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Autocrine Action of BDNF on Dendrite Development of
Adult-Born Hippocampal Neurons

Liang Wang, Xingya Chang, Liang She, Duo Xu, Wei Huang, and Mu-ming Poo
Institute of Neuroscience, State Key Laboratory of Neuroscience and CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences,
University of Chinese Academy of Sciences, Shanghai, China 200031

Dendrite development of newborn granule cells (GCs) in the dentate gyrus of adult hippocampus is critical for their incorporation into
existing hippocampal circuits, but the cellular mechanisms regulating their dendrite development remains largely unclear. In this study,
we examined the function of brain-derived neurotrophic factor (BDNF), which is expressed in adult-born GCs, in regulating their dendrite
morphogenesis. Using retrovirus-mediated gene transfection, we found that deletion and overexpression of BDNF in adult-born GCs
resulted in the reduction and elevation of dendrite growth, respectively. This effect was mainly due to the autocrine rather than paracrine
action of BDNF, because deletion of BDNF only in the newborn GCs resulted in dendrite abnormality of these neurons to a similar extent
as that observed in conditional knockout (cKO) mice with BDNF deleted in the entire forebrain. Furthermore, selective expression of
BDNFin adult-born GCs in BDNF cKO mice fully restored normal dendrite development. The BDNF autocrine action was also required for
the development of normal density of spines and normal percentage of spines containing the postsynaptic marker PSD-95, suggesting
autocrine BDNF regulation of synaptogenesis. Furthermore, increased dendrite growth of adult-born GCs caused by voluntary exercise
was abolished by BDNF deletion specifically in these neurons and elevated dendrite growth due to BDNF overexpression in these neurons
was prevented by reducing neuronal activity with coexpression of inward rectifier potassium channels, consistent with activity-
dependent autocrine BDNF secretion. Therefore, BDNF expressed in adult-born GCs plays a critical role in dendrite development by

acting as an autocrine factor.
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Introduction

In the hippocampus of adult mammalian brain, newborn granule
cells (GCs) are continuously being generated in the subgranular
zone (SGZ) of the dentate gyrus and incorporated into the exist-
ing neural circuits (van Praag et al., 2002; Ming and Song, 2005;
Zhao et al., 2008). These adult-born GCs contribute to cognitive
functions (Clelland et al., 2009; Aimone et al., 2011; Sahay et al.,
2011; Nakashiba et al., 2012) and emotional regulation (Santar-
elli etal., 2003; Snyder et al., 2011) of the animal. Once generated
at SGZ, the soma of the newborn GC remains in the hilar side of
the GC layer and extends highly branched dendrites toward the
molecular layer, where axonal inputs from the entorhinal cortex
are received (Zhao et al., 2006; Faulkner et al., 2008). A single
axon is also initiated from the soma and projects through the
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hilus toward the CA3 area, providing the output to CA3 pyrami-
dal cells (Hastings and Gould, 1999; Markakis and Gage, 1999;
Toni et al., 2007). The physiological functions of adult newborn
neurons depend critically on the development of dendrite/axon
morphology that is required for their proper integration into exist-
ing neural circuits. Therefore, it is of great interest to study the de-
velopmental process and the regulatory mechanisms underlying the
morphogenesis of adult-born neurons in the hippocampus. In this
study, we focused on the role of brain-derived neurotrophic factor
(BDNF) in regulating dendrite development.

As a member of the neurotrophin family, BDNF was initially
identified as a secreted factor that promotes the survival and
differentiation of selective populations of neurons (Barde et al.,
1982; Huang and Reichardt, 2001). However, BDNF was later
shown to act as an autocrine factor for promoting neuronal sur-
vival during target-independent stage of development (Acheson
etal., 1995; Davies and Wright, 1995). A recent study also showed
that BDNF could act as a self-amplifying autocrine factor in pro-
moting axon growth of cultured embryonic hippocampal neu-
rons (Cheng et al., 2011). Both BDNF and its receptor, TrkB, are
expressed in the adult hippocampus (Li et al., 2008). Deletion of
TrkB in adult neural progenitors reduced the dendrite and spine
growth in adult-born GCs (Bergami et al., 2008), suggesting the
importance of BDNF/TrkB signaling for dendrite morphogenesis
of adult-born neurons. However, it is unclear whether BDNF’s
action is autocrine, paracrine, or both.
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In this study, using a combination of retrovirus-mediated
gene transfection and transgenic methods, we demonstrate that
endogenous BDNF in adult-born hippocampal GCs acts primar-
ily through an autocrine rather than paracrine action in promot-
ing dendrite development. Furthermore, we found that elevated
dendrite growth in these neurons caused by voluntary exercise
also depends on autocrine BDNF action.

Materials and Methods

Transgenic animals. Floxed BDNF mice were originally produced by Dr.
Alexei Morozov’s laboratory of Howard Hughes Medical Institute and
provided by Dr. Bai Lu. Nestin-CreER mice and Rosa26-YFP mice were
provided from the colony in Amelia J. Eisch’s laboratory at the University
of Texas Southwestern Medical Center. Rosa26-tdTomato transgenic
mice and Nestin-Cre transgenic mice were purchased from The Jackson
Laboratory. The running animals lived in standard cages with one run-
ning wheel with one mouse per cage. The runners were carefully observed
each day before perfused. All animal care followed institutional guide-
lines and the animal protocols were approved by the Animal Care Facil-
ities, Shanghai Institute for Biological Sciences, Chinese Academy of
Sciences.

Retrovirus-mediated transfection of adult-born neurons and tamoxifen
induction. Retroviral vectors were modified from the murine Moloney
leukemia virus-based retroviral vector CAG-GFP (Tashiro et al., 2006).
For gene overexpression, cDNA of BDNF or Cre recombinase were co-
expressed with GFP via E2A linker element under the control of the
Ubiquitin C (Ubi) promoter; cDNA of inward rectifier potassium chan-
nel Kir2.1 (Kubo etal., 1993; Johns etal., 1999), or a nonconducting form
of Kir2.1 (mutant Kir2.1; Burrone et al., 2002) was coexpressed with
mCherry via E2A linker element under the control of Ubi promoter. The
concentrated viral solution (107 particles/ml) was produced with 293gp
as the packaging cell line by cotransfection of retroviral vectors together
with pCMV-gp and pCMV-vsv-g plasmids, followed by ultraspeed cen-
trifugation. The virus solution (1.5 ul/hemisphere) was delivered to the
adult mouse dentate gyrus of each hemisphere via stereotaxic injection
(injection site: posterior, 2 mm from bregma; lateral, 1.5 mm; ventral,
2.25 mm from the brain surface). The mice used were male C57BL/6 and
were 8 weeks old at the time of surgery unless stated otherwise.

For inducible BDNF deletion, tamoxifen (TAM; Sigma) was dissolved
in a 90% sunflower oil and 10% ethanol mixture at 30 mg/ml. TAM was
injected intraperitoneally to 7-week-old mice at 180 mg/kg daily for 3
consecutive days. All injected mice were observed daily for neurological-
related abnormality.

Immunohistochemistry and confocal imaging. Mice were anesthetized
with 30% chloral hydrate and perfused transcardially with 0.9% saline
followed by 4% paraformaldehyde. The brain samples were removed and
postfixed with 4% paraformaldehyde, dehydrated in 30% sucrose, and
sectioned into 30, 40, or 60 wm floating slices. One in six brain sections
was used for immunostaining: brain sections were blocked with 1% BSA
and 0.4% Triton-X in PBS for 2 h at room temperature and incubated
with primary antibodies at 4°C overnight. After being washed 3 times
with PBS, slices were incubated with secondary antibodies for 6 h at room
temperature. Brain slices were heated at 92°C for 10 min in 0.01 M citrate
buffer, pH 6.0, for antigen retrieval before immunostaining if necessary.
Primary antibodies used were as follows: anti-BDNF (1:500, rabbit poly-
clonal IgG; Abcam), anti-PSD-95 (1:200, mouse monoclonal IgG; Milli-
pore), anti-Doublecortin (1:100, goat polyclonal IgG; Santa Cruz
Biotechnology), anti-Cre (1:500, mouse monoclonal IgG; Millipore),
anti-DsRed (1:1000, rabbit polyclonal IgG; Clontech), anti-GFP (1:1000,
rabbit polyclonal IgG; Invitrogen), and anti-GFP (1:1000, chicken poly-
clonal IgG; Abcam). Secondary antibodies used were as follows: Alexa
Fluor donkey anti-rabbit IgG, Alexa Fluor-donkey anti-mouse IgG, Al-
exa Fluor-donkey anti-goat IgG, Alexa Fluor-donkey anti-chicken IgG
(1:500; Invitrogen). For Golgi staining, we used FD Rapid Golgistain Kit
(FD Neurotechnologies) and brain samples were sectioned into 150 um
slices for confocal microscopic imaging. For dendritic growth analysis,
z-series at 0.5 wm intervals were acquired on a Nikon A1R laser scanning
confocal microscope with a 40X oil-immersion lens. 2D maximal inten-
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sity projections of each z-series were created to measure the total den-
dritic length and total number of branching points. For qualitative
assessment of axonal growth, the area of interest was taken by the same
confocal microscope with a 20X lens at 1 wm intervals. For mossy fiber
boutons analysis, images were taken with a 60X oil lens at 0.5 wm inter-
vals. For spine growth analysis, images of dendritic processes at the outer
molecular layer were acquired at 0.5 wm intervals with a 60X oil-
immersion lens and a digital zoom of 3. For PSD-95 staining analysis,
images of dendritic processes at the outer molecular layer were acquired
at 0.3 wm intervals with a 60X oil-immersion lens and a digital zoom of
4. Images were processed with deconvolution method using Autoquant
X software.

Western blotting. Western blotting was performed using 15 ug of total
protein from the supernatant of digested brain tissue. After 5% milk
blocking, primary antibodies were against BDNF (1:500; Abcam) and
actin (1:2000; Sigma) and visualized with HRP-conjugated secondary
antibodies (1:10,000; Santa Cruz Biotechnology) followed by the ECL
plus Western blotting detection system kit (GE Healthcare) as per man-
ufacturer’s instructions.

Data analysis. For dendrite growth analysis, 2D images were traced
manually using Neurolucida software. The branch structure analysis
function of Neurolucida Explore software was used to measure the num-
ber of primary dendrites, the number of branching points, and the total
dendrite length of the traced neuron. A total of 16—90 cells from three or
four mice were analyzed for each experimental group. For quantitative
measurements of axonal growth, the crossing point between pyramidale
and a line connecting the ends of the two blades of the dentate gyrus was
defined as the starting point; the growth of axonal fibers was determined
as the average length of three longest axons (from the starting point along
the border of stratum pyramidale) in the same section. A total of 12-18
sections from 3—4 mice were used for each data point. For mossy fiber
bouton analysis, we analyzed boutons with diameter more than threefold
greater than the diameter of the mossy fiber. Maximum projections of z
series were created and then the area was traced with ImageJ. For spine
density analysis (double blind), the length of each dendritic segment was
measured by tracing the center of the dendritic shaft and the spine den-
sity was calculated by dividing the total counted number of spines by the
length of measured dendritic segment. The results are presented as
means *= SEM and statistical significance was determined using one-way
ANOVA followed by Student’s ¢ test.

Results

Dendrite morphogenesis of adult-born GCs

In this study, we fluorescently labeled newborn granule neurons
in the adult mouse hippocampus via stereotaxic injection of
retrovirus-expressing GFP into the hilus of the dentate gyrus of
8-week-old male C57BL/6 mice (Tashiro et al., 2006). Hip-
pocampal sections at different time points after viral injection
were examined with confocal microscopy (Fig. 1A). Because only
dividing cells could be infected by retrovirus and most of the
GFP " cells were born shortly after the time of viral injection
(Zhao et al., 2006), we used the injection time to define the time
of birth of these newborn neurons.

We found that GFP ™ cells were mostly located at the hilar
border of the GC layer (Fig. 1). Their apical dendrites extended
toward the molecular layer and increased in complexity with
time, with the overall morphology resembling that of the mature
GCs by 8 weeks postinfection (wpi).

To quantify dendrite growth, we measured the total dendrite
length and the total number of branch points at different times
after birth for all GFP * neurons. These measurements were likely
to have underestimated the true values of dendrite growth and
branching because the sections we used had a thickness of only 60
um. Nevertheless, we found progressive increase in the dendrite
length and the number of branch points over the first 8 wpi (Fig.
1C,D). The first-order dendrite length (soma to the first branch
point) reached a plateau level by 2 wpi (data not shown).
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Figure 1.

Effects of BONF deletion in adult-born GCs on dendrite development. A, Schematic diagram showing the experimental procedure for labeling newborn GCs in adult mice through

retrovirus-mediated gene transfection. Mice were perfused at different time points as indicated. mpi, Months postinfection. Sample confocal projection images (right) from newborn GCs (GFP ™)
in the hippocampus at 8 wpi. Blue: DAPI staining; green: GFP. Scale bar, 300 .m. B, Example images of newborn neurons expressing Cre recombinase and GFP at 2 wpi, 8 wpi and 3 mpiin WT (left)
and BDNF 7" mice (right). Scale bar, 50 wm. €D, Histograms showing total dendrite length and total branch number of WT (WT + Cre) and BDNF 7" (BDNF 7 + Cre) mice at each time point
(mean == SEM; n = 25-108 for each time point; 3— 4 mice per point; ***p << 0.001, one-way ANOVA followed by Student's ¢ test). E, Representative confocal image of adult-born GCs in the same
slice from mice coinjected with retrovirus expressing Cre and GFP and retrovirus expressing only mCherry at 2 wpi. Magenta: normal newborn neuron expressing mCherry only; green: BDNF deleted
neurons expressing both Cre and GFP; blue: DAPI staining. F, Graph depicts results of dendrite morphology analysis for all dendrites examined for neurons similar to those depicted in D (mean == SEM;
= 16-30neurons for each group; 3 mice each; ***p << 0.001, one-way ANOVA followed by Student’s ttest). G, Immunostaining of newborn GCs for Cre and GFP in adult DG from WT and BDNF "
mice. Red: Cre; green: GFP; blue: DAPI. H, Schematic diagram of the experimental procedure (top). Representative confocal images of newborn GCs in adult BDNF */Nestin-CreER "/Rosa26-YFP mice
through TAM induction and retrovirus-mediated gene transfection (bottom). /, Histograms showing total dendrite length and number of branch points for control and BDNF KO GCs similar to those

depicted in G (mean == SEM; n = 2025 neurons for each group; 3 mice each; ***p << 0.001, one-way ANOVA followed by Student’s t test).

BDNF deletion in newborn neurons impedes dendrite growth
First, we investigated whether endogenous BDNF expressed in
the adult-born GCs plays a role in regulating its own dendrite
development. Newborn neurons in adult BDNF-flox (BDNF )
mice (Zakharenko et al., 2003) were infected with a retrovirus
vector containing Ubi promoter-driven Cre recombinase and
GFP genes (linked by an E2A element). Cells labeled with GFP
were the cells with BDNF gene deletion. We have examined the
efficiency of Cre recombinase action by injecting the retroviral
vector into the hippocampus of adult Rosa26-tdTomato reporter
mice in which tdTomato expression depends on Cre-mediated
recombination and found that GFP * neurons also expressed Cre
and tdTomato, indicating successful recombination. This result
was reported previously (Huang et al., 2014).

When we injected retrovirus expressing Cre recombinase and
GFP into the hippocampus of adult BDNF " mice (Fig. 1G), we

found marked impairment of dendrite development of GFP *
neurons at all time points between 1 and 8 wpi and at 3 months
after retrovirus infection (Fig. 1B), as shown by significantly re-
duced total dendrite length and total number of branch points
compared with control GFP " GCs infected with the same retro-
viral vector in wild-type (WT) mice (Fig. 1C,D). The presence of
dendritic defects in 3-month-old adult-born neurons indicates
that the BDNF deficiency had resulted in a long-lasting dendrite
impairment, rather than simply being a delay in the tempo of
dendrite maturation. In some experiments, we injected the Cre-
GFP retrovirus together with a retrovirus expressing only
mCherry into the hippocampal hilus of adult BDNF 7 mice and
obtained both BDNF-deleted newborn neurons (GFP ) and
normal BDNF-expressing newborn neurons (mCherry *) in the
same hippocampal section (Fig. 1E). To examine potential differen-
tial morphological effects caused simply by expressing different flu-
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To further examine whether BDNF se-
creted by other neurons within the hip-
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doublecortin (Dcx, green) demonstrated BDNF expression in differentiating Dex ™

orescent proteins, the same retrovirus mixture was also injected into
WT mice as a control. After 2 weeks, we found that the total dendrite
length and total number of branch points in BDNF-deleted (GFP *)
neurons were significantly lower than those of normal BDNF-
expressing (mCherry ¥) neurons within the same sections of
BDNF " mice (Fig. 1F). No significant difference in dendrite devel-
opment was observed between GFP ™ and mCherry * neurons in
sections from WT mice infected with the same mixture of viral vec-
tors (data not shown).

In addition to retrovirus-mediated BDNF knockout in the
dentate gyrus, we also used an inducible gene knockout system,

0

[E—

Impairment of dendrite development in BDNF *"/nestin-Cre transgenic mice. A, BDNF immunostaining of adult DG
sections from WT and BDNF 7*/Nestin-Cre mice. Red: BDNF; blue: DAPI. Scale bar, 10 tm. B, Coimmunostaining for BDNF (red) and
neurons. Scale bar, 10 wm. G, Elimination of
BDNF protein expression in whole forebrain is demonstrated by Western analysis. BONF KO, BDNF */Nestin-Cre * mice; control,
BDNF 7/Nestin-Cre ~ mice. D, Representative images of GFP-labeled newborn neurons in BDNF */Nestin-Cre * mice (K0) and its
control littermates (Control), as well as newborn neurons in KO mice transfected with the retrovirus expressing BDNF-GFP (KO +
BDNF), at 2 wpi. Scale bar, 50 m. E, Summary of results on dendrite development in all experiments similar to those depicted in
Das well as those described in A (mean == SEM; n = 70 —-90 neurons for each group; 3— 4 animals per group; **p << 0.01; ***p <
0.001, one-way ANOVA followed by Student’s ¢ test). Control 1: BDNF */Nestin-Cre ~ + GFP, Control 2: WT + Cre.

Nestin-Cre *” referred to as “BDNF-cKO
mice” hereafter; Tronche etal., 1999). Im-
munostaining for BDNF in adult hip-
pocampal sections of control mice
(obtained by crossing BDNF?' with
BDNE"" /Nestin-Cre ¥ mice) showed a
high level of BDNF expression in the en-
tire adult DG (Fig. 2A) and coexpression
of BDNF with doublecortin (Fig. 2B),
which marked immature neurons. In con-
trast, BDNF expression was largely absent
in BDNF-cKO mice (Fig. 2A, B). This was
confirmed further by Western blotting of
BDNF expression in the hippocampal tis-
sue (Fig. 2C).

We then injected GFP-expressing ret-
rovirus to label newborn GCs in adult
BDNF-cKO mice. At 2 wpi, we found that
GFP * newborn neurons showed marked
impairment of dendrite development,
with lower total dendrite length and total number of branch
points than those newborn neurons in Nestin-Cre-negative mice

*%

(Fig. 2E). The extents of reduction were similar to those found in
the above studies when BDNF was deleted only in newborn neu-
rons (Fig. 1C,D), suggesting that the contribution of BDNF from
other neurons within the DG may not be significant. In other
words, BDNF may act primarily in an autocrine rather than a
paracrine manner.

To further determine the paracrine contribution of BDNF
secreted by other cells on adult-born neurons, we expressed ex-



8388 - J. Neurosci., June 3,2015 - 35(22):8384 - 8393

WT+BDNF

Figure 3.

Wang et al. @ Autocrine Action of BDNF on Dendrite Development

Cc

Il WT Control

[ IwT + BDNF
1200 o
1000 T

| *

Total dendrite length (um)
o
o
o
I

0
1wpi 2wpi 3wpi 4wpi 8wpi

*k

Branch number

1wpi 2wpi 3wpi 4wpi 8wpi

40 ek ek ’i*
30 =
20

10

First order length (um)

0
1wpi 2wpi 3wpi 4wpi 8wpi

BDNF overexpression enhances dendrite growth of adult newborn neurons. A, Samples of confocal images showing axons from BDNF-overexpressing newborn dentate GCs (GFP ™) in

the adult hippocampus at 2, 4 and 8 wpi. Blue: DAPI staining; green: GFP. Scale bar, 300 um. B, Examples of single GFP-labeled BDNF-overexpressing adult-born neurons at 1, 2, 3, 4, 8 wpi. Scale
bar, 50 em. €, Summary of results on dendrite development from all experiments similar to those described in B (mean == SEM; n = 63—90 neurons for each group; 3—4 animals per group; *p <

0.05; **p << 0.01; ***p << 0.001, one-way ANOVA followed by Student’s ¢ test).

ogenous BDNF in adult-born neurons of BDNF-cKO mice in
which paracrine contribution of BDNF should be absent. We
found that the dendrite abnormalities observed in BDNF-cKO mice
was completely prevented (Fig. 2D, E), with both total dendrite
length and total number of branching points actually exceeded that
of the adult-born neurons in Nestin-Cre-negative mice. Therefore,
autocrine action of BDNF is sufficient to support the normal den-
drite development of adult newborn neurons.

BDNF overexpression promotes dendrite growth

To further examine the BDNF autocrine action on the develop-
ment of adult newborn neurons, we overexpressed BDNF in
adult-born GCs by injecting retrovirus-expressing BDNF and
GFP. Retrovirus expressing only GFP was also injected into the
hippocampus of adult WT mice as a control. We found that both
the total dendrite length and total number of branch points were
significantly increased in single BDNF-overexpressing neurons at
all stages examined (1-8 weeks after birth) compared with those
found in control mice expressing only GFP in adult-born neu-
rons (Fig. 3). In addition, the first-order dendrite length was
shorter in BDNF-overexpressing neurons than that found in con-
trol neurons, indicating that BDNF accelerates branch formation
(Fig. 3C).

Effects of BDNF on axon growth

There was concurrent growth of axon during the dendrite devel-
opment. We observed axons arriving CA3 area at 1 wpi, with the
number of arriving axons increased with time afterward (Fig.
4A). For quantitative measurements of axonal growth, the
growth of axonal fibers was determined by the average length of
three longest axons projected to the CA3 area in the same section
(Fig. 4B). By this assay, we did not observe any significant
difference in axon growth of adult-born GCs between the WT
control mice and either BDNF KO or BDNF overexpression
mice (Fig. 4C).

In addition to axon growth, we also quantified the morphol-
ogy of axon boutons in the CA3 and the hilus area to determine
whether BDNF deletion or overexpression leads to a difference in
synaptic output of adult-born GCs. Based on the finding that the
size of the mossy fiber boutons of adult-born GCs reaches a pla-
teau at 4 weeks after infection (Faulkner et al., 2008; Toni et al.,
2007), we chose this time point to examine the size of boutons in
BDNF KO and BDNF-overexpressing adult-born GCs. We found
that the average size of the mossy fiber boutons in CA3 was sig-
nificantly larger than that in the hilus in WT mice (Fig. 4D, E),
consistent with previous findings. However, we observed no dif-
ference in the size of axon boutons between adult-born GCs in
WT control mice and BDNF KO or BDNF-overexpressing adult-
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born GCs in both CA3 and hilus area (Fig. 4E). Together, these
studies did not detect any evidence for BDNF autocrine action on
either axon growth or presynaptic bouton development of adult-
born GCs in the present experimental system.

Effects of BDNF on spine development

Because the overall morphology of newborn neurons resembled
that of typical mature granule neurons by 4 wpi, we have also
chosen this time point to examine the development of dendritic
spines under various manipulations of BDNF expression. We
found that most spines appeared to be thin protrusions with
small heads and there were only a few spines with mushroom
morphology (Fig. 5A), consistent with previous findings (Zhao et
al., 2006). Compared with that found in control mice, we found
that spine density of adult-born GCs was significantly reduced to
a similarly low level when BDNF was deleted in either adult-born
GCs themselves or in all DG neurons (Fig. 5C). Furthermore,
expression of exogenous BDNF in adult-born GCs in BDNF-cKO
mice resulted in normal spine development compared with con-
trols, although the same overexpression of BDNF in WT mice
had no detectable effect on spine development (Fig. 5C), suggest-

ing that the endogenous BDNF may have already exerted a max-
imal effect on spine development. Together, these findings
support the notion that the autocrine rather than paracrine ac-
tion of BDNF is a dominant factor in spine development of adult-
born GCs.

We have also used Golgi staining to examine the morphology
of mature GCs in BDNF ¢KO mice. Given the very small percent-
age of new neurons among all existing mature GCs in the adult
hippocampus and by selecting labeled neurons away from the DG
inner layer (where most newborn neurons reside), the Golgi-
stained neurons we examined are likely to be mature GCs in the
hippocampus. We found that the morphology of these GCs in
BDNF KO mice was apparently normal and that the spine density
of GCs was significantly reduced in BDNF ¢cKO mice compared
with those in control WT mice (Fig. 5E, F). These results support
the notion that BDNF plays an important role in spine formation
during embryonic development and in the adult.

Dendritic spines are the postsynaptic sites of excitatory syn-
apses. We thus further examined the expression of the postsyn-
aptic scaffolding protein PSD-95 of excitatory synapses (Fig. 5B)
and found that the percentage of spines with PSD-95 clusters in
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adult-born GCs in BDNF cKO mice was reduced to a level similar
to that found in mice with BDNF deletion only in adult-born
GCs. Furthermore, expression of exogenous BDNF in adult-born
GCs in BDNF cKO mice resulted in normal PSD-95 postsynaptic
localization compared with WT control GCs (Fig. 5D). These
results indicate that BDNF contributes to the development of
excitatory synapses.

Activity-dependent BDNF regulation of dendrite
development

Previous studies have shown that running increases BDNF ex-
pression in the adult brain (Vivar et al., 2012) and promotes the
maturation of adult-born GCs (Piatti et al., 2011). To investigate
whether exercise-associated activity depends on the BDNF regu-
lation of dendrite development, we examined the morphological
effects of deleting BDNF only in adult-born GCs in mice that
have access to a running wheel. We found that voluntary exercise
increased the total dendrite length and total number of branch
points in WT mice after 2 weeks of exposure to the running wheel
(see Materials and Methods, Fig. 6A). In contrast, we found no
such dendrite-promoting effects of voluntary exercise in adult-
born GCs with BDNF deletion (Fig. 6B). Instead, the dendrite
development was impeded to the same level as that found in mice
without running (Fig. 1C,D). These results suggest that running-
induced elevation of dendrite growth depends on the autocrine
action of BDNF.

To further address the role of neuronal activity in regulating
dendrite growth, we overexpressed inward rectifier K™* channel
Kir2.1 to prevent neuronal depolarization in adult-born GCs and
found that the dendrite growth was significantly reduced but a
mutant form of nonconductive Kir2.1 (mKir) was overexpressed
(see Materials and Methods) and had no effect on dendrite de-

velopment (Fig. 6D). Furthermore, coexpressing Kir2.1 and
BDNF in adult-born GCs prevented the dendrite-promoting ef-
fect found when BDNF was expressed alone in these GCs (Fig.
6C,D). In contrast, coexpression of mKir with BDNF was ineffec-
tive in preventing the BDNF promotion effect (Fig. 6D). To-
gether, these results suggest that voluntary exercise elevates
dendrite growth of adult-born GCs via autocrine action of
BDNF, which in turn depends on the electrical activity of these
neurons.

Discussion

In this study, we found that endogenous BDNF acts as an auto-
crine factor during in vivo dendrite development of adult-born
neurons of mouse hippocampus. The use of retrovirus-mediated
gene transduction in combination with transgenic mice allowed
us to analyze the function of BDNF autocrine versus paracrine
action during the early stages of dendrite morphogenesis. Previ-
ous studies have already implicated the role of BDNF/TrkB sig-
naling in neurogenesis and dendrite growth of adult-born GCs in
adult mouse hippocampus (Lee et al., 2002; Rossi et al., 20065
Bergami et al., 2008; Li et al., 2008; Waterhouse et al., 2012). Our
results now demonstrate that TrkB signaling is activated mainly
via autocrine rather than paracrine action of BDNF in these
neurons.

There is growing evidence that BDNF plays an important role
in neural circuit development and plasticity in both developing
and mature brain (Park and Poo, 2013). For examples, BDNF
promotes the growth and complexity of dendritic arbors of cor-
tical neurons in visual cortex slices (Horch et al., 1999; Horch,
2004). In vivo dendrite development of embyronic hippocampal
GCs also depends on BDNF because long-term elevated BDNF
expression in transgenic mice led to increased dendrite growth
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during the postnatal period (Tolwani et al., 2002). However,
none of these previous studies has addressed the issue of whether
BDNF acts as an autocrine factor, a paracrine factor, or both. A
critical property for BDNF for its action as an autocrine factor is
that it is highly positively charged (pI ~ 9), allowing immediate
binding of secreted BDNF to the surface of the secreting cell itself

(Blochl and Thoenen, 1995) or the extracellular matrix near the
secretion sites. In the present study, we have provided several
lines of evidence supporting the notion that autocrine action of
BDNF is predominant in dendrite morphogenesis of adult-born
GCs. First, endogenous expression of BDNF in adult-born GCs is
critical for its own dendrite development. Second, the extent of
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the reduction in dendrite growth when BDNF was deleted in the
entire DG (of BDNF-cKO mice) was similar to that found when
BDNF was deleted only in adult-born neurons. Third, expression
of BDNF only in adult-born GCs restored normal dendrite de-
velopment in BDNF-cKO mice, indicating that BDNF autocrine
action by itself is sufficient to support the normal dendrite devel-
opment. Fourth, overexpression of BDNF only in adult-born
GCs also promoted their dendrite growth and accelerated the
formation of the first dendritic branch. Finally, the elevated den-
drite growth in adult-born GCs induced by voluntary exercise
also depends on the autocrine action of BDNF. Our finding that
coexpressing Kir2.1 with BDNF in adult-born GCs prevented the
autocrine BDNF effect in promoting dendrite growth is consis-
tent with the activity-dependent secretion of BDNF found in a
variety of neurons (Park and Poo, 2013) and further supports the
notion that autocrine BDNF action is regulated by neuronal
activity.

Previous in vitro studies have shown that the survival (Davies
and Wright, 1995; Davies, 1996) and axon growth (Cheng et al.,
2011) of embryonic neurons depended on autocrine action of
BDNF. Our in vivo results here further indicate that the autocrine
action of BDNF is also in operation during morphogenesis of
adult-born GCs in the hippocampus.

In this study, we did not observe any abnormality of axon
development in adult-born neurons with BDNF deletion (Fig. 4).
Due to technical limitation in controlling the number of trans-
fected neurons in different mice, we have not been able to per-
form quantitative analysis on the autocrine action of BDNF in
axon development, although the latter has been reported for iso-
lated embryonic hippocampal neurons in cell cultures (Cheng et
al., 2011). Autocrine secretion of BDNF from adult-born neu-
rons could depend on neuronal activity due to early excitatory
action of GABA released by DG interneurons (Ge et al., 2006; Ge
et al., 2007a; Duan et al.,, 2008; Ge et al., 2008) or to excitatory
glutamatergic synaptic inputs (Espésito et al., 2005; Ge et al,,
2007b) onto developing dendrites of these newborn neurons.
There is evidence in cultured hippocampal neurons that den-
dritic BDNF secretion is much more sensitive to neuronal and
synaptic activities than axonal BDNF secretion (Matsuda et al.,
2009). Therefore, autocrine BDNF secretion may be more prom-
inent in regulating dendrite growth than axon growth in these
developing neurons. However, due to the latency of retrovirus
effects (2 d after injection), our study may have missed the time
window for revealing the autocrine effect of BDNF on axon de-
velopment. More quantitative analysis of axon growth is required
to further clarify the role of autocrine BDNF action in axon de-
velopment of these adult-born neurons.

Accumulating evidence shows that exercise could improve
learning and memory (Vivar et al., 2012). Exercise-induced im-
provements in learning and memory depend on enhanced adult-
hippocampal neurogenesis and increased activity-dependent
synaptic plasticity while concomitantly increasing BDNF levels
(Kobilo et al., 2011; Park and Poo, 2013). Previous studies have
shown that running increases BDNF expression in the adult brain
and promotes dendrite development in the adult DG (Lafenétre
et al., 2010). The effects of exercise on BDNF levels have been
suggested to be regulated by activation of NMDA receptors that
contain the &1 subunit (Kitamura et al., 2003). Previous studies
have also shown that Gadd45b, a neural-activity-induced imme-
diate early gene, promotes epigenetic DNA demethylation and
dendritic development of adult newborn neurons by expressing
corresponding genes critical for adult neurogenesis, including
BDNF (Ma et al., 2009). Using retrovirus-mediated labeling of
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newborn neurons, we found that running leads to a phenotype
similar to that observed in adult-born GCs overexpressing
BDNF. Interestingly, the increased dendrite growth observed in
mice with access to a running wheel was abolished when BDNF
was deleted in adult-born GCs, suggesting that running-induced
elevated dendrite growth mainly depends on the autocrine effect
of BDNF in adult-born GCs. Previous study has shown that
adult-born neurons in mice with voluntary exercise (running)
exhibited a delayed maturation when their neuronal activity was
reduced by the cell-autonomous overexpression of Kir2.1 (Piatti
et al., 2011), suggesting that the neuronal activity in these neu-
rons induces the effects caused by running. In this study, we
found that autonomous neuronal activity is also required for the
autocrine effect of BDNF on dendrite development in adult-born
GCs because the elevated dendrite growth caused by BDNF over-
expression was abolished when neuronal activity was suppressed
by coexpressing Kir2.1 in adult-born GCs. More importantly,
reducing neuronal activity leads to a morphologic phenotype
similar to that seen in BDNF KO adult-born GCs. Together, these
results support the notion that the increased dendrite growth of
adult-born GCs caused by voluntary exercise is due to enhanced
autocrine action of BDNF, which is mediated by elevated neuro-
nal activity in these cells. Antidepressant drugs have also been
shown to increase hippocampal expression of BDNF, which is
implicated in the mechanism of action of antidepressants (Chen
et al,, 2001; Sairanen et al., 2005). Our results suggest that auto-
crine action of BDNF on dendrite morphogenesis may also con-
tribute to the effects of antidepressant drugs.
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