of the
thoracic motoneurons, referred to as locomotor-driven motoneu-
rons, express locomotor-related membrane potential oscillations.
The membrane potential oscillations in these later motoneurons in-
clude an excitatory and inhibitory phase of glutamatergic and gly-
cinergic origin, respectively. The oscillations are thus biphasic.
Importantly, we showed for the first time that the lumbar locomotor
network itself directly impinges onto the thoracic motoneurons and
contributes to the drive of their membrane potential oscillations.

Caudorostral organization of axial thoracic bursts during
fictive locomotion
Although the cervical, lumbar, and sacrococcygeal networks that
respectively control the forelimbs, hindlimbs, and tail locomotor
movements can be independently activated in the isolated neo-
natal rat spinal cord (Cazalets et al., 1995; Lev-Tov et al., 2000;
Ballion et al., 2001; Gabbay et al., 2002), these networks produce
a coordinated activity when simultaneously stimulated (Kremer
and Lev-Tov, 1997; Cazalets and Bertrand, 2000a, 2000b; Gabbay
et al., 2002; Juvin et al., 2005, 2012). Here, we focused on the

thoracic networks involved in the control of axial back muscles.
Using simultaneous extracellular ventral root recordings from
various spinal segments, we confirmed that the thoracic segments
can be pharmacologically activated, expressing a bursting activity
with a 1:1 phase relationship with the lumbar fictive locomotor
output (Falgairolle and Cazalets, 2007). Using continuous wave-
let transform analyses, a set of objective mathematical analytical
tools that were validated in the field (Fig. 1) (Torrence and
Compo, 1998; Grinsted et al., 2004; Mor and Lev-Tov, 2007;
Hägglund et al., 2013; Talpalar et al., 2013), we also confirmed
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that the thoracic locomotor bursts were organized as ascending
traveling waves along the thoracic cord during fictive locomo-
tion. This ascending organization of the thoracic axial bursts,
which matched the bending of the body axis during actual loco-
motor cycles in rat pups, contrasts with the rostrocaudal direc-
tion of the traveling wave during forward locomotion in
swimming vertebrates (Wallén and Williams, 1984; Tunstall and
Roberts, 1991; Matsushima and Grillner, 1992; Masino and Fe-
tcho, 2005; Gabriel et al., 2008). Consequently, it appears that the
wave propagation of locomotor bursts along the axial system is
one basic locomotor mechanism in vertebrates that was adapted
during evolution to sustain the development of limb-based pro-
pulsion modes (Delvolvé et al., 1997).

Lumbar locomotor network control of thoracic
locomotor activities
Although the thoracic networks have endogenous rhythmogenic
capacities, the lumbar networks impose their own rhythmicity on
the thoracic circuits during induced locomotor-like activity. Our
data further suggest that the lumbosacral region exerts a tonic
inhibitory influence over the thoracic segments, as nonlocomo-
tor bursting activity could be observed in the thoracic ventral
roots only when the thoracic segments are physically or pharma-
cologically isolated from the lumbosacral spinal cord (Fig. 2;
Cowley and Schmidt, 1997; Kremer and Lev-Tov, 1997; Falgai-
rolle and Cazalets, 2007). We have recently demonstrated that
coordination processes and phase relationships between the var-
ious spinal levels depends on the neurochemical compounds
used to elicit fictive locomotion (Beliez et al., 2014). Although the
NMA/5-HT mixture used in the present work is effective in trig-
gering robust locomotor patterns throughout the entire thoraco-
lumbar cord (Beliez et al., 2014), it appears to be less capable of
eliciting rhythmical activities in isolated thoracic segments, as is
also the case at the sacrococcygeal level (Kremer and Lev-Tov,
1997; Cazalets and Bertrand, 2000a; Lev-Tov et al., 2000; Gabbay
et al., 2002). In this context, further work will be needed to deter-
mine whether other neuromodulators are more effective in re-
vealing the rhythmogenic capacities of the isolated thoracic
networks. For instance, it was established that noradrenaline was
more effective than 5-HT in triggering robust sacrococcygeal
rhythmical activities coordinating the tail movements when these
segments were isolated from the lumbar cord (Gabbay et al.,
2002).

The expression of thoracic locomotor activity thus involved
the ascending propriospinal pathways arising from lumbar seg-
ments (Riddell et al., 1994; Reed et al., 2006, 2009; Brockett et al.,
2013; Reed and Magnuson, 2013). In agreement with previous
observations made in the lamprey spinal networks (Hagevik and
McClellan, 1999; Miller and Sigvardt, 2000), long ascending
pathways were sufficient for maintaining a 1:1 coordination be-
tween the locomotor activities of the rostral thoracic and lumbar
cord segments when the synaptic transmission was blocked in
interposed segments in the neonatal rat spinal cord (Fig. 3). Also,
similar with the lamprey, segmentally relayed information con-
tributed to setting the timing of thoracic motor outputs in the rat
spinal cord (Riddell et al., 1994; Hagevik and McClellan, 1999;
Miller and Sigvardt, 2000; Cazalets, 2005; Falgairolle and Caza-
lets, 2007). These observations further emphasize the importance
of these two types of pathways (long and segmental) to the coor-
dination of spinal networks that have indeed been previously
shown to be involved in cervical and lumbar locomotor network
interactions (Juvin et al., 2005, 2012). The functional implication
of thoracic propriospinal pathways for conveying descending su-
praspinal locomotor commands has been demonstrated electro-
physiologically (Courtine et al., 2008; Cowley et al., 2008;
Zaporozhets et al., 2011) and they could also serve in lumbotho-
racic connectivity since they have been proposed to be bidirec-
tional and segmentally relayed (Cowley et al., 2008; Zaporozhets
et al., 2011). Furthermore, recent studies using rabies virus-based
methodology have anatomically identified thoracic propriospi-
nal neurons that are monosynaptically connected to hindlimb
and axial motoneurons and which may contribute to coordinat-
ing trunk and hindlimb muscle activity (Ni et al., 2014; Pivetta et
al., 2014; Goetz et al., 2015).

We found that the locomotor period was decreased when the
lumbosacral segments were activated independently of the tho-
racic networks (Fig. 3). This result suggests that thoracic neuron
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excitability affects and modulates the lumbar CPG motor output.
Likewise, it was shown in the turtle that midthoracic segments
contribute to setting the frequency of the scratching motor pat-
tern expressed in ex vivo spinal cord preparations, although these
segments are not critical to the expression of hindlimb scratching
(Guzulaitis et al., 2014). Our observation is also in the same vein
as the recent observation that increasing the excitability of the
thoracic segments can facilitate the expression of treadmill loco-
motion following staggered bilateral thoracic hemisections or a
complete spinal cord transection in adult rats (Cowley et al.,
2015). The relationships between the thoracic and lumbar net-
works thus appear to be reciprocal in our preparation. Overall,
however, our data do not challenge the asymmetrical nature of
the relationship between the lumbar locomotor network and the
cervical, thoracic, and sacral motor networks; the former imposes
more of its own rhythm and/or contributes to setting the tempo-
ral bursting patterns of the latter three (Kremer and Lev-Tov,
1997; Cazalets and Bertrand, 2000a, 2000b; Gabbay et al., 2002;
Juvin et al., 2005).

The locomotor drive received by thoracic motoneurons
Intracellular recordings from thoracic motoneurons revealed
two different populations along the thoracic cord (Figs. 4, 5). The
first population includes locomotor-driven motoneurons that
express phasic membrane potential oscillations during fictive lo-
comotion, while the second population regroups nonlocomotor-
driven motoneurons that did not exhibit any locomotor-related
synaptic drive. It is likely that locomotor-driven motoneurons
may correspond to the ventromedial motoneurons that innervate
the back and abdominal muscles that have been shown to be
rhythmically active during locomotion (Carlson et al., 1979,
1988; Thorstensson et al., 1982; Smith and Hollyday, 1983; Zom-
lefer et al., 1984; Delvolvé et al., 1997; Gramsbergen et al., 1999;
de Sèze et al., 2008; Hu et al., 2012). However, we cannot rule out
the possibility that in our experimental conditions, the number of
locomotor-driven motoneurons may have been underestimated.
First, the fact that their proportion decreased caudorostrally
along the spinal cord (Fig. 5) raises the possibility that some of
them, especially in the rostral segments, could be recruited when
the cervical locomotor network is active (Ballion et al., 2001).
Second, nonlocomotor-driven motoneurons are possibly not
part of the rhythmic network, or are inhibited when the lumbar
locomotor network is active. Third, the recruitment of segmental
thoracic motoneurons may not be uniform not only at the seg-
mental level but also along the cord, especially under our phar-
macological conditions. For instance, the recruitment of specific
locomotor interneurons and axial motoneurons during swim-
ming in larval Xenopus and zebrafish has been shown to result
from complex interactions between endogenous motoneuron
membrane properties, passive motoneuronal filtering of synaptic
inputs, and the strength and frequency of the incoming synaptic
inputs responsible for the oscillatory drive (Tunstall and Roberts,
1994; Gabriel et al., 2010; Ausborn et al., 2012; Menelaou and
McLean, 2012; Ampatzis et al., 2013). Interestingly, it was shown
in adult zebrafish that the recruitment of the four axial motoneu-
ron classes reported at this developmental stage was ultimately a
function of the muscle fiber types they innervate, and corre-
sponds to the recruitment order of slow, intermediate, and fast
muscles during episodes of swimming at increasing speeds (Am-
patzis et al., 2013). Further work will be needed to determine
whether the same type of control mechanism operates in the rat
spinal cord, especially at the thoracic level. In particular, eliciting
episodes of fictive locomotion at various frequencies, for instance

through brainstem or spinal cord electrical stimulations while
recording from thoracic axial motoneurons, awaits assessment in
the future.

The locomotor drive recorded from thoracic motoneurons
included an excitatory and an inhibitory component, making it
biphasic (Fig. 6). This locomotor drive is similar to the one that
has been described in lumbar motoneurons (Cazalets et al.,
1996). Interestingly, we showed that the lumbar locomotor net-
work connects at least partly monosynaptically to thoracic mo-
toneurons (Fig. 7). The reduced amplitude of the membrane
potential oscillations when the polysynaptic transmission was
blocked in the thoracic cord indicates that the thoracic circuitry
actually contributed to the synaptic driving force. To our knowl-
edge, we provide here the first evidence that the lumbar locomo-
tor network can contribute to the timing of motor output
produced in distant segments through a dual access to premo-
toneuronal and motoneuronal elements. Further work will be
required to evaluate whether the lumbar locomotor network can
also access the sacral and cervical motoneurons.

Conclusion
Although the trunk plays a central role in posture and limbed
locomotion (Carlson et al., 1988; de Sèze et al., 2008; Schmidt and
Fischer, 2010), the thoracic networks controlling the trunk mus-
cles have until now gone largely unstudied in mammals. We have
gone one step further in the understanding of the functional
coupling between the lumbar locomotor network and the axial
thoracic networks. This work is part of a global, functional ap-
proach of the spinal networks (Juvin et al., 2005; Falgairolle et al.,
2006; Falgairolle and Cazalets, 2007; Juvin et al., 2012), the un-
derstanding of which will probably be helpful in designing inno-
vative, therapeutic strategies for restoring motor activities
following spinal cord injuries (Bjerkefors et al., 2009).
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Delvolvé I, Bem T, Cabelguen JM (1997) Epaxial and limb muscle activity
during swimming and terrestrial stepping in the adult newt, Pleurodeles
waltl. J Neurophysiol 78:638 – 650. Medline
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