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Development/Plasticity/Repair

Plastic Changes in Lumbar Locomotor Networks after a
Partial Spinal Cord Injury in Cats
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After an incomplete spinal cord injury (SCI), we know that plastic reorganization occurs in supraspinal structures with residual descend-
ing tracts. However, our knowledge about spinal plasticity is rather limited. Our recent studies point to changes within the spinal cord
below the lesion. After a lateral left hemisection (T10), cats recovered stepping with both hindlimbs within 3 weeks. After a complete
section (T13) in these cats, bilateral stepping was seen on the next day, a skill usually acquired after several weeks of treadmill training.
This indicates that durable plastic changes occurred below the lesion. However, because sensory feedback entrains the stepping rhythm,
itis difficult to reveal central pattern generator (CPG) adaptation. Here, we investigated whether lumbar segments of cats with a chronic
hemisection were able to generate fictive locomotion—that is, without phasic sensory feedback as monitored by five muscle nerves in
each hindlimb. With a chronic left hemisection, the number of muscle nerves displaying locomotor bursts was larger on the left than on
the right. In addition, transmission of cutaneous reflexes was relatively facilitated on the left. Later during the acute experiment, a
complete spinalization (T13) was performed and clonidine was injected to induce rhythmic activities. There were still more muscle nerves
displaying locomotor bursts on the left. The results demonstrate that spinal networks were indeed modified after a hemisection with a
clear asymmetry between left and right in the capacity to generate locomotion. Plastic changes in CPG and reflex transmission below the

lesion are thus involved in the stepping recovery after an incomplete SCIL.
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Introduction

After a spinal cord injury (SCI), plastic reorganization can occur
at different levels of the CNS above and below the lesion (Frigon
and Rossignol, 2006; Roy et al., 2012). In contrast to reorganiza-
tion within cortical or subcortical sensory and motor representa-
tion areas after SCI, our knowledge about plasticity below the
lesion remains limited (Maier and Schwab, 2006; Zorner et al.,
2014). A functional recovery can be seen after a lateral hemisec-
tion of the spinal cord and this model has been used in several
studies to evaluate underlying changes due to disconnection
from supraspinal tracts on the lesion side compared with the
“intact” side (Murray and Goldberger, 1974; Little et al., 1988;
Kunkel-Bagden et al., 1992; Helgren and Goldberger, 1993; Mi-
chele Basso, et al., 1994; Muir et al., 1998; Babu and Nama-
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sivayam, 2008; Doperalski et al., 2011). For example, after a
hemisection (T12) in cats, sprouting of dorsal root terminals in
spinal laminae paralleled the recovery of reflexes, locomotion,
and hopping (Murray and Goldberger, 1974). If a partial SCI
induces robust plasticity in neural circuitry below the lesion, then
it should still be present even after a complete section. After a
complete spinal transection during an acute experiment, cats
with a chronic spinal cord hemisection displayed an enhanced
reflex excitability on the side of the lesion leading to left/right
asymmetries (Hultborn and Malmsten, 1983a; Hultborn and
Malmsten, 1983b). In addition, Rossignol and colleagues inves-
tigated the plasticity of the locomotor system by comparing step-
ping before and after a left lateral hemisection (T10) and after a
complete section (T13) 3 weeks later (Barriére et al., 2008; Mar-
tinez et al., 2011; Martinez et al., 2012). After the first lesion, cats
could gradually recover quadrupedal locomotion over 3 weeks,
but an asymmetry in stepping pattern persisted. Then, after the
complete section, cats could step on the treadmill within hours of
the complete lesion, with the left hindlimb walking before the
right one. The reexpression of stepping after the T13 transection
must reflect intrinsic changes below the lesion that occurred after
the hemisection. In these spinal cats, walking was thus produced
by adapted locomotor networks driven by sensory feedback. Ad-
aptation of the central pattern generator (CPG) for locomotion
has been proposed before to explain functional recovery after
injury or training without direct electrophysiological evidence



Gossard et al. ® Plasticity in Locomotor Networks after a Partial SCI

(De Leon et al., 1998; Raineteau and Schwab, 2001; Barriére et al.,
2008; Ichiyama et al., 2008). Given the powerful action of sensory
feedback on rhythm generators, it is difficult to reveal plasticity
within the CPG based on walking patterns. Moreover, plasticity
in reflex pathways is induced by treadmill training in spinal ani-
mals (Coté et al., 2003; Coté and Gossard, 2004; Lavrov et al.,
2006; Frigon and Rossignol, 2008).

Here, we investigated whether there was a left-right asymme-
try in the lumbar activity 3 weeks after a cord hemisection (T10)
and after an additional acute complete transection (T13). We
compared the CPG activity by looking at patterns of fictive loco-
motion on the left and right sides in decerebrate curarized ani-
mals; that is, without movements and sensory feedback. We also
investigated whether there was a concomitant asymmetry in the
gain of transmission in cutaneous pathways.

Materials and Methods

General procedure. In nine cats, the left half of the spinal cord was cut after a
narrow laminectomy at T10 under sterile conditions. The wellbeing of the
cats was monitored daily and verified regularly by a veterinarian. Cats were
housed in large individual cages, with food and water and where they could
stand freely. In the days after the lesions, foam mattresses were placed in the
cages and cats were attended to a few times per day to express the bladder if
necessary. Three weeks later, an acute terminal experiment was performed
on these cats. In two “control” cats, the left hemisection at T10 was done
during the acute experiment in the same way.

Acute experiments were performed on the 11 cats of either sex (2.3—
4.6 kg). All procedures were in accordance with the Guide for Care and
Use of Experimental Animals (Canada) and approved by the Ethics
Committee of the Université de Montréal. The details of the preparation
were described previously (Frigon and Gossard, 2010; Sirois et al., 2013)
and are summarized here. Before surgery, cats were injected with an
analgesic (Anafen 2 mg/kg; subcutaneously) and premedicated (Atravet
0.001 mg/kg, glycopyrrolate 0.01 mg/kg, ketamine 5-10 mg/kg, i.m.).
Cats were anesthetized with a mask using a mixture of oxygen nitrous
oxide and isoflurane (2—4%, Abbott Laboratories). The level of anesthe-
sia was adjusted throughout the surgery by monitoring blood pressure,
applying pressure to the paw to detect limb withdrawal, and verifying the
size and reactivity of the pupils.

After a craniotomy, the cortex and all tissue rostral to the colliculi and
mammillary bodies were removed; that is, a precollicular/premammil-
lary decerebration (Frigon and Gossard, 2010; Sirois et al., 2013). At this
point, animals are considered to have complete lack of sentience. Anes-
thesia was discontinued and animals were paralyzed by injecting pancu-
ronium bromide (1 mg/kg) (Sandoz Canada) through the right jugular
or cephalic veins, supplemented every 45 min. Paralysis is required to
remove movement-related sensory feedback to study the centrally gen-
erated pattern of locomotion (i.e., “fictive” locomotion). Immediately
after this injection, the animals were artificially ventilated for the dura-
tion of the experiment. In all cats, after a few hours of recording, a
complete section at T13 was performed. A lethal injection of pentobar-
bital anesthetic was administered at the conclusion of the experiment
through the right jugular vein. A piece of spinal cord (T9-T11) was
dissected out and fixed in 10% paraformaldehyde for several weeks and
then transferred to 30% sucrose solution for 72 h. The tissue was frozen
and 40-um-thick coronal sections centered on the lesion were taken
using a cryostat. Every section was mounted on a slide and stained
with cresyl violet. Under microscope visualization, a qualitative evalua-
tion of the damaged area was performed by using all the coronal sections
in which the lesion was visible.

Nerve recording and stimulation. To monitor locomotor episodes, the
electroneurography (ENG) of selected muscle nerves of both hindlimbs
was recorded by dissecting and mounting the following cut nerves on
bipolar silver chloride electrodes: posterior biceps-semitendinosus
(PBSt), lateral gastrocnemius-soleus (LGS), medial gastrocnemius
(MG), tibialis anterior (TA), extensor digitorum longus (EDL), and un-
cut sciatic nerve. The uncut cutaneous nerves superficial peroneal (SP)
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were also mounted on bipolar electrodes. After a laminectomy exposing
spinal segments L6-S1, the animals were transferred to a stereotaxic
frame and skin flaps surrounding the spinal cord and the hindlimb
nerves were used to construct paraffin oil pools. The cord dorsum po-
tential (CDP) was recorded with a silver-chloride ball electrode and stim-
ulation intensity was expressed as multiples of the threshold (T) for the
most excitable fibers in the nerve determined by the first negative deflec-
tion of the CDP. In 4 cats with long episodes of fictive locomotion, SP
nerves on both sides were stimulated (2-3 Hz) in alternation with single
shocks of at intensity of 2.0 T to evoke reflexes. Electroneurograms were
bandpass filtered (10 Hz—10 kHz) and amplified (Neuralynx).

In cats with intact spinal cord, episodes of fictive locomotion were
occurring spontaneously after decerebration. After a chronic lateral he-
misection, a short series of electrical stimuli (50 pulses, 200 Hz, 5.0 T) to
the sciatic nerves on both sides were used to trigger (never to maintain)
episodes. After the complete section at T13, clonidine was injected (200—
500 ng/kg, i.v.) and episodes were initiated by manually stimulating the
perineum. Episodes of fictive stepping were digitized online (5000 A/D
rate) with an interactive custom-made software (Spinal Cord Research
Center, University of Manitoba, Winnipeg, Canada) or offline from re-
cordings on videotape (15 channels; 4000A, A.R. Vetter). Data were an-
alyzed using the same custom-made software.

Burst duration was defined as the time between burst onset and ter-
mination and was determined from the rectified waveforms using an
adaptive threshold crossing method (Frigon and Gossard, 2009). Cycle
period was defined as the time between successive flexor or extensor
burst onsets. Regression lines were fitted to scatter plots of burst duration
relative to its corresponding cycle period. Coefficients of linear regres-
sion were calculated using statistical software (SPSS version 15.0). For
extensor or flexor burst selection, the ENG with the best signal-to-noise
ratio was used. The ENGs from LGS or MG were used as extensor bursts,
whereas the ENG from TA was used for flexor bursts. In many cases, there
was an absence of bursts of activity in nerves of antagonist muscles on the
right side after a chronic hemisection. In these instances, for comparison
purposes, we measured the duration of the silent periods between two
bursts (estimated antagonist phase) to determine whether this interval
varied with the cycle duration (Frigon and Gossard, 2010).

Reflexes in the TA nerves evoked by stimulating the left and right SP
nerves were measured from the rectified TA ENG. Only the peak ampli-
tude of the first excitatory response was measured using predefined la-
tencies as guidelines (Duysens and Pearson, 1976; Duysens and Loeb,
1980; Abraham et al., 1985). The latency between the incoming cutane-
ous volley recorded as the CDP and the onset of the excitatory response
varied by a few milliseconds depending on the length of the nerve, so the
window to measure the early excitatory reflex amplitude was adjusted for
each nerve. The amplitude from an equivalent area in ENG occurring just
before the reflex was subtracted. The amplitude just before the reflex also
represents the amplitude of the underlying locomotor burst (or absence
of) at the time of the stimulus. Plots of reflex amplitude against the
underlying burst amplitude were constructed to evaluate the input—out-
put gain in cutaneous reflex transmission (Capaday and Stein, 1986;
Bennett et al., 1996; Simonsen and Dyhre-Poulsen, 1999). Regression
lines were fitted to scatter plots of reflex amplitude relative to burst ENG
amplitude and coefficients were calculated using the same software.

Statistical analysis. All statistical tests were done using SPSS version
15.0. A simple linear regression was performed between burst duration
(thatis, dependent variable) and cycle period (i.e., independent variable)
and an F test was used to determine whether the regression was signifi-
cant. An ANCOVA test was performed to reveal significant difference in
the slopes of the regression lines. This analysis was performed because
cycle period can co-vary (or remain invariant) with the extensor or flexor
phase concomitantly. A locomotor episode was extensor or flexor dom-
inated if there was a significant linear relationship or a significant differ-
ence between the slopes of the extensor and flexor regression lines. If the
slope of the linear regression was steeper for extension than flexion, the
cycle duration was said to be extensor dominated; if the slope of the linear
regression was steeper for flexion than extension, the cycle duration was
said to be flexor dominated (Fleshman et al., 1984; Yakovenko et al.,
2005). Where relevant, the coefficients of determination R2) are given in
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Electroneurographicactivity in left hindlimb (black) and in right hindlimb (gray). 4, Bilateral fictive locomotion in a cat with an intact spinal cord. The bursts of activity in extensor nerves

in the left hindlimb alternated with bursts in flexor nerves and with bursts form the contralateral extensor nerves. B, In the same cat after an acute left hemisection, bursts of activity occurred in two
nerves (both extensors) in the left hindlimb and in four nerves in the right hindlimb. C, In a cat with a chronic left hemisection (3 weeks), there were bursts of activity in 4 nerves in the left hindlimb
and weaker bursts of activity in 2 nerves (both flexors) in the right hindlimb. Under each episode of fictive locomotion is a plot showing the linear relationship between the cycle duration and the
phase duration. As shownin the inset, the phases on the left lesioned side are represented by empty circles (extension, LGS, or MG) andfilled circles (flexion, TA); the phases on the right side, by empty
triangles (extension, LGS or MG) and filled triangles (flexion, TA). For leftand right, the linear regression for extension is represented as solid lines and for flexion as dashed lines. The intervals between
two MG bursts [silent periods, “IMG(off)"] on the left can approximate the duration of flexor bursts. IMG is left MG; ITA, left TA; rTA, right TA. *p << 0.05; **p << 0.01; ***p << 0.001.

the text. An ANCOVA analysis was also performed for comparing the
linear regressions relating cutaneous reflexes and burst amplitude on
both sides. A simple ¢ test was applied to compare the number of active
nerves on both sides in hemisected cats and after the acute spinalization
at T13. Significance was set at p < 0.05.

Results
Patterns of fictive locomotion in the left and right side
Figure 1A shows the fictive locomotor pattern from nerves re-
corded in both hindlimbs of a cat with an intact spinal cord.
Episodes such as this occurred spontaneously after decerebra-
tion. The flexors and extensors were clearly alternating in each
limb and agonists were alternating on each side. The analysis of
duration of phases of activity and cycle indicates that the cycle
duration was linearly related to the extension phase (LGS bursts)
on the left (R* = 0.878) and on the right (R* = 0.871), but not to
the duration of flexion phase (TA bursts). The locomotor cycle
on both sides was clearly extensor dominated, as in intact walking
cats (Frigon and Gossard, 2009; Gossard et al., 2011; Zhong et al.,
2012).

Figure 1B shows the locomotor pattern occurring 3 min after
an acute hemisection on the left side at T10 in that same animal.

This episode was triggered by short trains to the sciatic nerves
(See Materials and Methods). There are rhythmic bursts of small
amplitude in the two ankle extensor nerves on the left side with
variable duration. On the right side, however, apart from the
absence of bursts in the knee flexor PBSt, there are clear alternat-
ing bursts in flexors and extensors as before the lesion. There was
thus an obvious asymmetry in the activity of locomotor networks
between left and right, with the side of the lesion (left) being
much weaker. This is rather expectable considering that all su-
praspinal tracts had been suddenly severed on the left, including
the descending drive from the brainstem. Analysis of the duration
of phases and cycle showed that the cycle duration on the left side
was linearly related to the extension phase (R* = 0.478). Because
there were no flexor bursts, it is impossible to do the same analysis
for the flexion phase. However, an alternative is to use the silent
periods between extensor bursts as a rough estimate of the dura-
tion of the flexion phase even though such durations may not be
exactly the same (Frigon and Gossard, 2010). This analysis
showed that the cycle duration was linearly related to the silent
periods between extensor bursts (R* = 0.366). Moreover, there
was no statistical difference between the two slopes, so the cycle
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(pseudo-extension, R* = 0.667) and this
last slope was steeper than for flexion (i.e.,
extensor dominated).
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Figure 2.  Electroneurographic activity in left (in black) and right (in gray) hindlimb after a complete spinalization at T13. A,

Bilateral fictive locomotion occurred after an acute spinalization in a cat with no chronic hemisection (same cat as in Fig. 14, B).
There were bursts of activity in all nerves in the left and right hindlimbs. B, Fictive locomotion occurred after an acute spinalization
with injection of clonidine in a cat with a previous chronic hemisection at T10 (same cat as in Fig. 1C). Bursts of activity were
generated in four nerves with a weak activity in PBSt in the left hindlimb. The right hindlimb displayed rhythmic bursts in two
nerves (both extensors) with rare bursts in the flexor nerve (TA). Under each episode of fictive locomotion is a plot showing the
linear relationship between the cycle duration and the phase duration with the same outline as Figure 1.

duration covaried with the extension and with the “pseudo-flexion”
phases. On the right side, the cycle duration also covaried with ex-
tension (R? = 0.461) and flexion (R = 0.243) phases and there was
no statistical difference between these slopes. The cycle duration,
which was extensor dominated on both sides with an intact cord,
varies with the duration of both phases after an acute hemisection.
Figure 1C shows the pattern of fictive locomotion in a cat with
a chronic left hemisection at T10 performed 3 weeks before the
acute experiment. This rhythm appeared spontaneously after de-
cerebration. The nerves on the left hindlimb display regular al-
ternating bursts in flexors and extensors, whereas only the nerves
of ankle (TA) and toe (EDL) flexors are rhythmically active on the
right side. There was thus a clear asymmetry in the activity be-
tween left and right locomotor networks, with a weak locomotor
pattern on the right side that was connected to the brain. This
asymmetry is strikingly opposed to what was observed with an
acute hemisection (Fig. 1B). The cycle duration on the left side
covaried with the duration of both extension (R? = 0.605) and
flexion (R* = 0.202) phase, but the slope for extension was sta-
tistically steeper than for flexion; that is, extensor dominated. The
cycle duration of the right was linearly related to the flexion (R?
= 0.205) phase and also to the duration of the silent periods

Figure 2B shows the locomotor pattern
in a cat with a chronic left hemisection
(the same as in Fig. 1C), after the acute
spinalization (and intravenous cloni-
dine). Rhythmic bursts are seen in all
nerves on the left hemisected side and
mostly in ankle extensors on the right
side. The cycle duration on the left side was linearly related to the
duration of both extension (R? = 0.875) and flexion (R* = 0.35)
phases, but the slope for extension was statistically steeper than
for flexion; that is, extensor dominated (as in Fig. 1C). The cycle
duration on the right side was linearly related to extension (R* =
0.153) and the silent period between extensor bursts (sham flex-
ion; R? = 0.551), but the slope for the sham flexion was statisti-
cally steeper than for extension; that is, the cycle was flexor
dominated.

Figure 3 shows the fictive locomotion in another cat with a
chronic left hemisection at T10 after decerebration and after an
acute complete section at T13. After decerebration, there were
five nerves in the left hindlimb with clear bursts of activity alter-
nating between flexors and extensors, whereas in the right
hindlimb, there were weak bursts of activity in flexors (Fig. 3A).
The cycle duration on the left side covaried with the duration of
extension (R? = 0.285) and flexion (R* = 0.448) phases. The
cycle duration of the right side also covaried with the flexion
phase (R? = 0.205) and the silent periods between flexor bursts
(pseudo-extension, R* = 0.410).

It is important to realize that weaknesses in— or absence of—
locomotor bursts on the right were not due to depressed excit-
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Figure3. Electroneurographic activity in the left (black) and in the right (gray) hindlimb in a cat with a chronic left hemisection (3 weeks). 4, There were bursts of activity in all five nerves in the

left hindlimb and weaker bursts of activity in two nerves (both flexors) in the right hindlimb. B, During a period of inactivity, trains of stimuli in the sciatic nerve (50 pulses, 200 Hz, 5.0 T) were given
to trigger an episode of rhythmic activities. After the stimuli, clear bursts of activity (arrows) were generated in PBSt and two extensor nerves (MG and LGS) on the right side, yet these nerves were
silent during the ensuing episode of fictive locomotion (as in 4). C, In the same cat, fictive locomotion occurred after an acute spinalization with injection of clonidine. There were rhythmic bursts in
four nerves in the left hindlimb and in three nerves in the right hindlimb (two extensors and one flexor). Under the episode of fictive locomotion in A and Cis a plot showing the linear relationship

between the cycle duration and the phase duration with the same outline as Figure 1.

ability of motor pools because bursts could be clearly evoked via
reflex pathways. For example, Figure 3B shows the triggering of
an episode of fictive locomotion on the left after 3 trains of stimuli
(50 imps, 200 Hz, 5 T) in the sciatic nerve on the right side. Note
that clear bursts are evoked (arrows) in the knee flexor (PBSt) and
ankle extensors (LGS, MG) on the right. However, the same
nerves were silent during the ensuing episode of rhythmic activ-
ities on the left. After a complete spinalization at T13 and cloni-
dine injection in the same cat, there were four nerves with
locomotor bursts in the left hindlimb and three nerves in the right
hindlimb (Fig. 3C), including the ankle extensors that were silent
before the spinalization. The cycle duration on the left side was
linearly related to the duration the extension phase (R* = 0.975),
but not the flexion phase, so it was extensor dominated. The cycle
duration of the right was linearly related to the duration of both
the extension phase (R? = 0.911) and the silent periods (sham
flexion, R* = 0.880), but the slope for extension was significantly
steeper than for flexion; that is, extensor-dominated.

Overall, after a left chronic hemisection at T10 (3 weeks) in
9 cats, there were 36 nerves with bursts of activity on the left

side and 15 active nerves on the right side (Table 1) which is
significantly different (p < 0.001). We measured the phase to
cycle relationships in six cats with the longest episodes of lo-
comotion. The cycle was extensor dominated in four of six cats
on the left side and there was no difference in slopes in two of
six cats. On the right side, there was no difference in slopes in
four of six cats and, in two of six cats, the cycle was extensor
dominated. The results indicate that the activity of locomotor
networks was stronger on the left, hemisected side than on
right side.

After a complete section at T13 in seven chronic hemisected
cats, there were overall 33 nerves with bursts of activity on the left
side and 25 on the right side (Table 1), which is statistically dif-
ferent (p = 0.026). The cycle was extensor dominated in five of
six cats on the left side (one covaried). On the right side, the cycle
was extensor dominated in two of six cats, flexor dominated in
two, and covaried in two. Therefore, even when all remaining
supraspinal tracts are disconnected from the right side, the loco-
motor rhythm on the left side was more robust. Even though
spinal circuitry of both sides received the same pharmacological
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Table 1. Histology and number of active nerves
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Exp 1 2 3 4 5 6 7 8 9 Controll Control2
Days .pOSt- 21 22 20 22 21 23 21 22 23 0 0
lesion
3 3 3 5 4 4 5 5 4 5 5
eft I (PBSt, TA, EDL) | (PBSt, TA, EDL) | (PBst, TA, EDL) | (PBSt, TAEDL, | (TA,EDLLGS, | (TA EDL LGS, | (PBSt TAEDL, | (PBSt, TA,EDL, | (TA, EDL,LGS, | (PBSt, TAEDL, | (PBSt, TA,EDL,
eit leg LGS, MG) MG) MG) LGS, MG) LGS, MG) MG) LGS, MG) LGS, MG)
2 0 0 3 3 3 2 1 1 5 5
aht 1 (TA, EDL) (PBSt, TA, EDL) | (EDL, LGS, MG) | (TA, EDL, LGS) (TA, EDL) (LGS) (LGS) (PBSt, TA, EDL, | (PBSt, TA, EDL,
right leg LGS, MG) LGS, MG)
4 5 4 5 5 5 5 4
Spinal T13 (PBSt, TA,EDL, | (PBSt, TAEDL, | (TA,EDL LGS, | (PBSt TA,EDL, | (PBSt, TA EDL, | (PBSt TA,EDL, | (PBSt, TA, EDL, (TA, EDL, LGS,
left leg LGS) LGS, MG) MG) LGS, MG) LGS, MG) LGS, MG) LGS, MG) MG)
2 5 4 3 4 4 3 4
Spinal T13 (PBSt, LGS) (PBSt, TA, EDL, | (PBSt, EDL, LGS, (PBSt, LGS, | (PBS, EDL, LGS, (TA, EDL, LGS, | (pgst, LGS, MG) (TA, EDL, LGS,
right leg LGS, MG) MG) MG) MG) me) MG)

Nine cats with a chronic hemisection and two with acute hemisection were studied. The reconstruction from histology showing the extent of damage in spinal cord tissue was obtained for eight of nine cats. For each cat, the number of active
nerves (with rhythmic bursts of activity) in each hindlimb is indicated (rows 4 and 5) before and after complete spinalization (“spinal,” rows 6 and 7). The status of three cats did not allow the study of spinal fictive locomotion.

and exteroceptive stimulation, there was still an asymmetry be-
tween the left and right sides in the ability to activate the locomo-
tor networks. The postmortem histology in eight cats with
chronic lesion showed that there was a clear asymmetry in the
residual tracts between the left and right sides (Table 1). In five
cats, most of the tissue of the left half of the cord was destroyed. In
three cats, there was additional loss on the right side; in one cat,
3/4 of the cord was lost but the right ventral quadrant was intact
(Eidelberg et al., 1981; Little et al., 1988; Schucht et al., 2002;
Martinez et al., 2011). This last cat showed similar results as the
others and was thus included in the group.

Gain of cutaneous pathways on the left and right side

Apart from locomotor networks, many other spinal pathways can be
modified by a partial spinal cord injury including reflex pathways
(for review, see Frigon and Rossignol, 2006). Here, we compared the
reflex gain (Lloyd, 1957; Capaday and Stein, 1986; Bennett et al.,
1996; Brooke et al., 1997) of a cutaneous pathway on each side of the
cord during fictive locomotion in cats with a chronic hemisection at
T10, from the superficial peroneal nerve (innervating the dorsal sur-
face of the hindpaw, SP) to the motor pool of the ankle flexor (TA).
Such analysis was possible only with long episodes of fictive locomo-
tion with a similar range of ENG bursts amplitude on both sides,
which was rare considering the described asymmetry.

Figure 4A illustrates the raw ENG bursts of TA muscle on the left
(black) and on the right (gray) while the SP nerve was stimulated at
the same intensity (2.0 T) on the left and on the right alternatively.
Figure 4B shows the averaged short-latency TA excitatory response
to the cutaneous stimuli on each side. Figure 4, C-F, illustrates the
plots relating the amplitude of the reflex responses and the preceding
ENG level of the locomotor burst for the left (filled dots) and the
right (empty dots) sides. In Figure 4C (same cat as for Fig. 4A,B),
there was a linear regression on the left and on the right and the slope
on the left side (R* = 0.492) was significantly steeper than on the
right (R* = 0.152). This means that, for a similar locomotor burst,
the reflex response was larger on the left, lesioned side than on the
right side. Figure 4, D and E, illustrates the results from two other cats
with a chronic hemisection. In Figure 4D, the left side shows a linear
relationship (R* = 0.447), but not the right side. In Figure 4F, the

slope on the left side (R* = 0.569) appears steeper than on the right
(R* = 0.204), but the difference does not reach statistical signifi-
cance (p = 0.09). Figure 4F illustrates the data in a control cat with
an acute hemisection. There were linear regressions on both the left
(R* = 0.681) and right (R* = 0.615) sides, with no significant dif-
ference between them. In conclusion, compared with an acute he-
misection, the chronic hemisection induced a significant asymmetry
in the gain of cutaneous reflexes from SP to TA motor pools in two of
three cats with a larger gain on the left side compared with the right.

Discussion
Plasticity after the hemisection
A convenient and well known conceptual framework to picture
the neural control of locomotion is the tripartite system with
facultative interactions among descending supraspinal com-
mands, CPGs, and sensory feedback (Rossignol, 1996; Zehr and
Duysens, 2004; Stuart, 2007). Under different conditions (devel-
opmental, learning, lesions, etc.), the weight of each part may be
adjusted to produce an optimal walking performance. Our pre-
vious studies with a lateral hemisection have shown an adapta-
tion in the interaction among the residual tracts from supraspinal
structures, the CPG, and sensory feedback. After a complete sec-
tion (T13) removing all voluntary commands, the walking pat-
terns resulted from an adaptation of the CPG driven by sensory
feedback. However, sensory feedback has the remarkable power
to entrain CPGs in many species (Pearson et al., 1992; Andersson
and Grillner, 1983; Elson et al., 1992; Kriellaars et al., 1994; Mc-
Clellan and Jang, 1993; Conway et al., 1987; Lewis et al., 1990)
and is also essential for the CPG to adapt after a complete section
(Barbeau and Rossignol, 1987; De Leon et al., 1998). Moreover,
treadmill training induces plasticity in reflex pathways (Coté et
al., 2003; Coté and Gossard, 2004). The contribution of sensory
feedback is thus very difficult to discard in the evaluation of plas-
ticity. The results of this study on fictive locomotion, without
phasic sensory feedback, provide for the first time direct electro-
physiological evidence that there was a functional plasticity in
locomotor CPGs after a partial SCI.

In all 9 cats with a left hemisection at T10 for 3 weeks, there
were more hindlimb nerves with bursts of activity on the left side
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than on the right (36 vs 15) after decerebration (Table 1). The
relationships between phases versus cycle duration indicated that
the step cycle on the left side was more often extensor dominated
(four of six cats), as in intact cats (Halbertsma, 1983; Gossard et
al., 2011), than on the right side (two of six cats). The weakness in
locomotor generation on the right side was not due to an overall
depression in the excitability of motor pools because peripheral
sensory stimuli could elicit large bursts of activity (Fig. 3B). In
contrast, decerebration in otherwise intact cats led to a left-right
symmetry in patterns of fictive locomotion (Fig. 1A). In addition,

an acute hemisection in a control cat, disconnecting supraspinal
structures on the left side, led to a net depression of locomotor
activity on that side (Fig. 1B).

The prevalence of locomotor activity on the left-lesioned side
may come as a surprise considering that the excitatory drive from
the brainstem after decerebration was mostly reaching the right
side. Two mechanisms may account for this. First, descending
inputs were transmitted via crossed pathways to reach the left
side. Functional recovery with an increased connectivity via
crossed pathways after SCI have been reported before, including
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the brainstem (Matsuyama et al., 2004; Maier and Schwab, 2006;
van den Brand et al., 2012; Filli et al., 2014; Zorner et al., 2014).
Second, the disconnection from the ipsilateral descending path-
ways for 3 weeks may have induced an intrinsic spinal plasticity
resulting in more autonomous activation of the CPG, a situation
comparable to the adaptation after a chronic complete spinal
cord section (De Leon et al., 1998; Lavrov et al., 2006; Rossignol
and Frigon, 2011). The excitatory drive from crossed pathways,
together with the spontaneous CPG autonomy, probably resulted
in an enhanced excitability on the left side.

The right side responded much less in cats with a chronic left
hemisection than in cats with an intact spinal cord. In other
words, the right side was far from being an intact side, with a
severely depressed CPG activity. The reason that the locomotor
networks on the right side did not respond as well after decere-
bration is unknown. We can speculate that there was plasticity in
supraspinal commands to the spinal cord networks on the right
side during the 3 week period, possibly from reticular formation
(Eidelberg et al., 1981; Eidelberg et al., 1986) and/or cortex that
were lost or biased after the decerebration. Adaptation of su-
praspinal drive on the right side may also modify segmental net-
works projecting to hindlimb motoneurons (Bareyre et al., 2004;
Ballermann and Fouad, 2006; Knikou and Mummidisetty, 2014).

There is ample evidence indicating plastic changes in the
transmission in reflex pathways after SCI (Stein et al., 1991;
Nielsen et al., 1995; Barbeau et al., 2002; Lee et al., 2005; Knikou
etal.,2009; Singh et al., 2011; Frigon et al., 2012). In this study, we
successfully compared the transmission in one cutaneous reflex
pathway (from SP to TA) on each side of the cord in four cats with
a chronic hemisection. The amplitude of cutaneous responses for
asimilar activation of the motor pool (ENG burst amplitude) was
larger on the left than on the right side (significant in two of three
cats). Because a change in reflex input—output gain is not simply
related to background motoneuronal activity, it indicates that the
change occurred at a premotoneuronal level, probably in cutane-
ous interneurons (Kernell and Hultborn, 1990; Hultborn et al.,
2004). Such asymmetry was not seen in a control cat with an acute
hemisection. The relative increase in reflex gain on the left is
taken as further evidence for a left-right asymmetry in the plas-
ticity after the hemisection. Because one side is relative to the
other, another valid interpretation is that the gain of the reflex
pathways was decreased on the right side compared with the left.
Although we cannot favor one or the other based on our data,
previous work comparing reflexes before and after lesion in the
same animals reported an increased excitability on the side of the
lesion. For example, in cats with a lateral hemisection, the stretch
reflexes showed a decreased threshold and increased amplitude in
the lesion side over time, whereas the same reflexes were similar
to preinjury levels in the “intact side” (Murray and Goldberger,
1974). In addition, cutaneous afferents from the sural nerve ac-
tivated more dorsal horn neurons on the side of the lesion in
chronic hemisected cats (Brenowitz and Pubols, 1981). Previous
studies assessing reflex pathways before and after a lateral he-
misection have also observed such asymmetry (Hultborn and
Malmsten, 1983a; Hultborn and Malmsten, 1983b). Overall, our
limited sample suggests that the transmission in some cutaneous
pathways showed plastic changes because of the incomplete SCI.
Previous studies have reported that the locomotor system and
reflexes have a parallel time course in their recovery after SCI and
some investigators have proposed a causal relationship between
the two processes (Murray and Goldberger, 1974; Pearson, 2001;
Lavrov et al., 2006; Frigon and Rossignol, 2008; Dietz et al., 2009;
Frigon et al., 2011).
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Plasticity revealed by the acute complete section

If the hemisection induced profound changes in spinal cord in-
trinsic circuitry, then it should remain present even when all
supraspinal pathways are removed (Hultborn and Malmsten,
1983a; Hultborn and Malmsten, 1983b; Barriere et al., 2008; Mar-
tinez et al., 2011). In this study, we successfully induced fictive
locomotion in seven of nine cats with a chronic hemisection after
an acute complete section of the cord at T13. The number of
nerves with phasic bursts of activity was larger on the left, le-
sioned side compared with the right side (33 vs 25; Table 1). In
addition, the relationship between phases and cycle duration
showed that the cycle was extensor dominated on the left side
(five of six cats), as in intact cats, more often than on the right side
(two of six cats). Therefore, the removal of all supraspinal tracts
did not erase all of the asymmetry seen before spinalization. That
the left side responded better to spinalization and clonidine may
again be explained by an enhanced autonomous activation of
CPG brought about by the previous disconnection from the brain
(Kato, 1989; De Leon et al., 1999; Rossignol and Frigon, 2011;
Rossignol et al., 2011).

CPG adaptation

Cats used in this study remained in their cages after the SCI and
were not trained to walk overground or on a treadmill, so there
were limited locomotor-related descending commands and sen-
sory feedback entering the spinal cord. The observed plasticity
was thus mostly spontaneous. As reported previously (Barriere et
al., 2008; Martinez et al., 2011), cats could walk on a treadmill
with both hindlimbs 3 weeks after a left hemisection at T10 with-
out training and the best stepping pattern was from the right
hindlimb. In this situation, the tripartite system adapted quite
successfully for the loss of supraspinal commands on one side to
produce an efficient walking pattern. The CPG activity on the
right side was controlled by residual supraspinal inputs and
driven by rhythmic sensory feedback from the moving limbs. In
our study, the CPG on the right side was deprived of many de-
scending tracts (decerebration) and of all sensory activation and
displayed poor autonomy. Overall, previous findings indicate
that systems driving the CPGs are powerful and plastic and
should be the target of rehabilitation strategies aimed at improv-
ing stepping recovery after an SCI. Findings from this study sup-
port the idea that CPG circuitry, and not only the systems
impinging on it, is also amenable to plastic modifications.
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