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Evidence for Neural Computations of Temporal Coherence in
an Auditory Scene and Their Enhancement during Active
Listening
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The human brain has evolved to operate effectively in highly complex acoustic environments, segregating multiple sound sources into
perceptually distinct auditory objects. A recent theory seeks to explain this ability by arguing that stream segregation occurs primarily
due to the temporal coherence of the neural populations that encode the various features of an individual acoustic source. This theory has
received support from both psychoacoustic and functional magnetic resonance imaging (fMRI) studies that use stimuli which model
complex acoustic environments. Termed stochastic figure- ground (SFG) stimuli, they are composed of a “figure” and background that
overlap in spectrotemporal space, such that the only way to segregate the figure is by computing the coherence of its frequency
components over time. Here, we extend these psychoacoustic and fMRI findings by using the greater temporal resolution of
electroencephalography to investigate the neural computation of temporal coherence. We present subjects with modified SFG
stimuli wherein the temporal coherence of the figure is modulated stochastically over time, which allows us to use linear regression
methods to extract a signature of the neural processing of this temporal coherence. We do this under both active and passive
listening conditions. Our findings show an early effect of coherence during passive listening, lasting from ~115 to 185 ms
post-stimulus. When subjects are actively listening to the stimuli, these responses are larger and last longer, up to ~265 ms. These
findings provide evidence for early and preattentive neural computations of temporal coherence that are enhanced by active
analysis of an auditory scene.
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Introduction

In noisy and complex acoustic environments, humans and other
animals can effortlessly segregate the multitude of interfering
acoustic sources into perceptually distinct auditory objects
(Bregman, 1990). They can also selectively attend to a particular
auditory object and track it over time (Sussman et al., 2007). One
theory that seeks to explain this ability, called the temporal co-
herence model of stream segregation, posits that responses of
neural populations encoding various features of a sound source
(e.g., frequency components, pitch, spatial location) tend to be
temporally correlated (or coherent), but are uncorrelated with
responses to features of other sources. Consequently, by group-
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ing the coherent features together, the auditory system can seg-
regate out one source from other (mixed but uncorrelated)
sources. But to do so, there must be a (coincidence) mechanism
that can detect the coherence of different channels and exploit
them when they occur (Elhilali et al., 2009a; Shamma and Mi-
cheyl, 2010; Shamma et al., 2011, 2013; Krishnan et al., 2014;
Wolf et al., 2014). The search for evidence of such a coincidence-
measuring mechanism is the objective of this study.

A novel stimulus, known as a stochastic figure—ground (SFG)
stimulus, was developed recently to explore this phenomenon
(Teki et al., 2011, 2013). It consists of a sequence of inharmonic
chords, each containing several pure tones, which are randomly
selected from a predefined set. If a subset of these tones repeats or
changes slowly in frequency over several consecutive chords, a
spontaneous percept of a “figure” popping out of a random back-
ground of varying tones can emerge over time. The saliency of the
figure increases as the number of temporally coherent tones
increases.

In a functional magnetic resonance imaging (fMRI) experi-
ment, Teki et al. (2011) used this stimulus to investigate preat-
tentive stream segregation mechanisms, and showed significant
activation in the intraparietal sulcus and the superior temporal
sulcus. While these are important findings, alternative ap-
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proaches using techniques such as magnetoencephalography
(MEG) and electroencephalography (EEG) promise further in-
sights given their far superior temporal resolution. These meth-
ods allow us to examine the timing of what is an inherently
dynamic neural process. For example, knowledge of the latency at
which temporal coherence computations occur can inform the-
ories about the neural mechanisms involved. Thus, such data
could indicate whether these computations represent early,
obligatory sensory responses, or alternatively whether they
represent longer latency responses that depend on higher-
order cognitive engagement with the stimuli. In addition,
these methods can give us insight into the build-up rate of
stream segregation within this SFG paradigm, which remains
as yet unknown.

However, these approaches present challenges of their own in
terms of disentangling temporally overlapping responses from
multiple simultaneously active neural sources (Luck, 2005). Re-
cently, the application oflinear regression methods has addressed
this shortcoming somewhat by facilitating the extraction of local-
ized neural correlates of individual features of interest (Lalor and
Foxe, 2010; Ding and Simon, 2012; Zion Golumbic et al., 2013;
Gongalves et al., 2014). Here, using such an approach in an EEG
experiment, we show that it is possible to extract a neural signa-
ture of temporal coherence computations. Furthermore, we ex-
plore the effects of actively listening to such complex stimuli, as
opposed to just passive listening as was done in the aforementioned
fMRI study (Tekietal., 2011). We wondered whether active listen-
ing alters the nature of auditory processing beyond enhancing
the early obligatory computations that are already occurring.
In addition, how might the latency of such computations be af-
fected by active listening? Here, we begin to answer these ques-
tions by incorporating active and passive listening conditions
into our experimental paradigm.

Materials and Methods

Subjects

Ten healthy subjects (four female) between 23 and 32 years of age par-
ticipated in the EEG experiment, and eight healthy subjects (one female)
between 25 and 27 years of age participated in the psychoacoustic exper-
iment (five subjects participated in both experiments). The experiment
was undertaken in accordance with the Declaration of Helsinki. The
Ethics Committees of the School of Health Sciences at Trinity College
Dublin approved the experimental procedures and each subject provided
written informed consent. Subjects reported no history of hearing im-
pairment or neurological disorder.

Stimulus creation and delivery

We modified a recently introduced SFG stimulus that has been used
successfully in both psychoacoustic and fMRI research (Teki et al., 2011,
2013). This stimulus aims to model naturally occurring complex acoustic
scenes characterized by a figure and background that overlap in spectro-
temporal space, and that are only distinguishable by their temporal fluc-
tuation statistics (Fig. 1A). It consists of a sequence of pure tones, each 50
ms in duration, the onset and offset of which are shaped by a 10 ms raised-
cosine ramp, and with a 0 ms interval between each tone. The tones are
selected from a set of 128 frequencies equally spaced on a logarithmic scale
between 250 and 8000 Hz, such that the separation between each frequency
is approximately half a semitone (~1/24th of an octave). A chord is defined
as the sum of multiple pure tones. Unlike in Teki et al. (2011), the number of
tones per chord here remained unchanged at 15 tones throughout the dura-
tion of the stimulus so as to keep the broadband power and all other low-level
features of the stimulus constant.

As mentioned previously, when a subset of tones repeats or changes
slowly in frequency over several consecutive chords, these tones become
temporally coherent with each other. This subset can therefore be per-
ceived as a figure against the background of the remaining tones. In our
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experiment, the “coherence level” (CL) is defined as the number of tones
that are temporally coherent from chord to chord. Relative to Teki et al.
(2011), we altered the manner in which the coherent tones progressed
throughout the stimulus. The figure in the aforementioned study con-
sisted of tones that repeated in frequency for the duration of the figure.
However, to make the stimuli more naturalistic, we allowed the tempo-
rally coherent tones to fluctuate randomly in frequency for the duration
of the figure, but by no more than two semitones from one chord to the
next. Specifically, at the start of each figure, 15 tones are randomly se-
lected from the 128 possible frequencies to be active for the first chord. As
mentioned above, a proportion of these (depending on the CL) are then
randomly selected to be “temporally coherent” for the duration of the
figure. On the next chord, all coherent tones change in frequency in
either an upwards or downwards direction, randomly chosen to be be-
tween one and four frequency bands (~0.5-2 semitones). This pattern
continues for the duration of the figure, such that all coherent tones
move in a coordinated fashion (Fig. 14, red). It is important to clarify
that the coherent tones were only bounded between *2 semitones be-
tween adjacent chords, and were therefore free to drift substantially in
frequency over several consecutive chords.

All stimuli were created off-line using Matlab 2014 software (Math-
works) at a sampling frequency of 44.1 kHz and 16 bit resolution. All
stimuli were filtered using the HUTear Matlab toolbox (Harmé and Pal-
omiiki, 2000) to simulate the frequency response of the outer and middle
ear. This was done so that all frequencies were perceived with approxi-
mately the same loudness. Sounds were delivered diotically using
Sennheiser HD650 headphones at a level of 60 dB SPL (the same for all
participants). Stimuli were presented using Presentation software from
Neurobehavioral Systems (http://www.neurobs.com).

Experimental design

Psychoacoustic experiment. A psychoacoustic evaluation of the effects of
coherence was performed in Teki et al. (2011). An approximately linear
relationship was found between the CL and figure detection, with
detection of the figure approaching ceiling at a CL of 8. However,
because of the more complex nature of our stimuli, we also conducted
a psychoacoustic experiment to determine the effects of CL in our
stimuli.

For the experiment, all stimuli lasted for 3 s, wherein the first and last
seconds always had a CL of 0. The middle segment was randomly as-
signed to have a CL between 0 and 10, and in steps of two (0, 2,4, 6, 8, 10).
The subject’s task was to determine whether or not this segment con-
tained a figure (i.e., if it had a CL of =2).

Before the experiment, subjects were informed of the nature of the
stimuli, and were shown examples of their spectrograms (similar to that
seen in Fig. 1A). They then performed a short practice session with feed-
back. No feedback was provided during the actual experiment. Subjects
were instructed to look at a fixation cross presented on a computer screen
while performing the task. The experimental session lasted ~10 min. Ten
different examples of each CL were presented, resulting in a total of 60
stimulus presentations.

EEG experiment. Subjects undertook 60 1 min trials each. The CL
changed every second, and was selected randomly and uniformly from
between zero and 10, and in steps of two (0, 2, 4, 6, 8, 10). The experi-
mental session was divided into two conditions: active and passive listen-
ing. The passive condition was undertaken for the first 30 trials. This was
done to ensure that subjects were naive to the content of the stimuli. They
were instructed to watch a film with subtitles, which was presented on a
separate computer to the one used for the presentation of the auditory
stimuli. Subjects were instructed to minimize eye blinking and all other
motor activity. The active listening condition was undertaken for the
remaining 30 trials, where subjects maintained focus on a crosshair cen-
tered on the screen. Subjects were informed of the nature of the stimuli,
and were instructed to respond to targets embedded in the stimuli. Tar-
gets consisted of a ramped figure in which six coherent tones increased in
frequency on each successive chord for the duration of the segment. An
example of 5 s of a stimulus with a target beginning at 2 s is shown in
Figure 1C. The number of targets per trial was randomly selected to be
between four and eight, and the interval between successive targets was
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also random. Subjects responded with a button
press upon hearing a target, and were told that
accuracy was more important than speed. Sub-
jects were played examples of targets before the
active listening condition, and allowed a single
practice session before the experiment began.
After each trial, subjects were presented with
feedback on the percentage of targets correctly
identified, and on the number of times that
they incorrectly responded.

It is important to note that the targets were
merely a method to ensure the active engage-
ment of each subject. They were not being
asked to attend to temporal coherence per se
(i.e., the task was not to respond when the
stimulus was more coherent or less coherent).
Rather, they were charged with listening out
for a particular ramp that happens only ata CL
of 6, where the value of 6 was chosen so as to be
amidrange CL. To eliminate any confounding
target related responses in the EEG data, all
segments of each trial that contained a target,
and the segments immediately after each tar-
get, were discarded when analyzing the EEG
data. The stimuli for the active and passive
listening conditions were identical, and tar-
get sections were removed from the analysis
of the passive EEG data as well. To prevent
discontinuities in the data, all EEG segments
were windowed with a 10 ms raised-cosine
ramp.

Data acquisition and preprocessing

128-channel EEG data were filtered over the
range of 0 to 134 Hz and digitized at the rate of
512 Hz using a BioSemi Active Two system.
Data were referenced to the average of all elec-
trode channels. Data were digitally filtered off-
line between 0.1 and 5 Hz using a Chebychev
type 2 filter, in both a forwards and backwards
direction to remove phase distortion. To de-
crease the processing time required, all EEG
data were then downsampled by a factor of 4 to
give an equivalent sampling rate of 128 Hz. Ex-
cessively noisy EEG channels were rejected
according to the criteria of Junghofer et al.
(2000), and the data on these channels were
estimated using spherical spline interpola-
tion (EEGlab; Delorme and Makeig, 2004).
Independent component analysis was per-
formed independently for each subject using
the Infomax algorithm (EEGlab; Delorme

and Makeig, 2004). Components constituting artifacts were removed
via visual inspection of their topographical distribution and fre-

quency content.

Temporal response function computation
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Psychoacoustic Results
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Figure1.  Examples of SFG stimuli and the psychoacoustic results. 4, The spectrogram of an example of an SFG stimulus used in
ourexperiment. Each black/red dot represents a pure tone lasting for 50 ms. A chord is defined as the summation of multiple tones.
Here, each chord contains exactly 15 tones, which are not harmonically related. There is no overlap between neighboring chords,
resultingin 20 inharmonic chords every second. From 0to 1, thereis no temporal coherence between the various tones from chord
to chord. However, from 1to 2 s, a noticeable pattern emerges whereby eight groups of tones (in this example) change frequency
from chord to chord in a coordinated fashion (red). These changes in frequency are random, but are limited to =2 semitones per
chord. This coordinated movement (temporal coherence) between groups of tones can result in the spontaneous percept of a figure
popping out of arandom background of varying tones. B, Results from the psychoacoustic experiment in which subjects were given
afigure-detection task. The false-positive rate was calculated as the number of times that subjects reported detecting a figure when no
figure was present. Error bars represent SEM. €, An example of 5 s of a stimulus used for the EEG experiment. The coherence
level changes every second, as illustrated by the step function above the spectrogram. In this example, a “target” occurs
from 2to 35, and consists of a ramped figure in which all coherent tones move upwards continuously for the duration of the
figure.
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The method used here to analyze the relationship between the CL and the
EEG data is known as a temporal response function (TRF; Lalor et al.,
2006, 2009; Ding and Simon, 2012; Gongalves et al., 2014). A TRF can be
interpreted as a filter that describes the brain’s linear transformation of
an input stimulus feature to continuous EEG data, and is calculated by
performing linear regression between these two variables. Intuitively, it
can be thought of as being similar to a cross-correlation. We represent the
EEG data atelectrode channel nattimet=1... T'asr,(t). In our case, the
input stimulus feature s(¢) is a step function indicating the CL for each
1 s segment of the stimulus. To observe the effect that the CL has on
the EEG data over time, a set of time lags 7 is applied to s(t), resulting
in the lag matrix S:

A column of ones is added to account for the intercept term of the
regression. All time lags between —200 and 800 ms relative to the stim-
ulus onset were used here.

The TRF is then calculated as follows: TRF = [STS] 'SR, where R is
a matrix containing the response of each electrode at time :

n(1) (1) (1)

n(2) n@ r(2)
R = . . .

n(T)  n(T) r(T)
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To prevent overfitting, ridge regression is performed whereby a bias
term AM is added to the autocovariance matrix S’S, resulting in the
following modified equation: TRF = [S TS + AM] !STR, where
1 -1
-1 2 -1
and A is a constant pa-
-1 2 —1
—1 1

rameter, selected to optimize the correlation between actual and pre-
dicted EEG data. See Lalor et al. (2006) for further details.

Time-locked responses

While the TRF represents a summary measure of how the brain responds
to changes in CL, we also wished to investigate time-locked responses to
each individual CL. To do this, all segments of the data containinga CLN
were concatenated into a single matrix, along with the subsequent and
preceding 1 s segments of data. To improve the signal-to-noise ratio of
the obtained time-locked responses, denoising-source-separation (DSS)
was applied to the data using the Noise Tools toolbox (http://audition.
ens.fr/adc/NoiseTools). DSS is a blind-source separation technique that
optimally extracts neural activity according to some bias criterion (de
Cheveigné and Parra, 2014). This is implemented by performing joint
diagonalization between two covariance matrices, the first of which (c0)
is the covariance matrix of the raw data, and the second (cl) is the
covariance matrix of the same data but filtered in such a way as to em-
phasize a particular feature of interest. In our case, the bias criterion was
the average of the data over trials (de Cheveigné and Simon, 2008; Ding et
al., 2013). Specifically, c1 was the sum of the covariance matrices of the
mean of each CL:

¢l = cov(CLy) + cov(CLy) + . .. + cov(CLy)

where CLy is the mean of the EEG data in response to CL N. DSS was
performed on each subject independently, with the first 10 DSS compo-
nents projected back to sensor space to obtain the denoised EEG data.

Due to the fact that the CL changed every second, there was no refrac-
tory period after each change to allow the EEG data to return to a resting
state. As such, for each subject, we subtracted the average responses to
each CL from the average response obtained to CL 0. Finally, all epochs
for each CL were baseline corrected by subtracting the mean of the re-
sponse in the interval from —500 to 0 ms.

Global field power

To examine our TRFs and time-locked responses for evidence of signal,
we first calculated a measure known as global field power (GFP; Leh-
mann and Skrandies, 1980). This is a single, reference-independent mea-
sure of response strength over the entire scalp. It is simply a measure of
the standard deviation (SD) of the response across channels calculated at
each point in time.

Results

Behavioral results

Psychoacoustic experiment

The results of the psychoacoustic experiment are presented in
Figure 1B. Despite the more complex nature of our stimuli com-
pared with previous studies (Teki et al., 2011, 2013), these data
demonstrate that listeners are capable of detecting the figures
embedded in the stimuli. Furthermore, they reveal that the hit
rate increases as an approximately linear function of CL. The
false-positive rate was calculated as the number of times that
subjects reported detecting a figure when no figure was present.
The hit rate for CL 2 was the only one that was not significantly
greater than the false-positive rate (p = 0.125, Wilcoxon signed-
rank test).

EEG experiment
In the active listening condition subjects were compliant with the
task, responding correctly with a median of 72% per trial (25"
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percentile, 69%; 75" percentile, 83%), and incorrectly respond-
ing when no target was present with a median of once per trial
(25™ percentile, 0; 75" percentile, 1).

EEG results

TRF analysis

GFP plots of the grand-average TRFs obtained for the active and
passive listening conditions are shown in Figure 2A. Robust re-
sponses are clearly visible for both conditions at poststimulus
time lags. To quantitatively establish the time points at which
these responses were significantly different than zero activity, we
carried out two-tailed ¢ tests for each electrode and at each time
point between —200 and 800 ms. Because all electrodes and time
points were being assessed simultaneously, multiple comparisons
were corrected for via the Benjamini and Hochberg (1995) false
detection rate (FDR) algorithm, with an FDR of g = 0.05; a
procedure recommended by Lage-Castellanos et al. (2010). Two
time intervals of significant activation were identified for the ac-
tive condition and one interval for the passive condition. The
timing of these intervals is summarized in Table 1, and can be
visualized in Figure 2B, C. All reported values are mean *= SD
(milliseconds), where the mean was calculated across subjects.

Based on this analysis, we tested to see whether there were any
significant differences between the active and passive responses
from 150 to 400 ms and from 500 to 700 ms after stimulus (two-
tailed paired f test). Separate corrections were performed on these
time frames using the Benjamini et al. (2006) FDR algorithm, a
method that is encouraged when statistical tests are performed
with a priori hypotheses (Groppe et al., 2011). The FDR g was
again set to be 0.05. For the first time frame, significant differ-
ences were found in the interval from 257 * 16 to 328 * 40 ms
(mean = SD), with an effect size (Cohen’s d) spanning from 1.56
(=257 ms) to 0.56 (t = 328 ms). No significant differences were
found for the second time frame (Cohen’s d < 0.49). In both
cases, the effect size was calculated using the GFP. These results
can be visualized in Figure 2D.

To get a better sense of the source of the responses, scalp
voltage and current-source density (CSD; Perrin et al., 1989; Kay-
ser and Tenke, 2006) topographical maps of the grand-average
TRFs were computed and plotted (Fig. 2E, F). These analyses
suggest bilateral sources originating from temporal regions. Us-
ing a nonparametric test to detect differences in the topographic
distribution of voltage responses across the scalp (T-ANOVA;
Brunet et al., 2011), no significant differences were found be-
tween the topographies of the active and passive conditions when
comparing the peak of their respective responses (Active: t = 200
ms; Passive: + = 150 ms; p = 0.15).

Time-locked responses
GFP plots of the grand-average time-locked responses are shown
for the active (Fig. 3A) and passive (Fig. 3B) listening conditions.
Each CL is represented by a different color. For both listening
conditions, there is a slow rise in activation, which plateaus at
~500 ms after stimulus onset. The topographical distributions of
the responses are similar to those of the TRF analyses, again sug-
gesting a bilateral source originating from temporal regions.
Similarly to the TRF analysis described previously, we wished
to quantitatively establish the time points at which these re-
sponses were significantly different from zero activity. To do so
we carried out two-tailed t tests for each CL, for each electrode,
and at each time point between —500 and 1500 ms. Again, mul-
tiple comparisons were corrected for via the Benjamini and
Hochberg (1995) FDR algorithm, with an FDR of ¢ = 0.05. For
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Figure2. Resultsofthe TRF analysis. A, GFP plots of the grand-average TRFs for the active (blue) and passive (red) conditions. The solid black line indicates zero time lag between EEG and stimulus.
The shaded areas indicate SEM. B, (, Statistical cluster plots marking the time points for all electrodes at which the TRF response differed significantly from zero on the basis of two-tailed ¢ tests, with
multiple comparisons corrected for via FDR (g = 0.05). White denotes nonsignificance, whereas positive t values (TRF > 0) are marked on a green scale and negative t values (TRF << 0) are marked
in gold. Electrodes are ordered from the bottom: occipital (0), parietal (P), central (C), and frontal (F) proceeding in the anterior direction in rows from left to right. D, The time points at which the
active response differed significantly from the passive response (2-tailed paired t test, FDR corrected, ¢ < 0.05). E, F, Scalp voltage topographies (E) and CSD topographies (F) of the TRFs for the
Active (t = 200 ms) and Passive (t = 150 ms) conditions. G, Scalp voltage topographies of the TRFs for the Active and Passive conditions at 570 ms. All topographies are displayed on the same scale.

Table 1. The times at which the active and passive TRFs were significantly different from zero activity

Condition Onset 1 Peak 1 Offset 1 Onset 2 Peak 2 Offset 2
Active 117 = 21ms 210 = 47 ms 265 * 56 ms 555 * 50 ms 570 = 93 ms 617 = 50 ms
Passive 117 £ 19ms 156 == 18 ms 187 = 16 ms — — —

Results are displayed as mean == SD (2-tailed t test, FDR corrected). The onset, peak, and offset of the responses are shown.

the active condition, responses to CLs of 6, 8, and 10 exhibited
activity significantly different from zero activity. However, for
the passive condition, this was only true for CLs of 8 and 10. We
also observed a clear gradation in terms of the onset of this activ-
ity, with successively lower CLs eliciting responses at longer la-
tencies. Passive responses also occurred substantially later than
active responses. The time points at which this activity began for
each CL is summarized in Table 2.

A clear separation in magnitude can be seen for many of the
CLs, particularly for the active listening condition. To quantify
any significant differences, the mean of the responses in the in-
terval from 500 to 1000 ms was selected for each subject, and a
Friedman test was implemented. A significant effect of CL was
found for both the active and passive listening conditions (x{,,
= 3264, p =1 X 10 °and x,) = 21.44, p = 2.6 X 10 %
respectively). Post hoc analyses were performed using right-
tailed Wilcoxon signed-rank tests, and multiple comparisons
were corrected for via FDR (q = 0.05). The effect size was evalu-
ated using Cohen’s d. First, we tested to see whether the response
to each CL was significantly greater than the response to the lower
adjacent CL within each listening condition (e.g., is the response

to CL 10 during the active listening condition greater than the
response to CL 8 during the active listening condition). Second,
we tested to see whether there were significant differences be-
tween the active and passive listening conditions for each CL; i.e.,
is the response to CL N during the active listening condition
greater than the response to the same CL during the passive lis-
tening condition. These results can be visualized in Table 3.

Discussion

Using linear regression methods, we have shown that it is possible
to obtain a highly temporally resolved neural signature of the
computation of temporal coherence in a complex acoustic scene
(Fig. 2A). The observed response has an onset at ~115 ms for
both active and passive listening conditions. This response is
likely to be preattentive, which is in accord with previous research
that has observed preattentive neural computations of temporal
coherence (Tekietal.,2011). Under active listening, this response
persists significantly longer and peaks later with a greater ampli-
tude, which suggests that these computations are enhanced and
prolonged during active engagement in analyzing an auditory
scene. The fact that no significant differences were found between
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Results of the time-locked average responses. A, B, GFP plots of the time-locked grand-average responses to the five different CLs during the Active (4) and Passive (B) listening

conditions. Each CL s represented by a different color. The shaded areas indicate SEM. The dotted lines indicate the time point at which the topographies are shown (850 ms). The solid lines illustrate
the duration for which each (L lasted (15). , The same information as in A and B, except plotted so as to directly compare the Active (blue) and Passive (red) listening conditions with respect to each
individual CL (solid lines). All data are normalized relative to the Active condition in response to a CL of 10.

Table 2. The times at which the time-locked responses are first significantly
different from zero activity

(L Active Passive

10 206 = 67 ms 386 = 100 ms
8 261 = 49 ms 433 =103 ms
6 394 + 45 ms —

4 — —
2 — —

Results are displayed as mean = SD (2-tailed t test, FDR corrected, ¢ = 0.05).

the topographies of the active and passive responses at the peak of
their time courses suggests that similar neural mechanisms are
performing these computations under both conditions.

There are two factors that suggest that the response seen here
is likely an explicit measure of temporal coherence computations.
First, due to the design of our stimulus, every chord contains
exactly 15 tones, meaning that the broadband power and all low-
level stimulus features remain constant for the duration of its
presentation. Second, our analysis approach explicitly relies on
a relationship between the EEG data and the modulating CL.
Therefore, although our stimulus certainly activates multiple

stages of the auditory processing hierarchy, which are unrelated
to temporal coherence computations, it should not activate these
areas in a way that correlates with our regression signal (Gon-
calves et al., 2014).

As to the latencies at which a response can be considered “low
level,” previous experiments using target detection tasks in a
stream segregation paradigm have shown that neural responses
earlier than 75 ms are similar for both detected and undetected
targets, whereas later activity is not (Gutschalk et al., 2008; Konigs
and Gutschalk, 2012). These authors therefore suggested that
such early activity reflects purely sensory stimulus processing
(Gutschalk and Dykstra, 2014). Therefore, the fact that we see no
significant activation in the TRFs obtained in this experiment
before ~115 ms suggests that low-level stimulus features are in-
deed absent from this response.

One peculiar result from our analysis was the fact that we
observed significant activation at ~570 ms in the active listening
condition only (Fig. 2B), but found no significant differences
between the active and passive conditions at this latency (Fig.
2D). However, there was a significant difference in terms of their
topographies (T-ANOVA, p = 0.03; Fig. 2G), which suggests that
the lack of any differences in terms of amplitude could simply be
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Table 3. Statistical tests comparing CLs for the time-locked responses

0'Sullivan et al. ® EEG Evidence for Temporal Coherence Computations

Comparing amplitudes of the neural responses to successive CLs for the Active and Passive conditions

Comparing Active versus Passive
responses to each individual CL

(L Active Passive L Active > Passive

4> p=0423;,d =10.124 p = 0.500; d = 0.043 2 p = 0.539;d = 0.083
6>4 *p = 0.014; d = 0.825 p =0.097;d = 0.286 4 p = 0385 d=0.186
8>6 *p = 0.002; d = 0.765 p = 0.065; d = 0.464 6 *p =0.010; d = 0.748
10>38 *p = 0.002; d = 0.760 *p =0.010;d = 1.115 8 *p = 0.002; d = 1.253

10 *» = 0.014; d = 1.097

Alltests were performed using right-tailed Wilcoxon signed-rank tests. Multiple comparisons were corrected for via FDR with a false detection rate of ¢ = 0.05. Asterisk indicates significance. Effect size was calculated using Cohen’s d.

an issue of statistical power. Further work is required to deter-
mine the functional significance of the activity seen at this
latency.

TRF interpretation

The TRF should be considered as a measure of the average brain
response to a unit increment in CL, the value of which changes
once per second in this particular experiment. Given that each
chord lasts for 50 ms, the fact that we first observe significant
activity at ~115 ms in our TRFs seems to suggest that just two
chords are sufficient to begin the stream segregation process. This
may be the case for large CLs, but due to the fact that the TRF is an
average brain response, the same activity would likely not be
observed for lower CLs.

When comparing the active and passive listening conditions,
the cause of the larger and longer-lasting TRFs for the active
condition is likely due to more accurate and consistent neural
tracking of the varying CL, a difference that is in accord with the
behavioral advantages conferred by attention in segregating an
auditory scene (Fritz et al., 2007; Spielmann et al., 2014).

Time-locked responses

The larger TRFs observed for the active listening condition sug-
gest that we should see larger responses to CL changes in our
time-locked responses. This was indeed the case (Fig. 3). With
regards to the latency of the responses, during the active listening
condition we first see significant activity in response to a CL of 10
at ~200 ms. The latency of this first response then occurs pro-
gressively later for each successive (lower) CL. These responses
were substantially later in the passive listening condition, begin-
ning only at ~385 ms in response to a CL of 10. We also observed
significant separation between the magnitudes of the responses to
each individual CL. Under active listening, this separation is fa-
cilitated, with CLs of 6, 8, and 10 significantly different from each
other. However, under passive listening, only a CL of 10 is sepa-
rable from the rest. We found no significant differences between
CLs 2 or 4, neither within nor between listening conditions. Fur-
thermore, neither of these CLs elicited activity significantly dif-
ferent from zero in either listening condition. That said, given the
morphology of the GFP plots for these lower CLs and the simi-
larities in the topographical distribution of the responses across
all CLs, we contend that the lack of statistically significant activity
at these lower CLs is likely to be simply an issue of response
power. The signal-to-noise ratio for these CLs may simply be too
low for the responses to reach significance with the amount of
data available. In support of this conjecture, the psychoacoustic
results demonstrate that a CL of 4 is indeed detectable (Fig. 1B).

Psychoacoustic results
There is a largely linear relationship between hit rate and CL, with
hit rate approaching ceiling at a CL of 8 (Fig. 1B). This rising

behavioral performance as a function of increasing CL mirrors
the growing amplitudes of the GFP plots observed in response to
increasing CLs (Fig. 3C). Compared with Teki et al. (2011), the
hit rate for each CL appears to be lower in our experiment. For
example, Teki et al. (2011) report a hit rate of ~0.95, ~0.9, and
~0.65 for CLs of 6, 4, and 2, respectively. We, instead, report a hit
rate of ~0.8, ~0.5, and ~0.2, respectively. Furthermore, con-
trary to the findings of Teki et al. (2011), the hit rate for CL 2 in
our experiment was not significantly greater than the false-
positive rate. This difference can probably be attributed to the
more complex nature of our stimuli.

Neural sources

With regards to the neural sources of these responses, previous
research using fMRI has shown activation bilaterally in the pos-
terior intraparietal sulcus in response to varying CLs (Teki et al.,
2011). For our data, the CSD analyses performed on the topo-
graphic distributions of the observed TRFs also suggest bilateral
sources originating from temporal regions during both active
and passive listening (Fig. 2F).

Ecological validity

An important characteristic of SFG stimuli is their rapid build-up
rate (the time required to segregate the figure from the back-
ground). Contrary to many brain-imaging and electrophysiolog-
ical experiments on stream segregation that report a build-up
time on the order of several seconds (Micheyl et al., 2007; Guts-
chalk et al., 2008; Pressnitzer et al., 2008; Elhilali et al., 2009b), the
stimuli used here can easily be segregated in hundreds of milli-
seconds (Teki et al., 2011, 2013). This makes them more suitable
for studying the real-time computations that the brain must
routinely make in naturally complex acoustic environments.
For instance, our results here correspond well with previous ex-
periments using natural speech in the classic “cocktail party”
paradigm. One such study (Power et al., 2012; cf. O’Sullivan et al.,
2014) presented subjects with two speakers, and instructed them
to attend to one speaker while ignoring the other. Their results
showed that both the attended and unattended speech streams
elicited similar neural activity in the interval of 50—150 ms.
However, the attended speech exhibited a subsequent peak at
~200 ms, whereas the unattended speech elicited much reduced
activation. Interestingly, in the current study, we observed a peak
in the response of the active listening condition at ~200 ms,
whereas activity in the passive condition peaked at ~150 ms and
subsided by ~190 ms. The similarity between the latencies of the
responses in these two experiments is striking given the dissimi-
larity of the stimuli. More work is required to determine whether
temporal coherence computations are causally linked to the re-
sponses seen in such experiments using natural speech, or
whether two different neural systems are at play with coinciden-
tally similar latencies.
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Notes

Supplemental material for this article is available at http://www.mee.tcd.
ie/lalorlab/resources/temporalCoherenceExample.wav, where an exam-
ple of an SFG stimulus used in the EEG experiment can be found. This
supplemental material has not been peer reviewed.
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